1
|
Vo MC, Jung SH, Nguyen VT, Tran VDH, Ruzimurodov N, Kim SK, Nguyen XH, Kim M, Song GY, Ahn SY, Ahn JS, Yang DH, Kim HJ, Lee JJ. Exploring cellular immunotherapy platforms in multiple myeloma. Heliyon 2024; 10:e27892. [PMID: 38524535 PMCID: PMC10957441 DOI: 10.1016/j.heliyon.2024.e27892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Despite major advances in therapeutic platforms, most patients with multiple myeloma (MM) eventually relapse and succumb to the disease. Among the novel therapeutic options developed over the past decade, genetically engineered T cells have a great deal of potential. Cellular immunotherapies, including chimeric antigen receptor (CAR) T cells, are rapidly becoming an effective therapeutic modality for MM. Marrow-infiltrating lymphocytes (MILs) derived from the bone marrow of patients with MM are a novel source of T cells for adoptive T-cell therapy, which robustly and specifically target myeloma cells. In this review, we examine the recent innovations in cellular immunotherapies, including the use of dendritic cells, and cellular tools based on MILs, natural killer (NK) cells, and CAR T cells, which hold promise for improving the efficacy and/or reducing the toxicity of treatment in patients with MM.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Institute of Research and Development, Duy Tan University, Danang, Viet Nam
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Van-Tan Nguyen
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Van-Dinh-Huan Tran
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Nodirjon Ruzimurodov
- Institute of Immunology and Human Genomics of the Academy of Sciences of the Republic of Uzbekistan, Uzbekistan
| | - Sang Ki Kim
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Laboratory and Companion Animal Science, College of Industrial Science, Kongju National University, Yesan-eup, Yesan-gun, Chungnam, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| | - Xuan-Hung Nguyen
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Mihee Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Ga-Young Song
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Seo-Yeon Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Jae-Sook Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Deok-Hwan Yang
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| |
Collapse
|
2
|
Jung EK, Chu TH, Kim SA, Vo MC, Nguyen VT, Lee KH, Jung SH, Yoon M, Cho D, Lee JJ, Yoon TM. Efficacy of natural killer cell therapy combined with chemoradiotherapy in murine models of head and neck squamous cell carcinoma. Cytotherapy 2024; 26:242-251. [PMID: 38142382 DOI: 10.1016/j.jcyt.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AIMS Natural killer (NK) cell-based cancer immunotherapy is effective when combined with other treatment modalities such as irradiation and chemotherapy. NK cell's antitumor function to treat solid tumor, including head and neck squamous cell carcinoma (HNSCC), has been targeted recently. This study assessed NK cell recruitment in response to chemoradiation therapy (CRT) in HNSCC. METHODS Ex vivo expansion of NK cell, flow cytometry, cell viability assay, cytotoxicity assay, immunohistochemistry, and animal model were performed. RESULTS Mouse NK cells were recruited to the tumor site by CRT in a nude mouse model. Furthermore, expanded and activated human NK cells (eNKs) were recruited to the tumor site in response to CRT, and CRT enhanced the anti-tumor activity of eNK in an NOD/SCID IL-2Rγnull mouse model. Various HNSCC cancer cell lines exhibited different NK cell ligand activation patterns in response to CRT that correlated with NK cell-mediated cytotoxicity. CONCLUSIONS Identifying the activation patterns of NK cell ligands during CRT might improve patient selection for adjuvant NK cell immunotherapy combined with CRT. This is the first study to investigate the NK cell's antitumor function and recruitment with CRT in HNSCC mouse model.
Collapse
Affiliation(s)
- Eun Kyung Jung
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Tan-Huy Chu
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea; Department of Hematology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Sun-Ae Kim
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Manh-Cuong Vo
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Van-Tan Nguyen
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Sung-Hoon Jung
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Meesun Yoon
- Department of Radiation Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Je-Jung Lee
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea.
| | - Tae Mi Yoon
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea.
| |
Collapse
|
3
|
Sokolowska O, Rodziewicz-Lurzynska A, Pilch Z, Kedzierska H, Chlebowska-Tuz J, Sosnowska A, Szumera-Cieckiewicz A, Sokol K, Barankiewicz J, Salomon-Perzynski A, Ciepiela O, Lech-Maranda E, Golab J, Nowis D. Immune checkpoint inhibition improves antimyeloma activity of bortezomib and STING agonist combination in Vk*MYC preclinical model. Clin Exp Med 2023; 23:1563-1572. [PMID: 36044158 PMCID: PMC10460740 DOI: 10.1007/s10238-022-00878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
Abstract
Multiple myeloma (MM), a hematological malignancy of plasma cells, has remained incurable despite the development of novel therapies that improve patients' outcome. Recent evidence indicates that the stimulator of interferon genes (STING) pathway may represent a novel target for induction of antitumor immune response in multiple myeloma. Here, we investigated antitumor effects of STING agonist with bortezomib with or without checkpoint inhibitor in the treatment of MM. METHODS STING expression in bone marrow plasma cells of 58 MM patients was examined by immunohistochemical staining. The effectiveness of the proposed therapy was evaluated in vivo in a syngeneic transplantable mouse model of MM (Vĸ*MYC) in immunocompetent mice. Flow cytometry was used to assess tumor burden and investigate activation of immune response against MM. ELISA was performed to measure serum inflammatory cytokines concentrations upon treatment. RESULTS Combining a STING agonist [2'3'-cGAM(PS)2] with bortezomib significantly decreased tumor burden and improved the survival of treated mice compared to either of the compounds used alone. The combination treatment led to secretion of pro-inflammatory cytokines and increased the percentage of neutrophils, activated dendritic cells and T cells in the tumor microenvironment. However, it resulted also in increased expression of PD-L1 on the surface of the immune cells. Addition of anti-PD1 antibody further potentiated the therapeutic effects. CONCLUSIONS Our findings indicate high antimyeloma efficacy of the three-drug regimen comprising bortezomib, STING agonist, and a checkpoint inhibitor.
Collapse
Affiliation(s)
- Olga Sokolowska
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Banacha, 2C, 02-097, Warsaw, Poland
| | - Anna Rodziewicz-Lurzynska
- Central Laboratory, University Clinical Center of Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| | - Zofia Pilch
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5, 02-097, Warsaw, Poland
| | - Hanna Kedzierska
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Banacha, 2C, 02-097, Warsaw, Poland
| | - Justyna Chlebowska-Tuz
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Banacha, 2C, 02-097, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5, 02-097, Warsaw, Poland
| | - Anna Sosnowska
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5, 02-097, Warsaw, Poland
| | - Anna Szumera-Cieckiewicz
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, Indiri Ghandi 14, 02-776, Warsaw, Poland
| | - Kamil Sokol
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, Indiri Ghandi 14, 02-776, Warsaw, Poland
| | - Joanna Barankiewicz
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Indiri Ghandi 14, 02-776, Warsaw, Poland
| | - Aleksander Salomon-Perzynski
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Indiri Ghandi 14, 02-776, Warsaw, Poland
| | - Olga Ciepiela
- Department of Laboratory Medicine, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| | - Ewa Lech-Maranda
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Indiri Ghandi 14, 02-776, Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5, 02-097, Warsaw, Poland
- Centre of Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Dominika Nowis
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Banacha, 2C, 02-097, Warsaw, Poland.
- Laboratory of Experimental Medicine, Medical University of Warsaw, Nielubowicza 5, 02-097, Warsaw, Poland.
| |
Collapse
|
4
|
Han Z, Wu X, Qin H, Yuan YC, Schmolze D, Su C, Zain J, Moyal L, Hodak E, Sanchez JF, Lee PP, Feng M, Rosen ST, Querfeld C. Reprogramming of PD-1+ M2-like tumor-associated macrophages with anti-PD-L1 and lenalidomide in cutaneous T cell lymphoma. JCI Insight 2023; 8:e163518. [PMID: 37427589 PMCID: PMC10371344 DOI: 10.1172/jci.insight.163518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/19/2023] [Indexed: 07/11/2023] Open
Abstract
Cutaneous T cell lymphoma (CTCL) is a disfiguring and incurable disease characterized by skin-homing malignant T cells surrounded by immune cells that promote CTCL growth through an immunosuppressive tumor microenvironment (TME). Preliminary data from our phase I clinical trial of anti-programmed cell death ligand 1 (anti-PD-L1) combined with lenalidomide in patients with relapsed/refractory CTCL demonstrated promising clinical efficacy. In the current study, we analyzed the CTCL TME, which revealed a predominant PD-1+ M2-like tumor-associated macrophage (TAM) subtype with upregulated NF-κB and JAK/STAT signaling pathways and an aberrant cytokine and chemokine profile. Our in vitro studies investigated the effects of anti-PD-L1 and lenalidomide on PD-1+ M2-like TAMs. The combinatorial treatment synergistically induced functional transformation of PD-1+ M2-like TAMs toward a proinflammatory M1-like phenotype that gained phagocytic activity upon NF-κB and JAK/STAT inhibition, altered their migration through chemokine receptor alterations, and stimulated effector T cell proliferation. Lenalidomide was more effective than anti-PD-L1 in downregulation of the immunosuppressive IL-10, leading to decreased expression of both PD-1 and PD-L1. Overall, PD-1+ M2-like TAMs play an immunosuppressive role in CTCL. Anti-PD-L1 combined with lenalidomide provides a therapeutic strategy to enhance antitumor immunity by targeting PD-1+ M2-like TAMs in the CTCL TME.
Collapse
Affiliation(s)
- Zhen Han
- Division of Dermatology
- Beckman Research Institute
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine
- Integrative Genomics Core
| | - Hanjun Qin
- Department of Computational and Quantitative Medicine
| | - Yate-Ching Yuan
- Department of Computational and Quantitative Medicine
- Center for informatics
| | | | - Chingyu Su
- Division of Dermatology
- Beckman Research Institute
| | - Jasmine Zain
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Lilach Moyal
- Department of Dermatology, Rabin Medical Center, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Emmilia Hodak
- Department of Dermatology, Rabin Medical Center, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
- Beilinson Hospital, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James F Sanchez
- Beckman Research Institute
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Peter P Lee
- Beckman Research Institute
- Department of Immuno-Oncology, City of Hope, Duarte, California, USA
| | - Mingye Feng
- Beckman Research Institute
- Department of Immuno-Oncology, City of Hope, Duarte, California, USA
| | - Steven T Rosen
- Beckman Research Institute
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Christiane Querfeld
- Division of Dermatology
- Beckman Research Institute
- Department of Pathology, and
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| |
Collapse
|
5
|
Xiao Z, Wang R, Wang X, Yang H, Dong J, He X, Yang Y, Guo J, Cui J, Zhou Z. Impaired function of dendritic cells within the tumor microenvironment. Front Immunol 2023; 14:1213629. [PMID: 37441069 PMCID: PMC10333501 DOI: 10.3389/fimmu.2023.1213629] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Dendritic cells (DCs), a class of professional antigen-presenting cells, are considered key factors in the initiation and maintenance of anti-tumor immunity due to their powerful ability to present antigen and stimulate T-cell responses. The important role of DCs in controlling tumor growth and mediating potent anti-tumor immunity has been demonstrated in various cancer models. Accordingly, the infiltration of stimulatory DCs positively correlates with the prognosis and response to immunotherapy in a variety of solid tumors. However, accumulating evidence indicates that DCs exhibit a significantly dysfunctional state, ultimately leading to an impaired anti-tumor immune response due to the effects of the immunosuppressive tumor microenvironment (TME). Currently, numerous preclinical and clinical studies are exploring immunotherapeutic strategies to better control tumors by restoring or enhancing the activity of DCs in tumors, such as the popular DC-based vaccines. In this review, an overview of the role of DCs in controlling tumor progression is provided, followed by a summary of the current advances in understanding the mechanisms by which the TME affects the normal function of DCs, and concluding with a brief discussion of current strategies for DC-based tumor immunotherapy.
Collapse
Affiliation(s)
- Zhihua Xiao
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ruiqi Wang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xuyan Wang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Haikui Yang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jiamei Dong
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xin He
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yang Yang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jiahao Guo
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiawen Cui
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhiling Zhou
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| |
Collapse
|
6
|
Cencini E, Sicuranza A, Ciofini S, Fabbri A, Bocchia M, Gozzetti A. Tumor-Associated Macrophages in Multiple Myeloma: Key Role in Disease Biology and Potential Therapeutic Implications. Curr Oncol 2023; 30:6111-6133. [PMID: 37504315 PMCID: PMC10378698 DOI: 10.3390/curroncol30070455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/14/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Multiple myeloma (MM) is characterized by multiple relapse and, despite the introduction of novel therapies, the disease becomes ultimately drug-resistant. The tumor microenvironment (TME) within the bone marrow niche includes dendritic cells, T-cytotoxic, T-helper, reactive B-lymphoid cells and macrophages, with a complex cross-talk between these cells and the MM tumor cells. Tumor-associated macrophages (TAM) have an important role in the MM pathogenesis, since they could promote plasma cells proliferation and angiogenesis, further supporting MM immune evasion and progression. TAM are polarized towards M1 (classically activated, antitumor activity) and M2 (alternatively activated, pro-tumor activity) subtypes. Many studies demonstrated a correlation between TAM, disease progression, drug-resistance and reduced survival in lymphoproliferative neoplasms, including MM. MM plasma cells in vitro could favor an M2 TAM polarization. Moreover, a possible correlation between the pro-tumor effect of M2 TAM and a reduced sensitivity to proteasome inhibitors and immunomodulatory drugs was hypothesized. Several clinical studies confirmed CD68/CD163 double-positive M2 TAM were associated with increased microvessel density, chemoresistance and reduced survival, independently of the MM stage. This review provided an overview of the biology and clinical relevance of TAM in MM, as well as a comprehensive evaluation of a potential TAM-targeted immunotherapy.
Collapse
Affiliation(s)
- Emanuele Cencini
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| | - Anna Sicuranza
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| | - Sara Ciofini
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| | - Alberto Fabbri
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| | - Monica Bocchia
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| | - Alessandro Gozzetti
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| |
Collapse
|
7
|
Liu Z, Yang C, Liu X, Xu X, Zhao X, Fu R. Therapeutic strategies to enhance immune response induced by multiple myeloma cells. Front Immunol 2023; 14:1169541. [PMID: 37275861 PMCID: PMC10232766 DOI: 10.3389/fimmu.2023.1169541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Multiple myeloma (MM)as a haematological malignancy is still incurable. In addition to the presence of somatic genetic mutations in myeloma patients, the presence of immunosuppressive microenvironment greatly affects the outcome of treatment. Although the discovery of immunotherapy makes it possible to break the risk of high toxicity and side effects of traditional chemotherapeutic drugs, there are still obstacles of ineffective treatment or disease recurrence. In this review, we discuss therapeutic strategies to further enhance the specific anti-tumor immune response by activating the immunogenicity of MM cells themselves. New ideas for future myeloma therapeutic approaches are provided.
Collapse
|
8
|
Wang S, Zhao X, Wu S, Cui D, Xu Z. Myeloid-derived suppressor cells: key immunosuppressive regulators and therapeutic targets in hematological malignancies. Biomark Res 2023; 11:34. [PMID: 36978204 PMCID: PMC10049909 DOI: 10.1186/s40364-023-00475-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The immunosuppressive tumor microenvironment (TME) supports the development of tumors and limits tumor immunotherapy, including hematological malignancies. Hematological malignancies remain a major public health issue with high morbidity and mortality worldwide. As an important component of immunosuppressive regulators, the phenotypic characteristics and prognostic value of myeloid-derived suppressor cells (MDSCs) have received much attention. A variety of MDSC-targeting therapeutic approaches have produced encouraging outcomes. However, the use of various MDSC-targeted treatment strategies in hematologic malignancies is still difficult due to the heterogeneity of hematologic malignancies and the complexity of the immune system. In this review, we summarize the biological functions of MDSCs and further provide a summary of the phenotypes and suppressive mechanisms of MDSC populations expanded in various types of hematological malignancy contexts. Moreover, we discussed the clinical correlation between MDSCs and the diagnosis of malignant hematological disease, as well as the drugs targeting MDSCs, and focused on summarizing the therapeutic strategies in combination with other immunotherapies, such as various immune checkpoint inhibitors (ICIs), that are under active investigation. We highlight the new direction of targeting MDSCs to improve the therapeutic efficacy of tumors.
Collapse
Affiliation(s)
- Shifen Wang
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingyun Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siwen Wu
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhenshu Xu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
9
|
Sánchez-León ML, Jiménez-Cortegana C, Cabrera G, Vermeulen EM, de la Cruz-Merino L, Sánchez-Margalet V. The effects of dendritic cell-based vaccines in the tumor microenvironment: Impact on myeloid-derived suppressor cells. Front Immunol 2022; 13:1050484. [PMID: 36458011 PMCID: PMC9706090 DOI: 10.3389/fimmu.2022.1050484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/27/2022] [Indexed: 09/27/2023] Open
Abstract
Dendritic cells (DCs) are a heterogenous population of professional antigen presenting cells whose main role is diminished in a variety of malignancies, including cancer, leading to ineffective immune responses. Those mechanisms are inhibited due to the immunosuppressive conditions found in the tumor microenvironment (TME), where myeloid-derived suppressor cells (MDSCs), a heterogeneous population of immature myeloid cells known to play a key role in tumor immunoevasion by inhibiting T-cell responses, are extremely accumulated. In addition, it has been demonstrated that MDSCs not only suppress DC functions, but also their maturation and development within the myeloid linage. Considering that an increased number of DCs as well as the improvement in their functions boost antitumor immunity, DC-based vaccines were developed two decades ago, and promising results have been obtained throughout these years. Therefore, the remodeling of the TME promoted by DC vaccination has also been explored. Here, we aim to review the effectiveness of different DCs-based vaccines in murine models and cancer patients, either alone or synergistically combined with other treatments, being especially focused on their effect on the MDSC population.
Collapse
Affiliation(s)
- María Luisa Sánchez-León
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University of Seville, Seville, Spain
- Medical Oncology Service, Virgen Macarena University Hospital, Seville, Spain
| | - Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University of Seville, Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Gabriel Cabrera
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe capital, Argentina
| | - Elba Mónica Vermeulen
- Laboratorio de Células Presentadoras de Antígeno y Respuesta Inflamatoria, Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | - Victor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University of Seville, Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| |
Collapse
|
10
|
Guo H, Yang J, Wang H, Liu X, Liu Y, Zhou K. Reshaping the tumor microenvironment: The versatility of immunomodulatory drugs in B-cell neoplasms. Front Immunol 2022; 13:1017990. [PMID: 36311747 PMCID: PMC9596992 DOI: 10.3389/fimmu.2022.1017990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) such as thalidomide, lenalidomide and pomalidomide are antitumor compounds that have direct tumoricidal activity and indirect effects mediated by multiple types of immune cells in the tumor microenvironment (TME). IMiDs have shown remarkable therapeutic efficacy in a set of B-cell neoplasms including multiple myeloma, B-cell lymphomas and chronic lymphocytic leukemia. More recently, the advent of immunotherapy has revolutionized the treatment of these B-cell neoplasms. However, the success of immunotherapy is restrained by immunosuppressive signals and dysfunctional immune cells in the TME. Due to the pleiotropic immunobiological properties, IMiDs have shown to generate synergetic effects in preclinical models when combined with monoclonal antibodies, immune checkpoint inhibitors or CAR-T cell therapy, some of which were successfully translated to the clinic and lead to improved responses for both first-line and relapsed/refractory settings. Mechanistically, despite cereblon (CRBN), an E3 ubiquitin ligase, is considered as considered as the major molecular target responsible for the antineoplastic activities of IMiDs, the exact mechanisms of action for IMiDs-based TME re-education remain largely unknown. This review presents an overview of IMiDs in regulation of immune cell function and their utilization in potentiating efficacy of immunotherapies across multiple types of B-cell neoplasms.
Collapse
Affiliation(s)
| | | | | | | | | | - Keshu Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
11
|
Xie Y, Yang H, Yang C, He L, Zhang X, Peng L, Zhu H, Gao L. Role and Mechanisms of Tumor-Associated Macrophages in Hematological Malignancies. Front Oncol 2022; 12:933666. [PMID: 35875135 PMCID: PMC9301190 DOI: 10.3389/fonc.2022.933666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Mounting evidence has revealed that many nontumor cells in the tumor microenvironment, such as fibroblasts, endothelial cells, mesenchymal stem cells, and leukocytes, are strongly involved in tumor progression. In hematological malignancies, tumor-associated macrophages (TAMs) are considered to be an important component that promotes tumor growth and can be polarized into different phenotypes with protumor or antitumor roles. This Review emphasizes research related to the role and mechanisms of TAMs in hematological malignancies. TAMs lead to poor prognosis by influencing tumor progression at the molecular level, including nurturing cancer stem cells and laying the foundation for metastasis. Although detailed molecular mechanisms have not been clarified, TAMs may be a new therapeutic target in hematological disease treatment.
Collapse
|
12
|
Chu TH, Vo MC, Lakshmi TJ, Ahn SY, Kim M, Song GY, Yang DH, Ahn JS, Kim HJ, Jung SH, Lee JJ. Novel IL-15 dendritic cells have a potent immunomodulatory effect in immunotherapy of multiple myeloma. Transl Oncol 2022; 20:101413. [PMID: 35413499 PMCID: PMC9006865 DOI: 10.1016/j.tranon.2022.101413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Culture DCs with GM-CSF + IL-4 + IL-15 (IL-15 DCs) can be shortened for 6 days. IL-15 DCs showed high expression levels of costimulatory receptors, IFN-γ and IL-12p70. IL-15 DCs showed strong stimulation toward T, CIK and NK cells. The activated lymphocytes showed high cytotoxicity against myeloma cells.
Dendritic cells (DCs) are the most potent antigen-presenting cells, and have thus been used in clinical cancer vaccines. However, the effects of DC vaccines are still limited, leading researchers to explore novel ways to make them effective. In this study, we investigated whether human monocyte-derived DCs generated via the addition of interleukin 15 (IL-15) had a higher capacity to induce antigen-specific T cells compared to conventional DCs. We isolated CD14+ monocytes from peripheral blood from multiple myeloma (MM) patients, and induced immature DCs with granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4 in the presence or absence of IL-15 for 4–6 days. Then we generated mature DCs (mDCs) with lipopolysaccharide for another 2 days [IL-15 mDCs (6 days), IL-15 mDCs (8 days), and conventional mDCs (8 days)]. IL-15 mDCs (6 days) showed higher expression of MHC I and II, CD40, CD86, and CCR7, and the secretion of IFN-γ was significantly higher compared to conventional mDCs. IL-15 mDCs (6 days) showed superior polarization of naïve T cells toward Th1 cells and a higher proportion of activated T cells, cytokine-induced killer (CIK) cells, and natural killer (NK) cells for inducing strong cytotoxicity against myeloma cells, and lower proportion of regulatory T cells compared to conventional mDCs. These data imply that novel multipotent mDCs generated by the addition of IL-15, which can be cultivated in 6 days, resulted in outstanding activation of T cells, CIK cells and NK cells, and may facilitate cellular immunotherapy for cancer patients.
Collapse
|
13
|
Park HJ, Boo S, Park I, Shin MS, Takahashi T, Takanari J, Homma K, Kang I. AHCC ®, a Standardized Extract of Cultured Lentinula Edodes Mycelia, Promotes the Anti-Tumor Effect of Dual Immune Checkpoint Blockade Effect in Murine Colon Cancer. Front Immunol 2022; 13:875872. [PMID: 35514996 PMCID: PMC9066372 DOI: 10.3389/fimmu.2022.875872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022] Open
Abstract
Treatment strategies combining immune checkpoint blockade (ICB) with other agents have emerged as a promising approach in the treatment of cancers. AHCC®, a standardized extract of cultured Lentinula edodes mycelia, has been reported to inhibit tumor growth and enhance immune cell function. Here we investigated whether AHCC® promotes the therapeutic effect of immunotherapy in cancers. A combination of oral AHCC® and dual immune checkpoint blockade (DICB), including PD-1/CTLA-4 blockade, had reduced tumor growth and increased granzyme B and Ki-67 expression by tumor-infiltrating CD8+ T cells in MC38 colon cancer bearing mice compared to a combination of water and DICB. In the same tumor bearing mice, AHCC® and DICB treatment also altered the composition of the gut microbiome with the increased abundance of the species of Ruminococcaceae family which is associated with increased therapeutic efficacy of immunotherapy. The anti-tumor effect of AHCC® and DICB was not found in MC38 tumor-bearing mice treated with antibiotics. These data suggest that AHCC® increases the anti-tumor effect of DICB by enhancing T cell function and affecting the gut microbiome.
Collapse
Affiliation(s)
- Hong-Jai Park
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Sunjin Boo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States.,Department of Internal Medicine, Jeju National University School of Medicine, Jeju, South Korea
| | - Inkeun Park
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States.,Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Min Sun Shin
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Tsukasa Takahashi
- Research and Development Division, Amino Up Co., Ltd, Sapporo, Japan
| | - Jun Takanari
- Research and Development Division, Amino Up Co., Ltd, Sapporo, Japan
| | - Kohei Homma
- Research and Development Division, Amino Up Co., Ltd, Sapporo, Japan
| | - Insoo Kang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
14
|
Relapse with plasmacytoma after upfront autologous stem cell transplantation in multiple myeloma. Ann Hematol 2022; 101:1217-1226. [PMID: 35445844 DOI: 10.1007/s00277-022-04776-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/25/2022] [Indexed: 11/27/2022]
Abstract
Please present P values consistently.Plasmacytoma has been reported to be associated with a poor prognosis in patients with multiple myeloma (MM). In this study, we evaluated the incidence of relapse with plasmacytoma and survival outcomes after upfront autologous stem cell transplantation (ASCT). This study retrospectively analyzed the data of 303 patients with MM who underwent upfront ASCT between April 2000 and April 2018 at eight institutes in the Republic of Korea. In total, 52 patients (17.1%) had plasmacytoma at MM relapse after upfront ASCT, of whom, 27 had paramedullary plasmacytoma (PMD) and 25 had extramedullary plasmacytoma (EMD). Patients with initial plasmacytoma were more likely to have plasmacytoma at MM relapse than those without initial plasmacytoma (37.1% vs. 11.2%). Over a median follow-up of 66.0 months, patients with plasmacytoma at relapse had significantly inferior overall survival (OS) than those without plasmacytoma (43.9 vs. 100.7 months, P < 0.001), but the OS did not significantly differ between patients with EMD and those with PMD (42.2 vs. 56.6 months, P=0.464). After MM relapse, all patients received salvage therapy, and progression-free survival after relapse was significantly shorter in patients with plasmacytoma than in those without (6.4 vs. 12.4 months, P = 0.007). This study showed that plasmacytoma frequently developed at MM relapse after upfront ASCT in patients with plasmacytoma at the time of diagnosis. Plasmacytoma at relapse was significantly associated with a poor prognosis.
Collapse
|
15
|
Jovanovic MZ, Geller DA, Gajovic NM, Jurisevic MM, Arsenijevic NN, Jovanovic MM, Supic GM, Vojvodic DV, Jovanovic IP. Dual blockage of PD-L/PD-1 and IL33/ST2 axes slows tumor growth and improves antitumor immunity by boosting NK cells. Life Sci 2022; 289:120214. [PMID: 34890591 DOI: 10.1016/j.lfs.2021.120214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 12/09/2022]
Abstract
AIMS Although separate blockage of either IL33/ST2 or PD-L/PD-1 axes has been shown to be beneficial in many tumors, co-blockage of IL33/ST2 and PD-L/PD-1 hasn't been studied yet. MAIN METHODS 4T1 breast cancer and CT26 colon cancer were inducted in BALB/C wild type (WT) and BALB/C ST2 knockout mice, after which mice underwent anti PD-1 and anti IL-33 treatment. KEY FINDINGS Co-blockage of IL33/ST2 and PD-L/PD-1 delayed tumor appearance and slowed tumor growth. Enhanced NK cell cytotoxicity against 4T1 tumor cells in ST2 knockout anti-PD-1 treated mice was associated with overexpression of miRNA-150 and miRNA-155, upregulation of NFκB and STAT3, increased expression of activation markers and decreased expression of immunosuppressive markers in splenic and primary tumor derived NK cells. NK cells from ST2 knockout anti-PD-1 treated mice tend to proliferate more and are less prone to apoptosis. Accumulation of immunosuppressive myeloid derived suppressor cells and regulatory T cells was significantly impaired in spleen and primary tumor of ST2 knockout anti-PD-1 treated mice. SIGNIFICANCE Co-blockage of IL3/ST2 and PD-L/PD-1 axes impedes tumor progression more efficiently than single blockage of either axes, thus offering potential new approach to immunotherapy of tumors.
Collapse
Affiliation(s)
- Marina Z Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - David A Geller
- Department of Surgery, University of Pittsburgh, 3459 Fifth Avenue, UPMC Montefiore, 7 South Pittsburgh, PA 15213 2582, USA.
| | - Nevena M Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Milena M Jurisevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, SvetozaraMarkovica 69, 34000 Kragujevac, Serbia.
| | - Nebojsa N Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Milan M Jovanovic
- Department of Abdominal Surgery, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia.
| | - Gordana M Supic
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; Medical Faculty of Military Medical Academy, University of Defense, Crnotravska 17, 11000 Belgrade, Serbia.
| | - Danilo V Vojvodic
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; Medical Faculty of Military Medical Academy, University of Defense, Crnotravska 17, 11000 Belgrade, Serbia.
| | - Ivan P Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia.
| |
Collapse
|
16
|
Anti-PD-1 therapy activates tumoricidic properties of NKT cells and contributes to the overall deceleration of tumor progression in a model of murine mammary carcinoma. VOJNOSANIT PREGL 2022. [DOI: 10.2298/vsp210126039j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background/Aim. Immune checkpoint therapy is a well-established therapeutic approach in the treatment of malignant diseases and is thought to be mostly based on facilitating the adaptive immune response. However, the cells of the innate immune response, such as natural killer T (NKT) cells, might also be important for a successful anti-programmed cell death protein-1 (anti-PD-1) therapy, as they initiate the antitumor immune response. The aim of this study was to investigate the influence of anti-PD-1 therapy on the immune response against tumors. Methods. For tumor induction, 4T1 cells synergic to BALB/c back-ground were used, after which mice underwent anti-PD-1 treatment. After the mice were sacrificed, NKT cells, dendritic cells (DCs), and macrophages derived from spleen and primary tumor tissue were analyzed using flow cytometry. Results. Anti-PD-1 therapy enhanced the expression of activating molecules CD69, NKp46, and NKG2D in NKT cells of the tumor and spleen. This therapy activated NKT cells directly and indirectly via DCs. Activated NKT cells acquired tumoricidic properties directly, by secreting perforin, and indirectly by stimulating M1 macrophages polarization. Conclusion. Anti-PD-1 therapy activates changes in DCs and macrophages of primary tumor tissue towards protumoricidic activity. Since anti-PD-1 therapy induces significant changes in NKT cells, DCs, and macrophages, the efficacy of the overall antitumor response is increased and has significantly decelerated tumor growth.
Collapse
|
17
|
Cencini E, Fabbri A, Sicuranza A, Gozzetti A, Bocchia M. The Role of Tumor-Associated Macrophages in Hematologic Malignancies. Cancers (Basel) 2021; 13:cancers13143597. [PMID: 34298810 PMCID: PMC8304632 DOI: 10.3390/cancers13143597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Tumor-associated macrophages (TAM) represent a leading component of the tumor microenvironment in hematologic malignancies. TAM could display antitumor activity or, conversely, could contribute to tumor growth and survival, depending on their polarization. TAM are polarized towards form M1, with a pro-inflammatory phenotype and an antineoplastic activity, or M2, with an alternately activated phenotype, associated with a poor outcome in patients presenting with leukemia, lymphoma or multiple myeloma. The molecular mechanisms of TAM in different types of hematologic malignancies are different due to the peculiar microenvironment of each disease. TAM could contribute to tumor progression, reduced apoptosis and angiogenesis; a different TAM polarization could explain a reduced treatment response in patients with a similar disease subtype. The aim of our review is to better define the role of TAM in patients with leukemia, lymphoma or multiple myeloma. Finally, we would like to focus on TAM as a possible target for antineoplastic therapy. Abstract The tumor microenvironment includes dendritic cells, T-cytotoxic, T-helper, reactive B-lymphoid cells and macrophages; these reactive cells could interplay with malignant cells and promote tumor growth and survival. Among its cellular components, tumor-associated macrophages (TAM) represent a component of the innate immune system and play an important role, especially in hematologic malignancies. Depending on the stimuli that trigger their activation, TAM are polarized towards form M1, contributing to antitumor responses, or M2, associated with tumor progression. Many studies demonstrated a correlation between TAM, disease progression and the patient’s outcome in lymphoproliferative neoplasms, such as Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL), even if with conflicting results. A critical hurdle to overcome is surely represented by the heterogeneity in the choice of the optimal markers and methods used for TAM analysis (gene-expression profile vs. immunohistochemistry, CD163vs. CD68vs. CD163/CD68 double-positive cells). TAM have been recently linked to the development and progression of multiple myeloma and leukemia, with a critical role in the homing of malignant cells, drug resistance, immune suppression and angiogenesis. As such, this review will summarize the role of TAM in different hematologic malignancies, focusing on the complex interplay between TAM and tumor cells, the prognostic value of TAM and the possible TAM-targeted therapeutic strategies.
Collapse
|
18
|
Jacobs B, Gebel V, Heger L, Grèze V, Schild H, Dudziak D, Ullrich E. Characterization and Manipulation of the Crosstalk Between Dendritic and Natural Killer Cells Within the Tumor Microenvironment. Front Immunol 2021; 12:670540. [PMID: 34054844 PMCID: PMC8160470 DOI: 10.3389/fimmu.2021.670540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/19/2021] [Indexed: 01/22/2023] Open
Abstract
Cellular therapy has entered the daily clinical life with the approval of CAR T cell therapeutics and dendritic cell (DCs) vaccines in the US and the EU. In addition, numerous other adoptive cellular products, including natural killer (NK) cells, are currently evaluated in early phase I/ II clinical trials for the treatment of cancer patients. Despite these promising accomplishments, various challenges remain to be mastered in order to ensure sustained therapeutic success. These include the identification of strategies by which tumor cells escape the immune system or establish an immunosuppressive tumor microenvironment (TME). As part of the innate immune system, DCs and NK cells are both present within the TME of various tumor entities. While NK cells are well known for their intrinsic anti-tumor activity by their cytotoxicity capacities and the secretion of pro-inflammatory cytokines, the role of DCs within the TME is a double-edged sword as different DC subsets have been described with either tumor-promoting or -inhibiting characteristics. In this review, we will discuss recent findings on the interaction of DCs and NK cells under physiological conditions and within the TME. One focus is the crosstalk of various DC subsets with NK cells and their impact on the progression or inhibition of tumor growth. In addition, we will provide suggestions to overcome the immunosuppressive outcome of the interaction of DCs and NK cells within the TME.
Collapse
Affiliation(s)
- Benedikt Jacobs
- Department of Internal Medicine 5, Haematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Veronika Gebel
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Victoria Grèze
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany.,Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Evelyn Ullrich
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
19
|
Immunomodulatory drugs suppress Th1-inducing ability of dendritic cells but enhance Th2-mediated allergic responses. Blood Adv 2021; 4:3572-3585. [PMID: 32761232 DOI: 10.1182/bloodadvances.2019001410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/01/2020] [Indexed: 11/20/2022] Open
Abstract
Immunomodulatory drugs (IMiDs), lenalidomide and pomalidomide, are widely used treatments for multiple myeloma; however, they occasionally lead to episodes of itchy skin and rashes. Here, we analyzed the effects of IMiDs on human myeloid dendritic cells (mDCs) as major regulators of Th1 or Th2 responses and the role they play in allergy. We found that lenalidomide and pomalidomide used at clinical concentrations did not affect the survival or CD86 and OX40-ligand expression of blood mDCs in response to lipopolysaccharide (LPS) and thymic stromal lymphopoietin (TSLP) stimulation. Both lenalidomide and pomalidomide dose-dependently inhibited interleukin-12 (IL-12) and TNF production and STAT4 expression, and enhanced IL-10 production in response to LPS. When stimulated with TSLP, both IMiDs significantly enhanced CCL17 production and STAT6 and IRF4 expression and promoted memory Th2-cell responses. In 46 myeloma patients, serum CCL17 levels at the onset of lenalidomide-associated rash were significantly higher than those without rashes during lenalidomide treatment and those before treatment. Furthermore, serum CCL17 levels in patients who achieved a very good partial response (VGPR) were significantly higher compared with a less than VGPR during lenalidomide treatment. The median time to next treatment was significantly longer in lenalidomide-treated patients with rashes than those without. Collectively, IMiDs suppressed the Th1-inducing capacity of DCs, instead promoting a Th2 response. Thus, the lenalidomide-associated rashes might be a result of an allergic response driven by Th2-axis activation. Our findings suggest clinical efficacy and rashes as a side effect of IMiDs are inextricably linked through immunostimulation.
Collapse
|
20
|
Rubio MT, Dhuyser A, Nguyen S. Role and Modulation of NK Cells in Multiple Myeloma. HEMATO 2021. [DOI: 10.3390/hemato2020010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Myeloma tumor cells are particularly dependent on their microenvironment and sensitive to cellular antitumor immune response, including natural killer (NK) cells. These later are essential innate lymphocytes implicated in the control of viral infections and cancers. Their cytotoxic activity is regulated by a balance between activating and inhibitory signals resulting from the complex interaction of surface receptors and their respective ligands. Myeloma disease evolution is associated with a progressive alteration of NK cell number, phenotype and cytotoxic functions. We review here the different therapeutic approaches that could restore or enhance NK cell functions in multiple myeloma. First, conventional treatments (immunomodulatory drugs-IMids and proteasome inhibitors) can enhance NK killing of tumor cells by modulating the expression of NK receptors and their corresponding ligands on NK and myeloma cells, respectively. Because of their ability to kill by antibody-dependent cell cytotoxicity, NK cells are important effectors involved in the efficacy of anti-myeloma monoclonal antibodies targeting the tumor antigens CD38, CS1 or BCMA. These complementary mechanisms support the more recent therapeutic combination of IMids or proteasome inhibitors to monoclonal antibodies. We finally discuss the ongoing development of new NK cell-based immunotherapies, such as ex vivo expanded killer cell immunoglobulin-like receptors (KIR)-mismatched NK cells, chimeric antigen receptors (CAR)-NK cells, check point and KIR inhibitors.
Collapse
|
21
|
A combination of immunoadjuvant nanocomplexes and dendritic cell vaccines in the presence of immune checkpoint blockade for effective cancer immunotherapy. Cell Mol Immunol 2021; 18:1599-1601. [PMID: 33782574 DOI: 10.1038/s41423-021-00666-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
|
22
|
Ahn JH, Lee BH, Kim SE, Kwon BE, Jeong H, Choi JR, Kim MJ, Park Y, Kim BS, Kim DH, Ko HJ. A Novel Anti-PD-L1 Antibody Exhibits Antitumor Effects on Multiple Myeloma in Murine Models via Antibody-Dependent Cellular Cytotoxicity. Biomol Ther (Seoul) 2021; 29:166-174. [PMID: 33139584 PMCID: PMC7921862 DOI: 10.4062/biomolther.2020.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma is a malignant cancer of plasma cells. Despite recent progress with immunomodulatory drugs and proteasome inhibitors, it remains an incurable disease that requires other strategies to overcome its recurrence and non-response. Based on the high expression levels of programmed death-ligand 1 (PD-L1) in human multiple myeloma isolated from bone marrow and the murine myeloma cell lines, NS-1 and MOPC-315, we propose PD-L1 molecule as a target of anti-multiple myeloma therapy. We developed a novel anti-PD-L1 antibody containing a murine immunoglobulin G subclass 2a (IgG2a) fragment crystallizable (Fc) domain that can induce antibody-dependent cellular cytotoxicity. The newly developed anti-PD-L1 antibody showed significant antitumor effects against multiple myeloma in mice subcutaneously, intraperitoneally, or intravenously inoculated with NS-1 and MOPC-315 cells. The anti-PD-L1 effects on multiple myeloma may be related to a decrease in the immunosuppressive myeloid-derived suppressor cells (MDSCs), but there were no changes in the splenic MDSCs after combined treatment with lenalidomide and the anti-PD-L1 antibody. Interestingly, the newly developed anti-PD-L1 antibody can induce antibody-dependent cellular cytotoxicity in the myeloma cells, which differs from the existing anti-PD-L1 antibodies. Collectively, we have developed a new anti-PD-L1 antibody that binds to mouse and human PD-L1 and demonstrated the antitumor effects of the antibody in several syngeneic murine myeloma models. Thus, PD-L1 is a promising target to treat multiple myeloma, and the novel anti-PD-L1 antibody may be an effective anti-myeloma drug via antibody-dependent cellular cytotoxicity effects.
Collapse
Affiliation(s)
- Jae-Hee Ahn
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Byung-Hyun Lee
- Scripps Korea Antibody Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seong-Eun Kim
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Bo-Eun Kwon
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyunjin Jeong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jong Rip Choi
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Min Jung Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yong Park
- Scripps Korea Antibody Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Byung Soo Kim
- Scripps Korea Antibody Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dae Hee Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea.,Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
23
|
The Immune Microenvironment in Multiple Myeloma: Friend or Foe? Cancers (Basel) 2021; 13:cancers13040625. [PMID: 33562441 PMCID: PMC7914424 DOI: 10.3390/cancers13040625] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The crosstalk between multiple myeloma and immune cells within the bone marrow niche has been identified as an emerging hallmark of this hematological disease. As our knowledge on this interplay increases, it becomes more evident that successful treatment approaches need to boost the body’s natural defenses through immunotherapy. The present review will focus on the mechanisms by which myeloma cancer cells turn immune populations into their “partners in crime”. Additionally, we will provide an overview of currently ongoing pre-clinical studies targeting the bone marrow immune microenvironment. Abstract Multiple myeloma (MM) is one of the most prevalent hematological cancers worldwide, characterized by the clonal expansion of neoplastic plasma cells in the bone marrow (BM). A combination of factors is implicated in disease progression, including BM immune microenvironment changes. Increasing evidence suggests that the disruption of immunological processes responsible for myeloma control ultimately leads to the escape from immune surveillance and resistance to immune effector function, resulting in an active form of myeloma. In fact, one of the hallmarks of MM is the development of a permissive BM milieu that provides a growth advantage to the malignant cells. Consequently, a better understanding of how myeloma cells interact with the BM niche compartments and disrupt the immune homeostasis is of utmost importance to develop more effective treatments. This review focuses on the most up-to-date knowledge regarding microenvironment-related mechanisms behind MM immune evasion and suppression, as well as promising molecules that are currently under pre-clinical tests targeting immune populations.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW This article focuses on the immunosuppressive impact of myeloid-derived suppressor cells (MDSCs) and the potential clinical implications in hematological malignancies. RECENT FINDINGS MDSCs play a critical role in the regulation of the immune response in cancer. They inhibit activation of adaptive immune response and as a result foster the growth of the malignancy. Recent studies have shown that MDSCs serve as prognostic biomarkers and as targets for cancer immunotherapy. Preclinical and clinical studies have identified new approaches to deplete MDSC populations and inhibit MDSC function with combination immunomodulatory therapies including chemotherapeutic agents with immune checkpoint-directed treatment. SUMMARY A broad spectrum of publications indicate that direct targeting of MDSCs may abrogate their protumorigenic impact within the tumor microenvironment through activation of the adaptive immune response.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW This article focuses on the immunosuppressive impact of myeloid-derived suppressor cells (MDSCs) and the potential clinical implications in hematological malignancies. RECENT FINDINGS MDSCs play a critical role in the regulation of the immune response in cancer. They inhibit activation of adaptive immune response and as a result foster the growth of the malignancy. Recent studies have shown that MDSCs serve as prognostic biomarkers and as targets for cancer immunotherapy. Preclinical and clinical studies have identified new approaches to deplete MDSC populations and inhibit MDSC function with combination immunomodulatory therapies including chemotherapeutic agents with immune checkpoint-directed treatment. SUMMARY A broad spectrum of publications indicate that direct targeting of MDSCs may abrogate their protumorigenic impact within the tumor microenvironment through activation of the adaptive immune response.
Collapse
Affiliation(s)
- Emine Gulsen Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope Medical Center
- Beckman Research Institute
| | - Steven T Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope Medical Center
- Beckman Research Institute
| | - Christiane Querfeld
- Beckman Research Institute
- Division of Dermatology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| |
Collapse
|
26
|
Chu TH, Vo MC, Park HS, Lakshmi TJ, Jung SH, Kim HJ, Lee JJ. Potent anti-myeloma efficacy of dendritic cell therapy in combination with pomalidomide and programmed death-ligand 1 blockade in a preclinical model of multiple myeloma. Cancer Immunol Immunother 2020; 70:31-45. [PMID: 32623477 DOI: 10.1007/s00262-020-02654-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023]
Abstract
Dendritic cell (DC)-based vaccines are recognized as a promising immunotherapeutic strategy against cancer; however, the efficacy of immunotherapy with DCs is controlled via immune checkpoints, such as programmed death-ligand 1 (PD-L1). PD-L1 expressed on DC and tumor cells binds to programmed death-1 (PD-1) receptors on the activated T cells, which leads to the inhibition of cytotoxic T cells. Blocking of PD-L1 on DC may lead to improve the efficacy of DC therapy for cancer. Here we demonstrated that DC vaccination in combination with pomalidomide and programmed death-ligand 1 (PD-L1) blockade inhibited tumor growth of a multiple myeloma (MM) mouse model. DCs + pomalidomide with dexamethasone + PD-L1 blockade significantly inhibited immune immunosuppressive factors and promoted proportions of immune effector cells in the spleen and tumor microenvironment. Additionally, functional activities of cytotoxic T lymphocytes and NK cells in spleen were enhanced by DCs + pomalidomide with dexamethasone + PD-L1 blockade. Taken together, this study identifies a potential new therapeutic approach for the treatment of MM. These results also provide a foundation for the future development of immunotherapeutic modalities to inhibit tumor growth and restore immune function in MM.
Collapse
Affiliation(s)
- Tan-Huy Chu
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322 Seoyangro, Hwasun, Jeollanamdo, 519-763, Republic of Korea
| | - Hye-Seong Park
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Thangaraj Jaya Lakshmi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea. .,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322 Seoyangro, Hwasun, Jeollanamdo, 519-763, Republic of Korea.
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322 Seoyangro, Hwasun, Jeollanamdo, 519-763, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea. .,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322 Seoyangro, Hwasun, Jeollanamdo, 519-763, Republic of Korea. .,Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea.
| |
Collapse
|
27
|
Ex vivo pulsed dendritic cell vaccination against cancer. Acta Pharmacol Sin 2020; 41:959-969. [PMID: 32366940 PMCID: PMC7470877 DOI: 10.1038/s41401-020-0415-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/30/2020] [Indexed: 02/05/2023] Open
Abstract
As the most powerful antigen-presenting cell type, dendritic cells (DCs) can induce potent antigen-specific immune responses in vivo, hence becoming optimal cell population for vaccination purposes. DCs can be derived ex vivo in quantity and manipulated extensively to be endowed with adequate immune-stimulating capacity. After pulsing with cancer antigens in various ways, the matured DCs are administrated back into the patient. DCs home to lymphoid organs to present antigens to and activate specific lymphocytes that react to a given cancer. Ex vivo pulsed DC vaccines have been vigorously investigated for decades, registering encouraging results in relevant immunotherapeutic clinical trials, while facing some solid challenges. With more details in DC biology understood, new theory proposed, and novel technology introduced (featuring recently emerged mRNA vaccine technology), it is becoming increasingly likely that ex vivo pulsed DC vaccine will fulfill its potential in cancer immunotherapy.
Collapse
|
28
|
Petty AJ, Yang Y. Tumor-Associated Macrophages in Hematologic Malignancies: New Insights and Targeted Therapies. Cells 2019; 8:cells8121526. [PMID: 31783588 PMCID: PMC6952752 DOI: 10.3390/cells8121526] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
The growth of hematologic malignant cells can be facilitated by other non-tumor cells within the same microenvironment, including stromal, vascular, immune and mesenchymal stem cells. Macrophages are an integral part of the human innate immune system and the tumor microenvironment. Complex interplays between the malignant hematologic cells and the infiltrating macrophages promote the formation of leukemia, lymphoma or myeloma-associated macrophages. These pro-tumorigenic macrophages in turn play an important part in facilitating tumor growth, metastasis and chemotherapeutic resistance. Previous reports have highlighted the association between tumor-associated macrophages (TAMs) and disease progression in hematologic malignancies. This review summarizes the role of TAMs in different subtypes of leukemia, lymphoma and myeloma, focusing on new insights and targeted therapies.
Collapse
Affiliation(s)
- Amy J. Petty
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA;
- Division of Hematology, The Ohio State University Wexner Medical Center, 508 BRT, 460 W 12th Avenue, Columbus, OH 43210, OH, USA
| | - Yiping Yang
- Division of Hematology, The Ohio State University Wexner Medical Center, 508 BRT, 460 W 12th Avenue, Columbus, OH 43210, OH, USA
- Correspondence: ; Tel.: +1-(614)-685-0643; Fax: +1-(614)-293-7526
| |
Collapse
|
29
|
Vo MC, Lakshmi TJ, Jung SH, Cho D, Park HS, Chu TH, Lee HJ, Kim HJ, Kim SK, Lee JJ. Cellular immunotherapy in multiple myeloma. Korean J Intern Med 2019; 34:954-965. [PMID: 30754964 PMCID: PMC6718748 DOI: 10.3904/kjim.2018.325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022] Open
Abstract
In multiple myeloma (MM), the impaired function of several types of immune cells favors the tumor's escape from immune surveillance and, therefore, its growth and survival. Tremendous improvements have been made in the treatment of MM over the past decade but cellular immunotherapy using dendritic cells, natural killer cells, and genetically engineered T-cells represent a new therapeutic era. The application of these treatments is growing rapidly, based on their capacity to eradicate MM. In this review, we summarize recent progress in cellular immunotherapy for MM and its future prospects.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Thangaraj Jaya Lakshmi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye-Seong Park
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Tan-Huy Chu
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyun-Ju Lee
- VaxCell-Bio Therapeutics, Hwasun, College of Industrial Science, Kongju National University, Yesan, Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Sang-Ki Kim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan, Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
- VaxCell-Bio Therapeutics, Hwasun, College of Industrial Science, Kongju National University, Yesan, Korea
- Correspondence to Je-Jung Lee, M.D. Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun 58128, Korea Tel: +82-61-379-7638, Fax: +82-61-379-7628, E-mail:
| |
Collapse
|
30
|
Shinde P, Melinkeri S, Santra MK, Kale V, Limaye L. Autologous Hematopoietic Stem Cells Are a Preferred Source to Generate Dendritic Cells for Immunotherapy in Multiple Myeloma Patients. Front Immunol 2019; 10:1079. [PMID: 31164886 PMCID: PMC6536579 DOI: 10.3389/fimmu.2019.01079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
In multiple myeloma (MM), dendritic cells (DCs), and their precursors are prone to malignant cell-mediated regulation of function leading to low efficacy of DC vaccine. DCs taken directly from MM patient's body or derived from monocytes are fewer in numbers and are also dysfunctional. Here, we investigated the functionality of Hematopoietic stem cell-derived DCs (SC-DCs) from MM patients. Mature-MM-SC-DCs showed all essential functions like antigen uptake, allogenic T cells simulation and migration comparable to those derived from healthy donor (HD) samples. A comparison of Mo-DCs and SC-DCs obtained from the same MM patients' samples revealed that the expression of IL-6 was higher in the precursors of Mo-DCs leading to their impaired migration. In addition, expression of CCR7 which is responsible for DCs migration was found to be lower in MM-Mo-DCs. The chromatin permissiveness as observed by H3K4me3 histone modification at the Ccr7 promoter in MM-Mo-DCs was significantly lower than those in MM-SC-DCs. Levels of Zbtb46- a hall mark DC transcription factor mRNA was also found to be reduced in MM-Mo-DCs. Cytotoxic T cells generated from MM-SC-DCs from autologous naïve T cells exhibited reduced antitumor activity because the T cells were exhausted. Blocking of CTLA-4 on autologous T cells could partially restore T cell proliferation and activation. Thus, a combination of MM-SC-DC vaccine and anti-CTLA-4 antibody may serve as a better candidate for immunotherapy of MM. This study has implications in increasing the efficacy of cancer immunotherapy in MM.
Collapse
Affiliation(s)
- Prajakta Shinde
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Sameer Melinkeri
- Blood and Marrow Transplant Unit, Deenanath Mangeshkar Hospital, Pune, India
| | - Manas Kumar Santra
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Vaijayanti Kale
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Lalita Limaye
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| |
Collapse
|
31
|
Oliva S, Troia R, D'Agostino M, Boccadoro M, Gay F. Promises and Pitfalls in the Use of PD-1/PD-L1 Inhibitors in Multiple Myeloma. Front Immunol 2018; 9:2749. [PMID: 30538704 PMCID: PMC6277686 DOI: 10.3389/fimmu.2018.02749] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/08/2018] [Indexed: 01/21/2023] Open
Abstract
In the biology of multiple myeloma (MM), immune dysregulation has emerged as a critical component for novel therapeutic strategies. This dysfunction is due to a reduced antigen presentation, a reduced effector cell ability and a loss of reactive T cells against myeloma, together with a bone marrow microenvironment that favors immune escape. The Programmed Death-1 (PD-1) pathway is associated with the regulation of T cell activation and with the apoptotic pathways of effector memory T cells. Specifically, the binding with PD-1 ligand (PD-L1) on the surface of tumor plasma cells down-regulates T cell-proliferation, thus contributing to the immune escape of tumor cells. In relapsed and/or refractory MM (RRMM) patients, PD-1/PD-L1 blockade was analyzed by using nivolumab, pembrolizumab, and durvalumab. Outcomes with single agents were unsatisfactory, whereas combination strategies with backbone immunomodulatory drugs (IMiDs) suggested a synergistic action in such a complex immunological landscape, even in patients previously refractory to these drugs. Nevertheless, these combinations were also associated with an increased incidence of adverse events. This review aims to analyze the available preclinical and clinical data on the role of PD-1/PD-L1 inhibitors in MM therapy, focusing on available preliminary efficacy and safety data and offering insights for future investigation.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Gay
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
32
|
Fionda C, Stabile H, Molfetta R, Soriani A, Bernardini G, Zingoni A, Gismondi A, Paolini R, Cippitelli M, Santoni A. Translating the anti-myeloma activity of Natural Killer cells into clinical application. Cancer Treat Rev 2018; 70:255-264. [PMID: 30326421 DOI: 10.1016/j.ctrv.2018.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 01/10/2023]
Abstract
Natural Killer cells (NK) are innate effector cells with a critical role in immunosurveillance against different kinds of cancer cells, including Multiple Myeloma (MM). However, the number and/or function of these lymphocytes are strongly reduced during MM progression and in advanced clinical stages. A better understanding of the mechanisms controlling both MM and NK cell biology have greatly contributed to develop novel and combined therapeutic strategies in the treatment of this incurable hematologic malignancy. These include approaches to reverse the immunosuppressive MM microenvironment or potentiate the natural or antibody-dependent cellular cytotoxicity (ADCC) of NK cells. Moreover, chemotherapeutic drugs or specific monoclonal antibodies (mAbs) can render cancer cells more susceptible to NK cell-mediated recognition and lysis; direct enhancement of NK cell function can be obtained by means of immunomodulatory drugs, cytokines and blocking mAbs targeting NK cell inhibitory receptors. Finally, adoptive transfer of ex-vivo expanded and genetically manipulated NK cells is also a promising therapeutic tool for MM. Here, we review current knowledge on complex mechanisms affecting NK cell activity during MM progression. We also discuss recent advances on innovative approaches aimed at boosting the functions of these cytotoxic innate lymphocytes. In particular, we focus our attention on recent preclinical and clinical studies addressing the therapeutic potential of different NK cell-based strategies for the management of MM.
Collapse
Affiliation(s)
- Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.
| | - Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS NEUROMED, Pozzilli (IS), Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS NEUROMED, Pozzilli (IS), Italy
| |
Collapse
|
33
|
Bezu L, Kepp O, Cerrato G, Pol J, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Peptide-based vaccines in anticancer therapy. Oncoimmunology 2018; 7:e1511506. [PMID: 30524907 PMCID: PMC6279318 DOI: 10.1080/2162402x.2018.1511506] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Peptide-based anticancer vaccination aims at stimulating an immune response against one or multiple tumor-associated antigens (TAAs) following immunization with purified, recombinant or synthetically engineered epitopes. Despite high expectations, the peptide-based vaccines that have been explored in the clinic so far had limited therapeutic activity, largely due to cancer cell-intrinsic alterations that minimize antigenicity and/or changes in the tumor microenvironment that foster immunosuppression. Several strategies have been developed to overcome such limitations, including the use of immunostimulatory adjuvants, the co-treatment with cytotoxic anticancer therapies that enable the coordinated release of damage-associated molecular patterns, and the concomitant blockade of immune checkpoints. Personalized peptide-based vaccines are also being explored for therapeutic activity in the clinic. Here, we review recent preclinical and clinical progress in the use of peptide-based vaccines as anticancer therapeutics.Abbreviations: CMP: carbohydrate-mimetic peptide; CMV: cytomegalovirus; DC: dendritic cell; FDA: Food and Drug Administration; HPV: human papillomavirus; MDS: myelodysplastic syndrome; MHP: melanoma helper vaccine; NSCLC: non-small cell lung carcinoma; ODD: orphan drug designation; PPV: personalized peptide vaccination; SLP: synthetic long peptide; TAA: tumor-associated antigen; TNA: tumor neoantigen
Collapse
Affiliation(s)
- Lucillia Bezu
- Faculty of Medicine, University of Paris Sud/Paris XI, Le Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Giulia Cerrato
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Jonathan Pol
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic.,Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Faculty of Medicine, University of Paris Sud/Paris XI, Le Kremlin-Bicêtre, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,INSERM, U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
34
|
Vo MC, Yang S, Jung SH, Chu TH, Lee HJ, Lakshmi TJ, Park HS, Kim HJ, Lee JJ. Synergistic Antimyeloma Activity of Dendritic Cells and Pomalidomide in a Murine Myeloma Model. Front Immunol 2018; 9:1798. [PMID: 30123221 PMCID: PMC6085413 DOI: 10.3389/fimmu.2018.01798] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/20/2018] [Indexed: 01/14/2023] Open
Abstract
We have previously shown that immunization with tumor antigen-loaded dendritic cells (DCs) and the immunomodulating drug, lenalidomide, synergistically potentiates the enhancing antitumor immunity in a myeloma mouse model. In this study, we investigated the immunogenicity of DCs combined with pomalidomide and dexamethasone in a myeloma mouse model. MOPC-315 cells were injected subcutaneously to establish myeloma-bearing mice. Four test groups were used to mimic clinical protocol: (1) PBS control, (2) DCs, (3) pomalidomide + dexamethasone, and (4) DCs + pomalidomide + dexamethasone. The combination of DCs plus pomalidomide and dexamethasone displayed greater inhibition of tumor growth compared to the other groups. This effect was closely related with reduced numbers of immune suppressor cells including myeloid-derived suppressor cells, M2 macrophages, and regulatory T cells, with the induction of immune effector cells such as CD4+ and CD8+ T cells, memory T cells, natural killer (NK) cells, and M1 macrophages, and with the activation of T lymphocytes and NK cells in the spleen. Moreover, the level of the immunosuppressive factor vascular endothelial growth factor was significantly reduced in the tumor microenvironment. The collective findings in the murine myeloma model suggest that tumor antigen-loaded DCs combined with pomalidomide and dexamethasone synergistically enhance antitumor immunity by skewing the immune-suppressive status toward an immune-supportive status.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Seoyun Yang
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Tan-Huy Chu
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Hyun-Ju Lee
- Vaxcell-Bio Therapeutics, Hwasun, South Korea
| | - Thangaraj Jaya Lakshmi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Hye-Seong Park
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea.,Vaxcell-Bio Therapeutics, Hwasun, South Korea
| |
Collapse
|