1
|
Tunbridge MJ, Luo X, Thomson AW. Negative Vaccination Strategies for Promotion of Transplant Tolerance. Transplantation 2024; 108:1715-1729. [PMID: 38361234 PMCID: PMC11265982 DOI: 10.1097/tp.0000000000004911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Organ transplantation requires the use of immunosuppressive medications that lack antigen specificity, have many adverse side effects, and fail to induce immunological tolerance to the graft. The safe induction of tolerance to allogeneic tissue without compromising host responses to infection or enhancing the risk of malignant disease is a major goal in transplantation. One promising approach to achieve this goal is based on the concept of "negative vaccination." Vaccination (or actively acquired immunity) involves the presentation of both a foreign antigen and immunostimulatory adjuvant to the immune system to induce antigen-specific immunity. By contrast, negative vaccination, in the context of transplantation, involves the delivery of donor antigen before or after transplantation, together with a "negative adjuvant" to selectively inhibit the alloimmune response. This review will explore established and emerging negative vaccination strategies for promotion of organ or pancreatic islet transplant tolerance. These include donor regulatory myeloid cell infusion, which has progressed to early-phase clinical trials, apoptotic donor cell infusion that has advanced to nonhuman primate models, and novel nanoparticle antigen-delivery systems.
Collapse
Affiliation(s)
- Matthew J. Tunbridge
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Department of Medicine (Nephrology), Duke University Medical Center, Durham, North Carolina, USA
| | - Xunrong Luo
- Department of Medicine (Nephrology), Duke University Medical Center, Durham, North Carolina, USA
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Li JSY, Robertson H, Trinh K, Raghubar AM, Nguyen Q, Matigian N, Patrick E, Thomson AW, Mallett AJ, Rogers NM. Tolerogenic dendritic cells protect against acute kidney injury. Kidney Int 2023; 104:492-507. [PMID: 37244471 DOI: 10.1016/j.kint.2023.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 04/12/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Ischemia reperfusion injury is a common precipitant of acute kidney injury that occurs following disrupted perfusion to the kidney. This includes blood loss and hemodynamic shock, as well as during retrieval for deceased donor kidney transplantation. Acute kidney injury is associated with adverse long-term clinical outcomes and requires effective interventions that can modify the disease process. Immunomodulatory cell therapies such as tolerogenic dendritic cells remain a promising tool, and here we tested the hypothesis that adoptively transferred tolerogenic dendritic cells can limit kidney injury. The phenotypic and genomic signatures of bone marrow-derived syngeneic or allogeneic, Vitamin-D3/IL-10-conditioned tolerogenic dendritic cells were assessed. These cells were characterized by high PD-L1:CD86, elevated IL-10, restricted IL-12p70 secretion and a suppressed transcriptomic inflammatory profile. When infused systemically, these cells successfully abrogated kidney injury without modifying infiltrating inflammatory cell populations. They also provided protection against ischemia reperfusion injury in mice pre-treated with liposomal clodronate, suggesting the process was regulated by live, rather than reprocessed cells. Co-culture experiments and spatial transcriptomic analysis confirmed reduced kidney tubular epithelial cell injury. Thus, our data provide strong evidence that peri-operatively administered tolerogenic dendritic cells have the ability to protect against acute kidney injury and warrants further exploration as a therapeutic option. This technology may provide a clinical advantage for bench-to-bedside translation to affect patient outcomes.
Collapse
Affiliation(s)
- Jennifer S Y Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Sydney Medical School, Faculty of Health and Medicine, University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Harry Robertson
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - Katie Trinh
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Arti M Raghubar
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Matigian
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland, Australia; Queensland Cyber Infrastructure Foundation Bioinformatics, Brisbane, Queensland, Australia
| | - Ellis Patrick
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - Angus W Thomson
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrew J Mallett
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland, Australia; Department of Renal Medicine, Townsville University Hospital, Townsville, Queensland, Australia; College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Sydney Medical School, Faculty of Health and Medicine, University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia.
| |
Collapse
|
3
|
Nakamura Y, Inoue T. Tolerogenic dendritic cells: promising cell therapy for acute kidney injury. Kidney Int 2023; 104:420-422. [PMID: 37599014 DOI: 10.1016/j.kint.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 08/22/2023]
Abstract
There is still no established treatment for acute kidney injury (AKI), and the intervention of AKI remains limited to supportive treatments. Li et al. demonstrated the mechanism by which immune tolerance by dendritic cell ameliorates AKI in a mouse ischemia-reperfusion injury model. The phase I/II clinical trials of tolerogenic dendritic cell therapy have been conducted for kidney transplantation, so it is expected to have potential as a cell therapy for AKI in the future.
Collapse
Affiliation(s)
- Yasuna Nakamura
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| |
Collapse
|
4
|
Li J, Thomson AW, Rogers NM. Myeloid and Mesenchymal Stem Cell Therapies for Solid Organ Transplant Tolerance. Transplantation 2021; 105:e303-e321. [PMID: 33756544 PMCID: PMC8455706 DOI: 10.1097/tp.0000000000003765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transplantation is now performed globally as a routine procedure. However, the increased demand for donor organs and consequent expansion of donor criteria has created an imperative to maximize the quality of these gains. The goal is to balance preservation of allograft function against patient quality-of-life, despite exposure to long-term immunosuppression. Elimination of immunosuppressive therapy to avoid drug toxicity, with concurrent acceptance of the allograft-so-called operational tolerance-has proven elusive. The lack of recent advances in immunomodulatory drug development, together with advances in immunotherapy in oncology, has prompted interest in cell-based therapies to control the alloimmune response. Extensive experimental work in animals has characterized regulatory immune cell populations that can induce and maintain tolerance, demonstrating that their adoptive transfer can promote donor-specific tolerance. An extension of this large body of work has resulted in protocols for manufacture, as well as early-phase safety and feasibility trials for many regulatory cell types. Despite the excitement generated by early clinical trials in autoimmune diseases and organ transplantation, there is as yet no clinically validated, approved regulatory cell therapy for transplantation. In this review, we summarize recent advances in this field, with a focus on myeloid and mesenchymal cell therapies, including current understanding of the mechanisms of action of regulatory immune cells, and clinical trials in organ transplantation using these cells as therapeutics.
Collapse
Affiliation(s)
- Jennifer Li
- Center of Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Angus W Thomson
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Natasha M Rogers
- Center of Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Zhou L, Li H, Zhang XX, Zhao Y, Wang J, Pan LC, Du GS, He Q, Li XL. Rapamycin treated tol-dendritic cells derived from BM-MSCs reversed graft rejection in a rat liver transplantation model by inducing CD8 +CD45RC -Treg. Mol Immunol 2021; 137:11-19. [PMID: 34182227 DOI: 10.1016/j.molimm.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the influence of tolerance dendritic cells (tolDCs), generated from Bone marrow mesenchymal stem cells (BM-MSCs) treated with rapamycin (Rapa) on liver allograft survival in a rat acute liver transplantation model. METHODS Different GM-CSF induction project was used to obtain immature DCs (imDCs), mature DCs (matDCs) or tolDCs from BM-MSCs. First, MLR was performed to analyze the activity of tolDCs on polyclonaly stimulated total T cells. Then, co-cultured imDCs, matDCs and tolDCs with CD8+T cells isolated by magnetic activated cell sorting to analyze the influence on its regulatory characteristic. Last, the established rat acute liver transplantation model were adoptive transfused with imDCs, matDCs or tolDCs isolated by anti-CD11c immunomagnetic beads. The phenotype of DC cells and level of CD8+Treg in the culture system and in vivo, the expression of CD8 and CD45RC in the tissues were analyzed by flow cytometry and immunohistochemistry, respectively. RESULTS The loGM-CSF plus IL-4 decreased the costimulatory molecules of CD80/86 and MHC class II of DCs comparison with hiGM-CSF from BM-MSCs no matter whether stimulation by LPS (P<0.05). Rapa treated not only reduced the expression of CD80/86 and MHC class II but also down-regulated the expression of CD11c after LPS stimulation which was more obviously in tolDCs by loGM-CSF project (P<0.05). Moreover, tolDCs displayed a rather higher level of IL-10 and low level of IL-12p70 than others (P<0.01), which shown a rather lower stimulative effect on the proliferation of T cells comparison with matDCs and imDCs. Co-cultured with CD8+Treg showed an improvement on induction of CD8+TCR+CD45RC-T cells (CD8+Treg) in ex vivo. The rats transfused with tolDCs has a delayed survival benefits with high level of CD8+Tregs (P<0.01) and high expression of CD45RC in liver tissue (P<0.01) and spleen when comparison with other groups. The infused tolDCs improved a mean survival time (MST) of 32 days comparison with a MTS of 9.5 days and 15.75 days displayed by rat that per-infused with matDCs and imDCs, respectively. CONCLUSION Rapa modified tolDCs derived from BM-MSCs reversed graft rejection by improve tolerance characteristics of CD8+CD45RC-Treg in acute liver rat transplantation.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Han Li
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xin-Xue Zhang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yang Zhao
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jing Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Li-Chao Pan
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Guo-Sheng Du
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Xian-Liang Li
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
6
|
Thomson AW, Sasaki K, Ezzelarab MB. Non-human Primate Regulatory T Cells and Their Assessment as Cellular Therapeutics in Preclinical Transplantation Models. Front Cell Dev Biol 2021; 9:666959. [PMID: 34211972 PMCID: PMC8239398 DOI: 10.3389/fcell.2021.666959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Non-human primates (NHP) are an important resource for addressing key issues regarding the immunobiology of regulatory T cells (Treg), their in vivo manipulation and the translation of adoptive Treg therapy to clinical application. In addition to their phenotypic and functional characterization, particularly in cynomolgus and rhesus macaques, NHP Treg have been isolated and expanded successfully ex vivo. Their numbers can be enhanced in vivo by administration of IL-2 and other cytokines. Both polyclonal and donor antigen (Ag) alloreactive NHP Treg have been expanded ex vivo and their potential to improve long-term outcomes in organ transplantation assessed following their adoptive transfer in combination with various cytoreductive, immunosuppressive and "Treg permissive" agents. In addition, important insights have been gained into the in vivo fate/biodistribution, functional stability, replicative capacity and longevity of adoptively-transferred Treg in monkeys. We discuss current knowledge of NHP Treg immunobiology, methods for their in vivo expansion and functional validation, and results obtained testing their safety and efficacy in organ and pancreatic islet transplantation models. We compare and contrast results obtained in NHP and mice and also consider prospects for future, clinically relevant studies in NHP aimed at improved understanding of Treg biology, and innovative approaches to promote and evaluate their therapeutic potential.
Collapse
Affiliation(s)
- Angus W. Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kazuki Sasaki
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mohamed B. Ezzelarab
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Lin J, Wang H, Liu C, Cheng A, Deng Q, Zhu H, Chen J. Dendritic Cells: Versatile Players in Renal Transplantation. Front Immunol 2021; 12:654540. [PMID: 34093544 PMCID: PMC8170486 DOI: 10.3389/fimmu.2021.654540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DCs) induce and regulate adaptive immunity through migrating and maturing in the kidney. In this procedure, they can adopt different phenotypes—rejection-associated DCs promote acute or chronic injury renal grafts while tolerogenic DCs suppress the overwhelmed inflammation preventing damage to renal functionality. All the subsets interact with effector T cells and regulatory T cells (Tregs) stimulated by the ischemia–reperfusion procedure, although the classification corresponding to different effects remains controversial. Thus, in this review, we discuss the origin, maturation, and pathological effects of DCs in the kidney. Then we summarize the roles of divergent DCs in renal transplantation: taking both positive and negative stages in ischemia–reperfusion injury (IRI), switching phenotypes to induce acute or chronic rejection, and orchestrating surface markers for allograft tolerance via alterations in metabolism. In conclusion, we prospect that multidimensional transcriptomic analysis will revolute researches on renal transplantation by addressing the elusive mononuclear phagocyte classification and providing a holistic view of DC ontogeny and subpopulations.
Collapse
Affiliation(s)
- Jinwen Lin
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Disease, Institute of Nephrology, Zhejiang University, Hangzhou, China.,The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, China
| | - Hongyi Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Chenxi Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ao Cheng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qingwei Deng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Huijuan Zhu
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Disease, Institute of Nephrology, Zhejiang University, Hangzhou, China.,The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
8
|
Ness S, Lin S, Gordon JR. Regulatory Dendritic Cells, T Cell Tolerance, and Dendritic Cell Therapy for Immunologic Disease. Front Immunol 2021; 12:633436. [PMID: 33777019 PMCID: PMC7988082 DOI: 10.3389/fimmu.2021.633436] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) are antigen-presenting cells that can communicate with T cells both directly and indirectly, regulating our adaptive immune responses against environmental and self-antigens. Under some microenvironmental conditions DC develop into anti-inflammatory cells which can induce immunologic tolerance. A substantial body of literature has confirmed that in such settings regulatory DC (DCreg) induce T cell tolerance by suppression of effector T cells as well as by induction of regulatory T cells (Treg). Many in vitro studies have been undertaken with human DCreg which, as a surrogate marker of antigen-specific tolerogenic potential, only poorly activate allogeneic T cell responses. Fewer studies have addressed the abilities of, or mechanisms by which these human DCreg suppress autologous effector T cell responses and induce infectious tolerance-promoting Treg responses. Moreover, the agents and properties that render DC as tolerogenic are many and varied, as are the cells’ relative regulatory activities and mechanisms of action. Herein we review the most current human and, where gaps exist, murine DCreg literature that addresses the cellular and molecular biology of these cells. We also address the clinical relevance of human DCreg, highlighting the outcomes of pre-clinical mouse and non-human primate studies and early phase clinical trials that have been undertaken, as well as the impact of innate immune receptors and symbiotic microbial signaling on the immunobiology of DCreg.
Collapse
Affiliation(s)
- Sara Ness
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shiming Lin
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John R Gordon
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Respirology, Critical Care and Sleep Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Fortunato M, Morali K, Passeri L, Gregori S. Regulatory Cell Therapy in Organ Transplantation: Achievements and Open Questions. Front Immunol 2021; 12:641596. [PMID: 33708227 PMCID: PMC7940680 DOI: 10.3389/fimmu.2021.641596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/04/2021] [Indexed: 12/27/2022] Open
Abstract
The effective development of innovative surgical applications and immunosuppressive agents have improved remarkable advancements in solid organ transplantation. Despite these improvements led to prevent acute rejection and to promote short-term graft survival, the toxicity of long-term immunosuppression regiments has been associated to organ failure or chronic graft rejection. The graft acceptance is determined by the balance between the regulatory and the alloreactive arm of the immune system. Hence, enhance regulatory cells leading to immune tolerance would be the solution to improve long-term allograft survival which, by reducing the overall immunosuppression, will provide transplanted patients with a better quality of life. Regulatory T cells (Tregs), and regulatory myeloid cells (MRCs), including regulatory macrophages and tolerogenic dendritic cells, are promising cell populations for restoring tolerance. Thus, in the last decade efforts have been dedicated to apply regulatory cell-based therapy to improve the successful rate of organ transplantation and to promote allogeneic tolerance. More recently, this approach has been translated into clinical application. The aim of this review is to summarize and discuss results on regulatory cell-based strategies, focusing on Tregs and MRCs, in terms of safety, feasibility, and efficacy in clinical studies of organ transplantation.
Collapse
Affiliation(s)
- Marta Fortunato
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Konstantina Morali
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Passeri
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
10
|
Zhuang Q, Cai H, Cao Q, Li Z, Liu S, Ming Y. Tolerogenic Dendritic Cells: The Pearl of Immunotherapy in Organ Transplantation. Front Immunol 2020; 11:552988. [PMID: 33123131 PMCID: PMC7573100 DOI: 10.3389/fimmu.2020.552988] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Over a half century, organ transplantation has become an effective method for the treatment of end-stage visceral diseases. Although the application of immunosuppressants (IS) minimizes the rate of allograft rejection, the common use of IS bring many adverse effects to transplant patients. Moreover, true transplant tolerance is very rare in clinical practice. Dendritic cells (DCs) are thought to be the most potent antigen-presenting cells, which makes a bridge between innate and adaptive immunity. Among their subsets, a small portion of DCs with immunoregulatory function was known as tolerogenic DC (Tol-DC). Previous reports demonstrated the ability of adoptively transferred Tol-DC to approach transplant tolerance in animal models. In this study, we summarized the properties, ex vivo generation, metabolism, and clinical attempts of Tol-DC. Tol-DC is expected to become a substitute for IS to enable patients to achieve immune tolerance in the future.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Haozheng Cai
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Qingtai Cao
- Hunan Normal University School of Medicine, Changsha, China
| | - Zixin Li
- Hunan Normal University School of Medicine, Changsha, China
| | - Shu Liu
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Yingzi Ming
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| |
Collapse
|
11
|
Matar AJ, Crepeau RL, Duran-Struuck R. Cellular Immunotherapies in Preclinical Large Animal Models of Transplantation. Transplant Cell Ther 2020; 27:36-44. [PMID: 33017660 DOI: 10.1016/j.bbmt.2020.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/29/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
Hematopoietic stem cell (HSC) transplantation and solid organ transplantation remain the only curative options for many hematologic malignancies and end-stage organ diseases. Unfortunately, the sequelae of long-term immunosuppression, as well as acute and chronic rejection, carry significant morbidities, including infection, malignancy, and graft loss. Numerous murine models have demonstrated the efficacy of adjunctive cellular therapies using HSCs, regulatory T cells, mesenchymal stem cells, and regulatory dendritic cells in modulating the alloimmune response in favor of graft tolerance; however, translation of such murine approaches to other preclinical models and in the clinic has yielded mixed results. Large animals, including nonhuman primates, swine, and canines, provide a more immunologically rigorous model in which to test the clinical translatability of these cellular therapies. Here, we highlight the contributions of large animal models to the development and optimization of HSCs and additional cellular therapies to improve organ transplantation outcomes.
Collapse
Affiliation(s)
- Abraham J Matar
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Rebecca L Crepeau
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Raimon Duran-Struuck
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
12
|
Zhang H, Wang Z, Zhang J, Zhang X, Gui Z, Sun L, Yang H, Tan R, Gu M. The synergism of B and T lymphocyte attenuator (BTLA) and cytotoxic T lymphocyte associated antigen-4 (CTLA-4) attenuated acute T-cell mediated rejection and prolonged renal graft survival. Transl Androl Urol 2020; 9:1990-1999. [PMID: 33209663 PMCID: PMC7658142 DOI: 10.21037/tau-20-728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Acute T-cell mediated rejection (TCMR) continues to be a major problem in the area of kidney transplantation. The B and T lymphocyte attenuator (BTLA) and cytotoxic T lymphocyte associated antigen-4 (CTLA-4) were recently found costimulatory molecules. The research aims to explore the inhibitory synergism of BTLA and CTLA-4 in TCMR. Methods We investigated the suppressive role of overexpressed BTLA and CTLA-4 in vitro. The rat kidney transplantation model was established to explore the effect of combined overexpressed BTLA and CTLA-4 in recipients of kidney transplantation. The grafts and peripheral blood were harvested for renal function, histology, immunohistochemical and flow cytometry analysis. Results Combination therapy decreased the secretion of interleukin-2 (IL-2) and proliferation of T cells compared to the single therapy and the control group. Decrease of interstitium monocyte infiltration and especially intimal arteritis in the graft was observed with the combination therapy, with remarkable reduction of numbers and proliferation response of T cells in peripheral blood and grafts. Combined overexpressed BTLA and CTLA-4 attenuated the acute TCMR after kidney transplantation and improved the graft function and prolonged the graft survival. The inhibiting role against TCMR in the combination therapy group was more effective than single therapy. Conclusions The synergism of BTLA and CTLA-4 attenuated acute TCMR after kidney transplantation by suppressing T cell activation and proliferation.
Collapse
Affiliation(s)
- Hengcheng Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayi Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeping Gui
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Sun
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiwei Yang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Sasaki K, Wang YC, Lu L, Hughes J, Vujevich V, Thomson AW, Ezzelarab MB. Combined GM-CSF and G-CSF administration mobilizes CD4 + CD25 hi Foxp3 hi Treg in leukapheresis products of rhesus monkeys. Am J Transplant 2020; 20:1691-1702. [PMID: 31883190 PMCID: PMC7768825 DOI: 10.1111/ajt.15761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/25/2023]
Abstract
Early phase clinical trials are evaluating the feasibility, safety, and therapeutic potential of ex vivo expanded regulatory T cells (Treg) in transplantation. A limitation is the paucity of naturally occurring Treg numbers in peripheral blood. Hence, protracted ex vivo expansion is required to obtain sufficient Treg in order to meet target cell doses. Because cytokine administration has been used successfully to mobilize immune cells to the peripheral blood in experimental and clinical studies, we hypothesized that granulocyte macrophage-colony-stimulating factor (GM-CSF) and granulocyte-CSF (G-CSF) administration would enhance Treg percentages in leukapheresis products of rhesus monkeys. Following combined GM-CSF and G-CSF administration, the incidence of Treg in peripheral blood and leukapheresis products was elevated significantly, where approximately 3.7 × 106 /kg CD4+ CD25hi Foxp3hi or 6.8 × 106 /kg CD4+ CD25hi CD127lo Treg can be collected from individual products. Mobilized Treg expressed a comparable repertoire of surface markers, chemokine receptors, and transcription factors to naïve monkey peripheral blood Treg. Furthermore, when expanded ex vivo, mobilized leukapheresis product and peripheral blood Treg exhibited similar ability to suppress autologous CD4+ and CD8+ T cell proliferation. These observations indicate that leukapheresis products from combined GM-CSF- and G-CSF-mobilized individuals are a comparatively rich source of Treg and may circumvent long-term ex vivo expansion required for therapeutic application.
Collapse
Affiliation(s)
- Kazuki Sasaki
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yu-Chao Wang
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lien Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Julia Hughes
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Veronica Vujevich
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Angus W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mohamed B. Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nat Rev Nephrol 2020; 16:391-407. [PMID: 32372062 DOI: 10.1038/s41581-020-0272-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are chief inducers of adaptive immunity and regulate local inflammatory responses across the body. Together with macrophages, the other main type of mononuclear phagocyte, DCs constitute the most abundant component of the intrarenal immune system. This network of functionally specialized immune cells constantly surveys its microenvironment for signs of injury or infection, which trigger the initiation of an immune response. In the healthy kidney, DCs coordinate effective immune responses, for example, by recruiting neutrophils for bacterial clearance in pyelonephritis. The pro-inflammatory actions of DCs can, however, also contribute to tissue damage in various types of acute kidney injury and chronic glomerulonephritis, as DCs recruit and activate effector T cells, which release toxic mediators and maintain tubulointerstitial immune infiltrates. These actions are counterbalanced by DC subsets that promote the activation and maintenance of regulatory T cells to support resolution of the immune response and allow kidney repair. Several studies have investigated the multiple roles for DCs in kidney homeostasis and disease, but it has become clear that current tools and subset markers are not sufficient to accurately distinguish DCs from macrophages. Multidimensional transcriptomic analysis studies promise to improve mononuclear phagocyte classification and provide a clearer view of DC ontogeny and subsets.
Collapse
|
15
|
Thomson AW, Ezzelarab MB. Generation and functional assessment of nonhuman primate regulatory dendritic cells and their therapeutic efficacy in renal transplantation. Cell Immunol 2020; 351:104087. [PMID: 32197811 DOI: 10.1016/j.cellimm.2020.104087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/29/2022]
Abstract
Nonhuman primates (NHP) are important pre-clinical models for evaluation of the safety and efficacy of the most promising potential therapeutic advances in organ transplantation based on rodent studies. Although rare, dendritic cells (DC) play important roles in preservation of self tolerance and DC with immunoregulatory properties (regulatory DC; DCreg) can promote transplant tolerance in rodents when adoptively transferred to allograft recipients. NHP DCreg can be generated ex vivo from bone marrow precursors or blood monocytes of cynomolgus or rhesus macaques or baboons. NHP DCreg generated in the presence of anti-inflammatory factors that confer stability and resistance to maturation, subvert alloreactive T cell responses. When infused into rhesus renal allograft recipients before transplant, they safely prolong MHC mis-matched graft survival, associated with attenuation of anti-donor immune reactivity. In this concise review we describe the properties of NHP DCreg and discuss their influence on T cell responses, alloimmunity and organ transplant survival.
Collapse
Affiliation(s)
- Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Mohamed B Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
16
|
Su YR, Chen MT, Xiong K, Bai L. Endogenous Toll-like Receptor 2 Modulates Th1/Treg-Promoting Dendritic Cells in Mice Corneal Transplantation Model. Curr Eye Res 2019; 45:774-781. [PMID: 31842628 DOI: 10.1080/02713683.2019.1705491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Endogenous toll-like receptor (TLR) 2 is linked to allograft rejection in corneal transplantation. TLR2 also could modulate dendritic cell (DC) phenotype, resulting in T cell polarization. Thus, we investigated the role of endogenous TLR2 on DC development and T cell polarization during corneal rejection. MATERIALS AND METHODS Corneas of BALB/c mice were transplanted into the eyes of C57BL/6 wild-type (WT) recipients and TLR2-/- (KO) recipients. Graft survival and TLR2 mRNA expression were assessed. At day 14 after transplantation, to study endogenous TLR2 effects on DC development and function, surface expression of MHC classⅡ (MHCⅡ), CD86, CD80 and CD40 in ipsilateral cervical draining lymph nodes (DLNs) is measured by flow cytometry, and DC phenotype in corneas is detected by immunofluorescence. The levels of IL-12, IL-10 and IL-4 in corneas were measured by real time-qPCR (RT-qPCR). The ability of DCs to stimulate T cell polarization was assessed by IFN-γ expressions via RT-qPCR and immunohistochemistry. RESULTS TLR2 mRNA expression in corneas was peaked at day 14 post-transplantation in WT group. KO group improved corneal allograft survival compared to the WT group. In addition, the KO group decreased expression of CD86, CD80 and CD40 on DCs compared to the WT group. There was no difference in MHCⅡ expression in two groups. The CD11c+MHCⅡ+CD40high DCs could not be detected in corneas of the KO group. Moreover, the KO group decreased IL-12 (Th1-promoting cytokines) mRNA expression and increasing IL-10 (Treg-promoting cytokines) mRNA expression compared to the WT group. IL-4 (Th2-promoting cytokines) mRNA expression gained no difference between the two groups. The IFN-γ (Th1 cytokines) expression was significantly decreased in the KO group compared to the WT group. CONCLUSIONS Endogenous TLR2 may contribute to allogeneic corneal rejection via Th1 immunity by activating Th1-promoting DCs and suppressing Treg-promoting DCs.
Collapse
Affiliation(s)
- Ya-Ru Su
- Department of ophthalmology, Nanfang Hospital, Southern Medical University , Guangzhou, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Min-Ting Chen
- Department of ophthalmology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Ke Xiong
- Department of ophthalmology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Lang Bai
- Department of ophthalmology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| |
Collapse
|
17
|
Yu S, Su C, Luo X. Impact of infection on transplantation tolerance. Immunol Rev 2019; 292:243-263. [PMID: 31538351 PMCID: PMC6961566 DOI: 10.1111/imr.12803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Allograft tolerance is the ultimate goal of organ transplantation. Current strategies for tolerance induction mainly focus on inhibiting alloreactive T cells while promoting regulatory immune cells. Pathogenic infections may have direct impact on both effector and regulatory cell populations, therefore can alter host susceptibility to transplantation tolerance induction as well as impair the quality and stability of tolerance once induced. In this review, we will discuss existing data demonstrating the effect of infections on transplantation tolerance, with particular emphasis on the role of the stage of infection (acute, chronic, or latent) and the stage of tolerance (induction or maintenance) in this infection-tolerance interaction. While the deleterious effect of acute infection on tolerance is mainly driven by proinflammatory cytokines induced shortly after the infection, chronic infection may generate exhausted T cells that could in fact facilitate transplantation tolerance. In addition to pathogenic infections, commensal intestinal microbiota also has numerous significant immunomodulatory effects that can shape the host alloimmunity following transplantation. A comprehensive understanding of these mechanisms is crucial for the development of therapeutic strategies for robustly inducing and stably maintaining transplantation tolerance while preserving host anti-pathogen immunity in clinically relevant scenarios.
Collapse
Affiliation(s)
- Shuangjin Yu
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
- Division of Organ transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chang Su
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
18
|
High-throughput RNA-sequencing identifies mesenchymal stem cell-induced immunological signature in a rat model of corneal allograft rejection. PLoS One 2019; 14:e0222515. [PMID: 31545822 PMCID: PMC6756551 DOI: 10.1371/journal.pone.0222515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/31/2019] [Indexed: 12/11/2022] Open
Abstract
Objective The immune rejection mediated by CD4+ T cell and antigen presenting macrophages is the leading cause of corneal transplantation failure. Bone marrow-derived mesenchymal stem cells (BM-MSCs) possess robust immunomodulatory potentials, and have been shown by us and others to promote corneal allograft survival. However, the immunological mechanism underlying the protective effects of BM-MSCs remains unclear. Therefore, in the current study, this mechanism was investigated in a BM-MSC-treated rat model of corneal allograft rejection, in the hope to facilitate the search for novel interventional targets to corneal allograft rejection. Methods Lewis rats were subjected to corneal transplantation and then received subconjunctival injections of BM-MSCs (2×106 cells / 100 μl PBS) immediately and at day 3 post-transplantation. The control group received the injections of PBS with the same volume. The clinical parameters of the corneal allografts, including opacity, edema, and neovascularization, were regularly evaluated after transplantation. On day 10 post-transplantation, the corneal allografts were collected and subjected to flow cytometry and high-throughput RNA sequencing (RNA-seq). GO enrichment and KEGG pathways were analyzed. The quantitative realtime PCR (qPCR) and immunohistochemistry (IHC) were employed to validate the expression of the selected target genes at transcript and protein levels, respectively. Results BM-MSC subconjunctival administration prolonged the corneal allograft survival, with reduced opacity, alleviated edema, and diminished neovascularization. Flow cytometry showed reduced CD4+ T cells and CD68+ macrophages as well as boosted regulatory T cells (Tregs) in the BM-MSC-treated corneal allografts as compared with the PBS-treated counterparts. Moreover, the RNA-seq and qPCR results demonstrated that the transcript abundance of Cytotoxic T-Lymphocyte Associated Protein 4 (Ctla4), Protein Tyrosine Phosphatase, Receptor Type C (Ptprc), and C-X-C Motif Chemokine Ligand 9 (Cxcl9) genes were increased in the allografts of BM-MSC group compared with PBS group; whereas the expression of Heat Shock Protein Family A (Hsp70) Member 8 (Hspa8) gene was downregulated. The expression of these genes was confirmed by IHC at protein level. Conclusion Subconjunctival injections of BM-MSCs promoted corneal allograft survival, reduced CD4+ and CD68+ cell infiltration, and enriched Treg population in the allografts. The BM-MSC-induced upregulation of Ctla4, Ptprc, Cxcl9 genes and downregulation of Hspa8 gene might contribute to the protective effects of BM-MSCs and subserve the potential interventional targets to corneal allograft rejection.
Collapse
|
19
|
Thomson AW, Metes DM, Ezzelarab MB, Raïch-Regué D. Regulatory dendritic cells for human organ transplantation. Transplant Rev (Orlando) 2019; 33:130-136. [PMID: 31130302 DOI: 10.1016/j.trre.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/09/2019] [Indexed: 12/30/2022]
Abstract
Current immunosuppressive (IS) regimens used to prevent organ allograft rejection have well-recognized side effects, that include enhanced risk of infection and certain types of cancer, metabolic disorders, cardiovascular disease, renal complications and failure to control chronic allograft rejection. The life-long dependency of patients on these IS agents reflects their inability to induce donor-specific tolerance. Extensive studies in rodent and non-human primate models have demonstrated the ability of adoptively-transferred regulatory immune cells (either regulatory myeloid cells or regulatory T cells) to promote transplant tolerance. Consequently, there is considerable interest in the potential of regulatory immune cell therapy to allow safe minimization/complete withdrawal of immunosuppression and the promotion of organ transplant tolerance in the clinic. Here, we review the properties of regulatory dendritic cells (DCreg) with a focus on the approaches being taken to generate human DCreg for clinical testing. We also document the early phase clinical trials that are underway to assess DCreg therapy in clinical organ transplantation as well as in autoimmune disorders.
Collapse
Affiliation(s)
- Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Diana M Metes
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dalia Raïch-Regué
- Nephropathies Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
20
|
Low-dose chidamide restores immune tolerance in ITP in mice and humans. Blood 2018; 133:730-742. [PMID: 30552097 DOI: 10.1182/blood-2018-05-847624] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Increased macrophage phagocytosis of antibody-coated platelets, as well as decreased numbers and/or impaired function of CD4+CD25+Foxp3+ regulatory T (Treg) cells, has been shown to participate in the pathogenesis of immune thrombocytopenia (ITP). Low-dose histone deacetylase inhibitors (HDACi's) are anti-inflammatory and immunomodulatory agents that can enhance immunosuppression in graft-versus-host disease by increasing the number and function of Foxp3+ Treg cells, but it is unclear whether they have the potential to promote immune tolerance and platelet release in ITP. In this study, we performed in vitro and in vivo experiments and found that a low-dose HDACi (chidamide) alleviated thrombocytopenia in passive and active murine models of ITP. Further, low-dose HDACi's attenuated macrophage phagocytosis of antibody-coated platelets, stimulated the production of natural Foxp3+ Treg cells, promoted the peripheral conversion of T cells into Treg cells, and restored Treg cell suppression in vivo and in vitro. Finally, we confirmed that low-dose HDACi's could regulate CTLA4 expression in peripheral blood mononuclear cells through modulation of histone H3K27 acetylation. Low-dose HDACi treatment in ITP could be offset by blocking the effect of CTLA4. Therefore, we propose that low-dose chidamide administration has potential as a novel treatment for ITP in the clinic.
Collapse
|
21
|
Thomson AW, Ezzelarab MB. Regulatory dendritic cells: profiling, targeting, and therapeutic application. Curr Opin Organ Transplant 2018; 23:538-545. [PMID: 30036199 PMCID: PMC6620776 DOI: 10.1097/mot.0000000000000565] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW There is currently increased focus on improved understanding of how dendritic cell tolerogenicity is determined and maintained, and on their therapeutic potential. We review recent progress in profiling of regulatory dendritic cells (DCreg), innovative approaches to enhancing dendritic cell tolerogenicity in situ, ex-vivo generation of DCreg and initial clinical testing of these cells in organ transplantation. RECENT FINDINGS "Omics' studies indicate that the distinctive properties of DCreg are the result of a specific transcriptional program characterized by activation of tolerance-enhancing genes, rather than the retention of an immature state. In situ dendritic cell-directed targeting of nanovesicles bearing immune regulatory molecules can trigger in-vivo expansion of Ag-specific regulatory cells. Innovative approaches to ex-vivo modification of dendritic cells to enhance their regulatory function and capacity to migrate to secondary lymphoid organs has been described. Cross-dressing (with donor major histocompatibility complex molecules) of graft-infiltrating host dendritic cells that regulate antidonor T-cell responses has been implicated in "spontaneous' liver transplant tolerance. Clinical trials of DCreg therapy have begun in living donor renal and liver transplantation. SUMMARY Further definition of molecules that can be targeted to promote the function and stability of DCreg in vivo may lead to standardization of DCreg manufacturing for therapeutic application.
Collapse
Affiliation(s)
- Angus W Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|