1
|
Xu YP, Zhou YL, Xiao Y, Gu WB, Li B, Cheng YX, Li BW, Chen DY, Zhao XF, Dong WR, Shu MA. Functional differences in the products of two TRAF3 genes in antiviral responses in the Chinese giant salamander, Andrias davidianus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104015. [PMID: 33460679 DOI: 10.1016/j.dci.2021.104015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Tumour necrosis factor receptor associated factor 3 (TRAF3) is a crucial transducing protein for linking upstream receptor signals and downstream antiviral signalling pathways. Previous studies mostly clarified the functions of TRAF3 in mammals, birds and fish, but little is known about the characterization and function of TRAF3 in amphibians. In this study, the molecular and functional identification of two TRAF3 genes, AdTRAF3A and AdTRAF3B, were investigated in the Chinese giant salamander Andrias davidianus. The complete open reading frames (ORFs) of AdTRAF3A and AdTRAF3B were 1698 bp and 1743 bp in length, encoding 565 and 580 amino acids, respectively. Both AdTRAF3A and AdTRAF3B deduced proteins contained a RING finger, two TRAF-type zinc fingers, a coiled-coil and a MATH domain. Phylogenetic analysis showed that the AdTRAF3 protein clustered together with other known TRAF3 proteins. Gene expression analysis showed that AdTRAF3s were broadly distributed in all examined tissues with similar distribution patterns. AdTRAF3s in the blood or spleen positively responded to Giant salamander iridovirus (GSIV) and poly (I:C) induction but exhibited distinct response patterns. Silencing AdTRAF3A/B remarkably suppressed the expression of IFN signalling pathway-related genes when leukocytes were treated with DNA virus and the viral RNA analogue. Moreover, overexpression of AdTRAF3A may induce the activation of the IFN-β promoter, and the zinc finger, coiled coil and MATH domains of AdTRAF3A were essential for IFN-β promoter activation. However, the overexpression of AdTRAF3B significantly suppressed IFN-β promoter activity, and its inhibitory effect was enhanced when the RING finger or MATH domain was deleted. Furthermore, AdTRAF3A rather than AdTRAF3B significantly induced NF-κB activation, implying that AdTRAF3A may function as an enhancer in both the IFN and NF-κB signalling pathways. Taken together, our results suggest that the two TRAF3 genes play different crucial regulatory roles in innate antiviral immunity in Chinese giant salamanders.
Collapse
Affiliation(s)
- Ya-Ping Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Lian Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan-Xin Cheng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bing-Wu Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Da-Yong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Feng Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Campbell LK, Magor KE. Pattern Recognition Receptor Signaling and Innate Responses to Influenza A Viruses in the Mallard Duck, Compared to Humans and Chickens. Front Cell Infect Microbiol 2020; 10:209. [PMID: 32477965 PMCID: PMC7236763 DOI: 10.3389/fcimb.2020.00209] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022] Open
Abstract
Mallard ducks are a natural host and reservoir of avian Influenza A viruses. While most influenza strains can replicate in mallards, the virus typically does not cause substantial disease in this host. Mallards are often resistant to disease caused by highly pathogenic avian influenza viruses, while the same strains can cause severe infection in humans, chickens, and even other species of ducks, resulting in systemic spread of the virus and even death. The differences in influenza detection and antiviral effectors responsible for limiting damage in the mallards are largely unknown. Domestic mallards have an early and robust innate response to infection that seems to limit replication and clear highly pathogenic strains. The regulation and timing of the response to influenza also seems to circumvent damage done by a prolonged or dysregulated immune response. Rapid initiation of innate immune responses depends on viral recognition by pattern recognition receptors (PRRs) expressed in tissues where the virus replicates. RIG-like receptors (RLRs), Toll-like receptors (TLRs), and Nod-like receptors (NLRs) are all important influenza sensors in mammals during infection. Ducks utilize many of the same PRRs to detect influenza, namely RIG-I, TLR7, and TLR3 and their downstream adaptors. Ducks also express many of the same signal transduction proteins including TBK1, TRIF, and TRAF3. Some antiviral effectors expressed downstream of these signaling pathways inhibit influenza replication in ducks. In this review, we summarize the recent advances in our understanding of influenza recognition and response through duck PRRs and their adaptors. We compare basal tissue expression and regulation of these signaling components in birds, to better understand what contributes to influenza resistance in the duck.
Collapse
Affiliation(s)
- Lee K Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Zhou Y, Zhou Y, Kang X, Meng C, Zhang R, Guo Y, Xiong D, Song L, Jiao X, Pan Z. Molecular cloning and functional characterisation of duck ( Anas platyrhynchos) tumour necrosis factor receptor-associated factor 3. Br Poult Sci 2019; 60:357-365. [PMID: 31046421 DOI: 10.1080/00071668.2019.1614528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1. Tumour necrosis factor receptor-associated factor 3 (TRAF3) is a key regulator of innate immunity and acquired immunity, and has a salient anti-viral role. 2. In this experiment, the duck TRAF3 (DuTRAF3) gene was cloned according to the Anas platyrhynchos TRAF3 sequence to explore its function. The TRAF3 open reading frame contains 1704 bp that encode a protein of 567 amino acids, which contain a RING finger domain, two zinc finger motifs, a coiled-coil region, and a MATH domain. 3. Reverse transcription-polymerase chain reaction showed that DuTRAF3 was expressed in all the examined tissues, with a comparatively higher expression in the spleen and brain tissues. 4. In HEK293T cells, DuTRAF3 overexpression resulted in a significantly increased NF-κB activity and interferon (IFN)-β promoter activation. 5. Following resiquimod (R848) and poly(I:C) stimulation of duck peripheral blood mononuclear cells (PBMCs), the expressions of TRAF3 and IFN-β were significantly upregulated; in addition, following R848 stimulation, the mRNA levels of IL-6, IL-8 and IL-10 were also significantly upregulated. After infection with the Newcastle Disease Virus LaSota vaccine strain, the mRNA levels of IL-6 and IL-10 were significantly upregulated, while that of TRAF3 was downregulated. 6. These results suggest that DuTRAF3 has an important role to play in innate antiviral immune responses.
Collapse
Affiliation(s)
- Y Zhou
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - Y Zhou
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - X Kang
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - C Meng
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - R Zhang
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - Y Guo
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - D Xiong
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - L Song
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - X Jiao
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - Z Pan
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| |
Collapse
|