1
|
Wang C, Lu Y, Yu H, Zhang Y, Savelkoul HFJ, Jansen CA, Liu G. TLR9 mediates IgA production in the porcine small intestine during PEDV infection. Vet Microbiol 2024; 293:110096. [PMID: 38636174 DOI: 10.1016/j.vetmic.2024.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
IgA plays a vital role in defending against the infectious pathogens. However, the specific regulatory pathways involved in IgA secretion in the context of PEDV infection have remained elusive. Therefore, in this study, we explore the molecular mechanisms underlying IgA secretion in response to infection, with a particular focus on PEDV, a devastating enteric virus affecting global swine production. Our investigation begins by examining changes in IgA concentrations in both serum and small intestinal contents following PEDV infection in 2- and 4-week-old pigs. Remarkably, a significant increase in IgA levels in these older pigs post-infection were observed. To delve deeper into the regulatory mechanisms governing IgA secretion in response to PEDV infection, isolated porcine intestinal B cells were co-cultured with monocytes derived DCs (Mo-DCs) in vitro. In the intestinal DC-B cell co-cultures, IgA secretion was found to increase significantly after PEDV infection, as well as upregulating the expression of AID, GLTα and PSTα reflecting isotype switching to IgA. In addition, the expression of TLR9 was upregulated in these cultures, as determined by RT-qPCR and western blotting. Moreover, our findings extend to in vivo observations, where we detected higher levels of TLR9 expression in the ileum of pig post PEDV infection. Collectively, our results highlight the ability of PEDV to stimulate the generation of IgA, particularly in elder pigs, and identify TLR9 as a critical mediator of IgA production within the porcine intestinal microenvironment during PEDV infection.
Collapse
Affiliation(s)
- Caiying Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Yabin Lu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Haoyuan Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yue Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Christine A Jansen
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
2
|
Szaflarska A, Lenart M, Rutkowska-Zapała M, Siedlar M. Clinical and experimental treatment of primary humoral immunodeficiencies. Clin Exp Immunol 2024; 216:120-131. [PMID: 38306460 PMCID: PMC11036112 DOI: 10.1093/cei/uxae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
Selective IgA deficiency (sIgAD), common variable immunodeficiency (CVID), and transient hypogammaglobulinemia of infancy (THI) are the most frequent forms of primary antibody deficiencies. Difficulties in initial diagnosis, especially in the early childhood, the familiar occurrence of these diseases, as well as the possibility of progression to each other suggest common cellular and molecular patomechanism and a similar genetic background. In this review, we discuss both similarities and differences of these three humoral immunodeficiencies, focusing on current and novel therapeutic approaches. We summarize immunoglobulin substitution, antibiotic prophylaxis, treatment of autoimmune diseases, and other common complications, i.e. cytopenias, gastrointestinal complications, and granulomatous disease. We discuss novel therapeutic approaches such as allogenic stem cell transplantation and therapies targeting-specific proteins, dependent on the patient's genetic defect. The diversity of possible therapeutics models results from a great heterogeneity of the disease variants, implying the need of personalized medicine approach as a future of primary humoral immunodeficiencies treatment.
Collapse
Affiliation(s)
- Anna Szaflarska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, Cracow, Poland
- Deparment of Clinical Immunology, University Children’s Hospital, Wielicka 265, Cracow, Poland
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, Cracow, Poland
- Deparment of Clinical Immunology, University Children’s Hospital, Wielicka 265, Cracow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, Cracow, Poland
- Deparment of Clinical Immunology, University Children’s Hospital, Wielicka 265, Cracow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, Cracow, Poland
- Deparment of Clinical Immunology, University Children’s Hospital, Wielicka 265, Cracow, Poland
| |
Collapse
|
3
|
Toapanta FR, Hu J, Meron-Sudai S, Mulard LA, Phalipon A, Cohen D, Sztein MB. Further characterization of Shigella-specific (memory) B cells induced in healthy volunteer recipients of SF2a-TT15, a Shigella flexneri 2a synthetic glycan-based vaccine candidate. Front Immunol 2023; 14:1291664. [PMID: 38022674 PMCID: PMC10653583 DOI: 10.3389/fimmu.2023.1291664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Shigellosis is common worldwide, and it causes significant morbidity and mortality mainly in young children in low- and middle- income countries. To date, there are not broadly available licensed Shigella vaccines. A novel type of conjugate vaccine candidate, SF2a-TT15, was developed against S. flexneri serotype 2a (SF2a). SF2a-TT15 is composed of a synthetic 15mer oligosaccharide, designed to act as a functional mimic of the SF2a O-antigen and covalently linked to tetanus toxoid (TT). SF2a-TT15 was recently shown to be safe and immunogenic in a Phase 1 clinical trial, inducing specific memory B cells and sustained antibody response up to three years after the last injection. In this manuscript, we advance the study of B cell responses to parenteral administration of SF2a-TT15 to identify SF2a LPS-specific B cells (SF2a+ B cells) using fluorescently labeled bacteria. SF2a+ B cells were identified mainly within class-switched B cells (SwB cells) in volunteers vaccinated with SF2a-TT15 adjuvanted or not with aluminium hydroxide (alum), but not in placebo recipients. These cells expressed high levels of CXCR3 and low levels of CD21 suggesting an activated phenotype likely to represent the recently described effector memory B cells. IgG SF2a+ SwB cells were more abundant than IgA SF2a + SwB cells. SF2a+ B cells were also identified in polyclonally stimulated B cells (antibody secreting cells (ASC)-transformed). SF2a+ ASC-SwB cells largely maintained the activated phenotype (CXCR3 high, CD21 low). They expressed high levels of CD71 and integrin α4β7, suggesting a high proliferation rate and ability to migrate to gut associated lymphoid tissues. Finally, ELISpot analysis showed that ASC produced anti-SF2a LPS IgG and IgA antibodies. In summary, this methodology confirms the ability of SF2a-TT15 to induce long-lived memory B cells, initially identified by ELISpots, which remain identifiable in blood up to 140 days following vaccination. Our findings expand and complement the memory B cell data previously reported in the Phase 1 trial and provide detailed information on the immunophenotypic characteristics of these cells. Moreover, this methodology opens the door to future studies at the single-cell level to better characterize the development of B cell immunity to Shigella.
Collapse
Affiliation(s)
- Franklin R. Toapanta
- Department of Medicine and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jingping Hu
- Department of Medicine and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shiri Meron-Sudai
- School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Laurence A. Mulard
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Unité Chimie des Biomolécules, Paris, France
| | - Armelle Phalipon
- Institut Pasteur, Université Paris Cité, Laboratoire Innovation: Vaccins, Paris, France
| | - Dani Cohen
- School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo B. Sztein
- Department of Medicine and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Bagheri Y, Moeini Shad T, Namazi S, Tofighi Zavareh F, Azizi G, Salami F, Sadani S, Hosseini A, Saeidi M, Pashangzadeh S, Delavari S, Mirminachi B, Rezaei N, Abolhassani H, Aghamohammadi A, Yazdani R. B cells and T cells abnormalities in patients with selective IgA deficiency. Allergy Asthma Clin Immunol 2023; 19:23. [PMID: 36941677 PMCID: PMC10029301 DOI: 10.1186/s13223-023-00775-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 02/20/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Selective IgA deficiency (SIgAD) is the most prevalent inborn errors of immunity with almost unknown etiology. This study aimed to investigate the clinical diagnostic and prognostic values of lymphocyte subsets and function in symptomatic SIgAD patients. METHODS A total of 30 available SIgAD patients from the Iranian registry and 30 age-sex-matched healthy controls were included in the present study. We analyzed B and T cell peripheral subsets and T cell proliferation assay by flow cytometry in SIgAD patients with mild and severe clinical phenotypes. RESULTS Our results indicated a significant increase in naïve and transitional B cells and a strong decrease in marginal zone-like and switched memory B-cells in SIgAD patients. We found that naïve and central memory CD4+ T cell subsets, as well as Th1, Th2 and regulatory T cells, have significantly decreased. On the other hand, there was a significant reduction in central and effector memory CD8+ T cell subsets, whereas proportions of both (CD4+ and CD8+) terminally differentiated effector memory T cells (TEMRA) were significantly elevated in our patients. Although some T cell subsets in severe SIgAD were similar, a decrease in marginal-zone and switched memory B cells and an increase in CD21low B cell of severe SIgAD patients were slightly prominent. Moreover, the proliferation activity of CD4+ T cells was strongly impaired in SIgAD patients with a severe phenotype. CONCLUSION SIgAD patients have varied cellular and humoral deficiencies. Therefore, T cell and B cell assessment might help in better understanding the heterogeneous pathogenesis and prognosis estimation of the disease.
Collapse
Affiliation(s)
- Yasser Bagheri
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shideh Namazi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Tofighi Zavareh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Fereshteh Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Somayeh Sadani
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Hosseini
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Saeidi
- Department of Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Salar Pashangzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Babak Mirminachi
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Gastrointestinal Involvement in Primary Antibody Deficiencies. GASTROINTESTINAL DISORDERS 2023. [DOI: 10.3390/gidisord5010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Primary antibody deficiencies (PADs) are the most frequent group of inborn errors of immunity. Impaired B-cell development, reduced production of immunoglobulins (mainly IgG and IgA), and specific antibodies resulting in recurrent infections are their hallmarks. Infections typically affect the respiratory tract; however, gastrointestinal involvement is also common. These include infection with Helicobacter pylori, Salmonella, Campylobacter species, Giardia, and noroviruses. Impaired IgA production also contributes to dysbiosis and thereby an increase in abundance of species with proinflammatory properties, resulting in immune system dysregulation. Dysregulation of the immune system results in a broad spectrum of non-infectious manifestations, including autoimmune, lymphoproliferative, and granulomatous complications. Additionally, it increases the risk of malignancy, which may be present in more than half of patients with PADs. Higher prevalence is often seen in monogenic causes, and gastrointestinal involvement may clinically mimic various conditions including inflammatory bowel diseases and celiac disease but possess different immunological features and response to standard treatment, which make diagnosis and therapy challenging. The spectrum of malignancies includes gastric cancer and lymphoma. Thus, non-infectious manifestations significantly affect mortality and morbidity. In this overview, we provide a comprehensive insight into the epidemiology, genetic background, pathophysiology, and clinical manifestations of infectious and non-infectious complications.
Collapse
|
6
|
Wang CM, Zhang Y, Xu HH, Huo FJ, Li YZ, Li ZF, Li HQ, Liu ST, Zhang XM, Bai JW. B cell subsets were associated with prognosis in elderly patients with community acquired pneumonia. BMC Pulm Med 2022; 22:206. [PMID: 35610602 PMCID: PMC9128775 DOI: 10.1186/s12890-022-01985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The role of B cell subsets remained to be elucidated in a variety of immune diseases, though which was used as an effective biomarker for anti-inflammatory or antiviral response. This study aimed to evaluate the early changes of B cell subtypes distribution in elderly patients with community acquired pneumonia (CAP), as well as the association between B cell subtypes and prognosis. METHODS This prospective study included elderly patients with CAP, severe CAP (sCAP) and healthy elderly subjects between April 2016 and March 2018. Flow cytometry was used to detect CD3, CD20, HLA-DR, CD24, CD27, CD38, IgM, and IgD. CD20+ B cells were further divided into naïve B cells (Bn), IgM/D+ memory B cells (IgM+ Bm), switched B cells (SwB), and transitional B cells (Btr). RESULTS A total of 22 healthy controls, 87 patients with CAP and 58 patients with sCAP were included in the study. Compared to CAP, sCAP was characterized by significantly lower absolute number of B cells, Bn and Btr, significantly lower Btr and Bn subset percentage, while percentage of IgM+ Bm was significantly higher. Heat map showed Bn and Btr on day 3 and day 7 was negatively correlated with activated partial prothrombin time (APTT), international normalized ratio (INR), sequential organ failure assessment score (SOFA) and Acute Physiology and Chronic Health Evaluation II (APACHE II). After 28-day follow-up, Btr percentage in survival group was significantly higher. Receiver operator characteristic (ROC) curve analysis found that Btr count showed sensitivity of 48.6% and specificity of 87.0% for predicting the 28-day survival, with an area under the ROC curves of 0.689 (p = 0.019). CONCLUSIONS Severity and prognosis of CAP in elderly people is accompanied by changes in the B cell subsets. Btr subsets could play prognostic role for a short-term mortality of elderly CAP patients.
Collapse
Affiliation(s)
- Chun-Mei Wang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China.,Shanghai East Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Ying Zhang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Hui-Hui Xu
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, No. 320 Yueyang Road, Xuhui District, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100000, China
| | | | - Yin-Zhen Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Zhi-Fang Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Hong-Qiang Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Si-Ting Liu
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Xiao-Ming Zhang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, No. 320 Yueyang Road, Xuhui District, Shanghai, 200031, China.
| | - Jian-Wen Bai
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China. .,Shanghai East Hospital, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
7
|
Khanmohammadi S, Shad TM, Delavari S, Shirmast P, Bagheri Y, Azizi G, Aghamohammadi A, Abolhassani H, Yazdani R, Rezaei N. Evaluation of Specific Antibody Responses in Patients with Selective IgA Deficiency and Ataxia Telangiectasia. Endocr Metab Immune Disord Drug Targets 2022; 22:640-649. [PMID: 35135457 DOI: 10.2174/1871530322666220208111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Specific Antibody Deficiency (SAD) is a primary immunodeficiency disease (PID) characterized by the occurrence of recurrent infections and inadequate antibody response to polysaccharide new antigens. OBJECTIVE This study aims to determine the titer of specific antibodies against unconjugated 23-valent pneumococcal polysaccharide vaccine (PPSV-23), the presence of SAD, and its association with clinical and laboratory findings in Ataxia-telangiectasia (A-T) and selective immunoglobulin A deficiency (SIgAD) patients. METHODS 32 A-T patients and 43 SIgAD patients were included in the study. Samples of the patients were obtained before and three weeks after vaccination with PPSV-23. Specific immunoglobulin G (IgG) directed towards pneumococcal capsular antigen and specific antibodies against whole pneumococcal antigens was measured. RESULTS Comparison of the response to vaccination revealed that 81.3% of A-T patients and 18.6% of the SIgAD patients had an inadequate response to PPSV-23 (p<0.001). The prevalence of recurrent infection (p=0.034) and pneumonia (p=0.003) in SIgAD patients was significantly higher in non-responders than responders. Likewise, the number of marginal zone B cells (p=0.037), transitional B cells (p=0.019), plasmablasts (p=0.019), CD8+ naïve T cells (p=0.036), and percentage of CD8+ T cells (p=0.047), switched memory B cells (SMB) (p=0.026) and immunoglobulin M (IgM) memory B cells (p=0.022) in SIgAD patients were significantly lower in non-responder group than responder group. In contrast, the percentage of CD4 T+ cells in A-T patients was lower in the non-responder group than responders (p=0.035). CONCLUSION SAD is more frequent in A-T patients than SIgAD patients. The role of SMB and T cells should not be underestimated in SAD.
Collapse
Affiliation(s)
- Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Paniz Shirmast
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Yasser Bagheri
- Clinical Research Development Unit (CRDU), 5 Azar Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Asghar Aghamohammadi
- Clinical Research Development Unit (CRDU), 5 Azar Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hassan Abolhassani
- Clinical Research Development Unit (CRDU), 5 Azar Hospital, Golestan University of Medical Sciences, Gorgan, Iran.
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Ira
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
8
|
Sonoda M, Ishimura M, Eguchi K, Yada Y, Lenhartová N, Shiraishi A, Tanaka T, Sakai Y, Ohga S. Progressive B cell depletion in human MALT1 deficiency. Clin Exp Immunol 2021; 206:237-247. [PMID: 34559885 DOI: 10.1111/cei.13662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
Mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (MALT1)-deficiency is a rare combined immunodeficiency characterized by recurrent infections, dermatitis and enteropathy. We herein investigate the immunological profiles of our patient and previously reported children with MALT1-deficiency. A mutation analysis was performed by targeted panel sequencing for primary immunodeficiency. Lymphocyte subset, activation and B cell differentiation were analyzed by flow cytometry and t-distributed stochastic neighbor embedding. Pneumocystis pneumonia developed in a 6-month-old Japanese infant with atopic dermatitis, enteritis and growth restriction. This infant showed agammaglobulinemia without lymphopenia. At 8 years of age, the genetic diagnosis of MALT1-deficiency was confirmed on a novel homozygous mutation of c.1102G>T, p.E368X. T cell stimulation tests showed impairments in the production of interleukin-2, phosphorylation of nuclear factor kappa B (NF-κB) p65 and differentiation of B cells. In combination with the literature data, we found that the number of circulatory B cells, but not T cells, were inversely correlated with the age of patients. The hematopoietic cell transplantation (HCT) successfully reconstituted the differentiation of mature B cells and T cells. These data conceptualize that patients with complete MALT1-deficiency show aberrant differentiation and depletion of B cells. The early diagnosis and HCT lead to a cure of the disease phenotype associated with the loss-of-function mutations in human CARD11.
Collapse
Affiliation(s)
- Motoshi Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaro Yada
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nina Lenhartová
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Shiraishi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tamami Tanaka
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Morawska I, Kurkowska S, Bębnowska D, Hrynkiewicz R, Becht R, Michalski A, Piwowarska-Bilska H, Birkenfeld B, Załuska-Ogryzek K, Grywalska E, Roliński J, Niedźwiedzka-Rystwej P. The Epidemiology and Clinical Presentations of Atopic Diseases in Selective IgA Deficiency. J Clin Med 2021; 10:3809. [PMID: 34501259 PMCID: PMC8432128 DOI: 10.3390/jcm10173809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Selective IgA deficiency (sIgAD) is the most common primary immunodeficiency disease (PID), with an estimated occurrence from about 1:3000 to even 1:150, depending on population. sIgAD is diagnosed in adults and children after the 4th year of age, with immunoglobulin A level below 0.07 g/L and normal levels of IgM and IgG. Usually, the disease remains undiagnosed throughout the patient's life, due to its frequent asymptomatic course. If symptomatic, sIgAD is connected to more frequent viral and bacterial infections of upper respiratory, urinary, and gastrointestinal tracts, as well as autoimmune and allergic diseases. Interestingly, it may also be associated with other PIDs, such as IgG subclasses deficiency or specific antibodies deficiency. Rarely sIgAD can evolve to common variable immunodeficiency disease (CVID). It should also be remembered that IgA deficiency may occur in the course of other conditions or result from their treatment. It is hypothesized that allergic diseases (e.g., eczema, rhinitis, asthma) are more common in patients diagnosed with this particular PID. Selective IgA deficiency, although usually mildly symptomatic, can be difficult for clinicians. The aim of the study is to summarize the connection between selective IgA deficiency and atopic diseases.
Collapse
Affiliation(s)
- Izabela Morawska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | - Sara Kurkowska
- Department of Nuclear Medicine, Pomeranian Medical University, Unii Lubelskiej 1 St., 71-252 Szczecin, Poland; (S.K.); (H.P.-B.); (B.B.)
| | - Dominika Bębnowska
- Institute of Biology, University of Szczecin, Felczaka 3c St., 71-412 Szczecin, Poland; (D.B.); (R.H.)
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, Felczaka 3c St., 71-412 Szczecin, Poland; (D.B.); (R.H.)
| | - Rafał Becht
- Clinical Department of Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University of Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Adam Michalski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | - Hanna Piwowarska-Bilska
- Department of Nuclear Medicine, Pomeranian Medical University, Unii Lubelskiej 1 St., 71-252 Szczecin, Poland; (S.K.); (H.P.-B.); (B.B.)
| | - Bożena Birkenfeld
- Department of Nuclear Medicine, Pomeranian Medical University, Unii Lubelskiej 1 St., 71-252 Szczecin, Poland; (S.K.); (H.P.-B.); (B.B.)
| | - Katarzyna Załuska-Ogryzek
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b St., 20-090 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | | |
Collapse
|
10
|
Castro-Salguedo C, Mendez-Cuadro D, Moneriz C. Erythrocyte membrane proteins involved in the immune response to Plasmodium falciparum and Plasmodium vivax infection. Parasitol Res 2021; 120:1789-1797. [PMID: 33797613 DOI: 10.1007/s00436-021-07135-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/21/2021] [Indexed: 11/29/2022]
Abstract
Invasion of Plasmodium into the red blood cell involves the interactions of a substantial number of proteins, with red cell membrane proteins as the most involved throughout the process from entry to exit. The objective of this work was to identify proteins of the human erythrocyte membrane capable of generating an antigenic response to P. falciparum and P. vivax infection, with the goal of searching for new molecular targets of interest with an immunological origin to prevent Plasmodium infection. To identify these proteins, an immunoproteomic technique was carried out in four stages: protein separation (electrophoresis), detection of antigenic proteins (western blotting), identification of proteins of interest (mass spectrometry), and interpretation of the data (bioinformatic analysis). Four proteins were identified from extracts of membrane proteins from erythrocytes infected with P. falciparum: Spectrin, Ankyrin-1, Band 3 and band 4.2, and a single protein was identified from erythrocytes infected with P. vivax: Band 3. These results demonstrate that modifications in the red blood cell membrane during infection with P. falciparum and P. vivax can generate an immune response, altering proteins of great structural and functional importance.
Collapse
Affiliation(s)
- Cristian Castro-Salguedo
- Biochemistry and Diseases Research Group, Facultad de Medicina, Universidad de Cartagena, Cartagena, 130015, Colombia.,Grupo de Investigaciones Biomédicas-GIB, Universidad de San Buenaventura, Cartagena, 130010, Colombia
| | - Darío Mendez-Cuadro
- Analytical Chemistry and Biomedicine Group, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, 130015, Colombia
| | - Carlos Moneriz
- Biochemistry and Diseases Research Group, Facultad de Medicina, Universidad de Cartagena, Cartagena, 130015, Colombia.
| |
Collapse
|
11
|
Primary Humoral Immune Deficiencies: Overlooked Mimickers of Chronic Immune-Mediated Gastrointestinal Diseases in Adults. Int J Mol Sci 2020; 21:ijms21155223. [PMID: 32718006 PMCID: PMC7432083 DOI: 10.3390/ijms21155223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, the incidence of immune-mediated gastrointestinal disorders, including celiac disease (CeD) and inflammatory bowel disease (IBD), is increasingly growing worldwide. This generates a need to elucidate the conditions that may compromise the diagnosis and treatment of such gastrointestinal disorders. It is well established that primary immunodeficiencies (PIDs) exhibit gastrointestinal manifestations and mimic other diseases, including CeD and IBD. PIDs are often considered pediatric ailments, whereas between 25 and 45% of PIDs are diagnosed in adults. The most common PIDs in adults are the selective immunoglobulin A deficiency (SIgAD) and the common variable immunodeficiency (CVID). A trend to autoimmunity occurs, while gastrointestinal disorders are common in both diseases. Besides, the occurrence of CeD and IBD in SIgAD/CVID patients is significantly higher than in the general population. However, some differences concerning diagnostics and management between enteropathy/colitis in PIDs, as compared to idiopathic forms of CeD/IBD, have been described. There is an ongoing discussion whether CeD and IBD in CVID patients should be considered a true CeD and IBD or just CeD-like and IBD-like diseases. This review addresses the current state of the art of the most common primary immunodeficiencies in adults and co-occurring CeD and IBD.
Collapse
|
12
|
Grosserichter-Wagener C, Franco-Gallego A, Ahmadi F, Moncada-Vélez M, Dalm VA, Rojas JL, Orrego JC, Correa Vargas N, Hammarström L, Schreurs MW, Dik WA, van Hagen PM, Boon L, van Dongen JJ, van der Burg M, Pan-Hammarström Q, Franco JL, van Zelm MC. Defective formation of IgA memory B cells, Th1 and Th17 cells in symptomatic patients with selective IgA deficiency. Clin Transl Immunology 2020; 9:e1130. [PMID: 32355559 PMCID: PMC7190975 DOI: 10.1002/cti2.1130] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Selective IgA deficiency (sIgAD) is the most common primary immunodeficiency in Western countries. Patients can suffer from recurrent infections and autoimmune diseases because of a largely unknown aetiology. To increase insights into the pathophysiology of the disease, we studied memory B and T cells and cytokine concentrations in peripheral blood. Methods We analysed 30 sIgAD patients (12 children, 18 adults) through detailed phenotyping of peripheral B‐cell, CD8+ T‐cell and CD4+ T‐cell subsets, sequence analysis of IGA and IGG transcripts, in vitro B‐cell activation and blood cytokine measurements. Results All patients had significantly decreased numbers of T‐cell‐dependent (TD; CD27+) and T‐cell‐independent (TI; CD27−) IgA memory B cells and increased CD21low B‐cell numbers. IgM+IgD− memory B cells were decreased in children and normal in adult patients. IGA and IGG transcripts contained normal SHM levels. In sIgAD children, IGA transcripts more frequently used IGA2 than controls (58.5% vs. 25.1%), but not in adult patients. B‐cell activation after in vitro stimulation was normal. However, adult sIgAD patients exhibited increased blood levels of TGF‐β1, BAFF and APRIL, whereas they had decreased Th1 and Th17 cell numbers. Conclusion Impaired IgA memory formation in sIgAD patients is not due to a B‐cell activation defect. Instead, decreased Th1 and Th17 cell numbers and high blood levels of BAFF, APRIL and TGF‐β1 might reflect disturbed regulation of IgA responses in vivo. These insights into B‐cell extrinsic immune defects suggest the need for a broader immunological focus on genomics and functional analyses to unravel the pathogenesis of sIgAD.
Collapse
Affiliation(s)
| | | | - Fatemeh Ahmadi
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands
| | - Marcela Moncada-Vélez
- Grupo de Inmunodeficiencias Primarias Universidad de Antioquia UdeA Medellín Colombia
| | - Virgil Ash Dalm
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands.,Department of Internal Medicine Erasmus MC University Medical Center Rotterdam The Netherlands
| | - Jessica Lineth Rojas
- Grupo de Inmunodeficiencias Primarias Universidad de Antioquia UdeA Medellín Colombia
| | - Julio César Orrego
- Grupo de Inmunodeficiencias Primarias Universidad de Antioquia UdeA Medellín Colombia
| | - Natalia Correa Vargas
- Grupo de Inmunodeficiencias Primarias Universidad de Antioquia UdeA Medellín Colombia
| | - Lennart Hammarström
- Clinical Immunology Department of Laboratory Medicine Karolinska Institutet at Karolinska University Hospital Huddinge Sweden
| | - Marco Wj Schreurs
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands
| | - Willem A Dik
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands
| | - P Martin van Hagen
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands.,Department of Internal Medicine Erasmus MC University Medical Center Rotterdam The Netherlands
| | | | - Jacques Jm van Dongen
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands.,Department of Immunohematology and Blood Transfusion Leiden University Medical Center Leiden The Netherlands
| | - Mirjam van der Burg
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands.,Laboratory for Immunology Department of Pediatrics Leiden University Medical Center Leiden The Netherlands
| | - Qiang Pan-Hammarström
- Clinical Immunology Department of Laboratory Medicine Karolinska Institutet at Karolinska University Hospital Huddinge Sweden
| | - José L Franco
- Grupo de Inmunodeficiencias Primarias Universidad de Antioquia UdeA Medellín Colombia
| | - Menno C van Zelm
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands.,Department of Immunology and Pathology Central Clinical School Monash University and The Alfred Hospital Melbourne VIC Australia.,The Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies in Melbourne Melbourne VIC Australia
| |
Collapse
|
13
|
Valizadeh A, Sanaei R, Rezaei N, Azizi G, Fekrvand S, Aghamohammadi A, Yazdani R. Potential role of regulatory B cells in immunological diseases. Immunol Lett 2019; 215:48-59. [PMID: 31442542 DOI: 10.1016/j.imlet.2019.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/04/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022]
Abstract
Regulatory B cells (Bregs) are immune-modulating cells that affect the immune system by producing cytokines or cellular interactions. These cells have immunomodulatory effects on the immune system by cytokine production. The abnormalities in Bregs could be involved in various disorders such as autoimmunity, chronic infectious disease, malignancies, allergies, and primary immunodeficiencies are immune-related scenarios. Ongoing investigation could disclose the biology and the exact phenotype of these cells and also the assigned mechanisms of action of each subset, as a result, potential therapeutic strategies for treating immune-related anomalies. In this review, we collect the findings of human and mouse Bregs and the therapeutic efforts to change the pathogenicity of these cells in diverse disease.
Collapse
Affiliation(s)
- Amir Valizadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Roozbeh Sanaei
- Immunology Research Center (IRC), Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
14
|
Bagheri Y, Sanaei R, Yazdani R, Shekarabi M, Falak R, Mohammadi J, Abolhassani H, Aghamohammadi A. The Heterogeneous Pathogenesis of Selective Immunoglobulin A Deficiency. Int Arch Allergy Immunol 2019; 179:231-246. [DOI: 10.1159/000499044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
|
15
|
Breedveld A, van Egmond M. IgA and FcαRI: Pathological Roles and Therapeutic Opportunities. Front Immunol 2019; 10:553. [PMID: 30984170 PMCID: PMC6448004 DOI: 10.3389/fimmu.2019.00553] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Immunoglobulin A (IgA) is the most abundant antibody class present at mucosal surfaces. The production of IgA exceeds the production of all other antibodies combined, supporting its prominent role in host-pathogen defense. IgA closely interacts with the intestinal microbiota to enhance its diversity, and IgA has a passive protective role via immune exclusion. Additionally, inhibitory ITAMi signaling via the IgA Fc receptor (FcαRI; CD89) by monomeric IgA may play a role in maintaining homeostatic conditions. By contrast, IgA immune complexes (e.g., opsonized pathogens) potently activate immune cells via cross-linking FcαRI, thereby inducing pro-inflammatory responses resulting in elimination of pathogens. The importance of IgA in removal of pathogens is emphasized by the fact that several pathogens developed mechanisms to break down IgA or evade FcαRI-mediated activation of immune cells. Augmented or aberrant presence of IgA immune complexes can result in excessive neutrophil activation, potentially leading to severe tissue damage in multiple inflammatory, or autoimmune diseases. Influencing IgA or FcαRI-mediated functions therefore provides several therapeutic possibilities. On the one hand (passive) IgA vaccination strategies can be developed for protection against infections. Furthermore, IgA monoclonal antibodies that are directed against tumor antigens may be effective as cancer treatment. On the other hand, induction of ITAMi signaling via FcαRI may reduce allergy or inflammation, whereas blocking FcαRI with monoclonal antibodies, or peptides may resolve IgA-induced tissue damage. In this review both (patho)physiological roles as well as therapeutic possibilities of the IgA-FcαRI axis are addressed.
Collapse
Affiliation(s)
- Annelot Breedveld
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC, Amsterdam, Netherlands
- Department of Surgery, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
16
|
Lemarquis AL, Theodors F, Einarsdottir HK, Ludviksson BR. Mapping of Signaling Pathways Linked to sIgAD Reveals Impaired IL-21 Driven STAT3 B-Cell Activation. Front Immunol 2019; 10:403. [PMID: 30936864 PMCID: PMC6431630 DOI: 10.3389/fimmu.2019.00403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/15/2019] [Indexed: 11/13/2022] Open
Abstract
Objectives: It has recently been shown that individuals with selective IgA deficiency (sIgAD) have defective B cell responses both to T cell dependent and independent mimicking stimulations. The complex intracellular signaling pathways from different stimuli leading to IgA isotype switching have not been fully elucidated. Thus, the main objective of this study was to delineate these pathways and their potential role in the immunopathology linked to sIgAD. Materials and Methods: PBMCs from 10 individuals with sIgAD and 10 healthy controls (HC) were activated in vitro via either a T cell dependent or independent mimicking stimulation. Intracellular phosphorylation of pSTAT3, pSTAT5, pSTAT6, and as pERK1/2 was evaluated in T and B cells using phosphoflow cytometry. Results: By evaluating T cell dependent cytokine driven pathways linked to IgA isotype induction we identified a defect involving an IL-21 driven STAT3 activation isolated to B cells in sIgAD individuals. However, all other signaling pathways studied were found to be normal compared to HC. In T cell dependent cytokine driven stimulations linked to IgA isotype induction the following patterns emerged: (i) IL-10 led to significant STAT3 activation in both T- and B cells; (ii) IL-4 stimulation was predominantly confined to STAT6 activation in both T- and B cells, with some effects on STAT3 activation in T-cells; (iii) as expected, of tested stimuli, IL-2 alone activated STAT5 and some STAT3 activation though in both cases only in T-cells; (iv) IL-21 induced significant activation of STAT3 in both T- and B cells, with some effects on STAT5 activation in T-cells; and finally (v) synergistic effects were noted of IL-4+IL-10 on STAT5 activation in T-cells, and possibly STAT6 in both T- and B cells. On the other hand, CPG induced T cell independent activation was confined to ERK1/2 activation in B cells. Conclusion: Our results indicate a diminished STAT3 phosphorylation following IL-21 stimulation solely in B cells from sIgAD individuals. This can represent aberrant germinal center reactions or developmental halt. Thus, our work provides further insight into the unraveling of the previously hypothesized role of IL-21 to reconstitute immunoglobulin production in primary antibody deficiencies.
Collapse
Affiliation(s)
- Andri L Lemarquis
- Department of Immunology, Landspítali-The National University Hospital of Iceland, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Fannar Theodors
- Department of Immunology, Landspítali-The National University Hospital of Iceland, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Helga K Einarsdottir
- Department of Immunology, Landspítali-The National University Hospital of Iceland, Reykjavík, Iceland
| | - Bjorn R Ludviksson
- Department of Immunology, Landspítali-The National University Hospital of Iceland, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| |
Collapse
|