1
|
Sawanobori Y, Ogawa T, Ueta H, Kitazawa Y, Tokuda N. Newly Found Rat CD103 - Dendritic Cells Represent a Highly Immunogenic Subpopulation of Type-2 Conventional Dendritic Cells, Corresponding to Known Dendritic Cell Subsets in Mice and Humans. Immunology 2025. [PMID: 39754477 DOI: 10.1111/imm.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
Dendritic cells (DCs), the primary antigen-presenting cells, have traditionally been identified by CD103 molecules in rats, whereas mouse and human DCs are identified by CD11c molecules. However, this history does not preclude the existence of CD103- DCs in rats. To explore this possibility, we examined MHCII+ cells in rat spleen and thymus, identifying a novel population of CD103-MHCII+CD45R-CD172a+ cells. These cells are negative for CD103 and B cell marker CD45R, but positive for the type-2 conventional DC (cDC2) marker CD172a. Transcriptomic analyses revealed that they represent a subpopulation of cDC2. Additionally, gene set enrichment analysis predicted enhanced immunogenic activities for this novel population compared to known rat cDC2s. Mixed leukocyte reaction assays confirmed that the rat CD103- cDC2s induce T cell proliferation more effectively than other DC subsets, suggesting enhanced immunogenic potential. In reaggregated thymic organ culture assays, both the rat CD103- and CD103+ cDC2 subsets suppressed the total number of generated thymocytes and skewed the differentiation toward CD8 single-positive cells. Comparisons with previously published single-cell RNA-sequencing datasets showed that the rat CD103- cDC2 subset shares markers and GO terms of known mouse and human cDC2 subpopulations: cDC2a, cDC2b, inf-cDC2, and moDC. In contrast, the classic rat CD103+ cDC2 subset expresses only cDC2a markers. These findings provide new insights into DC subpopulations, particularly in species other than mice and humans, where much remains to be uncovered.
Collapse
Affiliation(s)
| | - Tadayuki Ogawa
- Comprehensive Research Facilities for Advanced Medical Science, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Hisashi Ueta
- Anatomy, Dokkyo Medical University, Mibu, Tochigi, Japan
| | | | - Nobuko Tokuda
- Anatomy, Dokkyo Medical University, Mibu, Tochigi, Japan
| |
Collapse
|
2
|
Brunschwiler F, Nakka S, Guerra J, Guarda G. A Ménage à trois: NLRC5, immunity, and metabolism. Front Immunol 2024; 15:1426620. [PMID: 39035010 PMCID: PMC11257985 DOI: 10.3389/fimmu.2024.1426620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
The nucleotide-binding and oligomerization domain-like receptors (NLRs) NLR family CARD domain-containing protein 5 (NLRC5) and Class II Major Histocompatibility Complex Transactivator (CIITA) are transcriptional regulators of major histocompatibility complex (MHC) class I and class II genes, respectively. MHC molecules are central players in our immune system, allowing the detection of hazardous 'non-self' antigens and, thus, the recognition and elimination of infected or transformed cells from the organism. Recently, CIITA and NLRC5 have emerged as regulators of selected genes of the butyrophilin (BTN) family that interestingly are located in the extended MHC locus. BTNs are transmembrane proteins exhibiting structural similarities to B7 family co-modulatory molecules. The family member BTN2A2, which indeed contributes to the control of T cell activation, was found to be transcriptionally regulated by CIITA. NLRC5 emerged instead as an important regulator of the BTN3A1, BTN3A2, and BTN3A3 genes. Together with BTN2A1, BTN3As regulate non-conventional Vγ9Vδ2 T cell responses triggered by selected metabolites of microbial origin or accumulating in hematologic cancer cells. Even if endogenous metabolites conform to the canonical definition of 'self', metabolically abnormal cells can represent a danger for the organism and should be recognized and controlled by immune system cells. Collectively, new data on the role of NLRC5 in the expression of BTN3As link the mechanisms regulating canonical 'non-self' presentation and those marking cells with abnormal metabolic configurations for immune recognition, an evolutionary parallel that we discuss in this perspective review.
Collapse
Affiliation(s)
| | | | - Jessica Guerra
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Greta Guarda
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
3
|
Sharma I, Kataria P, Das J. Cerebral malaria pathogenesis: Dissecting the role of CD4 + and CD8 + T-cells as major effectors in disease pathology. Int Rev Immunol 2024; 43:309-325. [PMID: 38618863 DOI: 10.1080/08830185.2024.2336539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum (P. falciparum) infection, with complex pathogenesis involving multiple factors, including the host's immunological response. T lymphocytes, specifically CD4+ T helper cells and CD8+ cytotoxic T cells, are crucial in controlling parasite growth and activating cells for parasite clearance via cytokine secretion. Contrary to this, reports also suggest the pathogenic nature of T lymphocytes as they are often involved in disease progression and severity. CD8+ cytotoxic T cells migrate to the host's brain vasculature, disrupting the blood-brain barrier and causing neurological manifestations. CD4+ T helper cells on the other hand play a variety of functions as they differentiate into different subtypes which may function as pro-inflammatory or anti-inflammatory. The excessive pro-inflammatory response in CM can lead to multi-organ failure, necessitating a check mechanism to maintain immune homeostasis. This is achieved by regulatory T cells and their characteristic cytokines, which counterbalance the pro-inflammatory immune response. Maintaining a critical balance between pro and anti-inflammatory responses is crucial for determining disease outcomes in CM. A slight change in this balance may contribute to a disease severity owing to an extreme inflammatory response or unrestricted parasite growth, a potential target for designing immunotherapeutic treatment approaches. The review briefly discusses the pathogenesis of CM and various mechanisms responsible for the disruption of the blood-brain barrier. It also highlights the role of different T cell subsets during infection and emphasizes the importance of balance between pro and anti-inflammatory T cells that ultimately decides the outcome of the disease.
Collapse
Affiliation(s)
- Indu Sharma
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Poonam Kataria
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Jyoti Das
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
4
|
Lin L, Hu M, Li Q, Du L, Lin L, Xue Y, Zheng F, Wang F, Liu K, Wang Y, Ye J, Jiang X, Wang X, Wang J, Zhai J, Liu B, Xie H, You Y, Wang J, Kong X, Feng D, Green DR, Shi Y, Wang Y. Oleic acid availability impacts thymocyte preprogramming and subsequent peripheral T reg cell differentiation. Nat Immunol 2024; 25:54-65. [PMID: 38062135 PMCID: PMC10918613 DOI: 10.1038/s41590-023-01672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/05/2023] [Indexed: 01/04/2024]
Abstract
The nature of activation signals is essential in determining T cell subset differentiation; however, the features that determine T cell subset preference acquired during intrathymic development remain elusive. Here we show that naive CD4+ T cells generated in the mouse thymic microenvironment lacking Scd1, encoding the enzyme catalyzing oleic acid (OA) production, exhibit enhanced regulatory T (Treg) cell differentiation and attenuated development of experimental autoimmune encephalomyelitis. Scd1 deletion in K14+ thymic epithelia recapitulated the enhanced Treg cell differentiation phenotype of Scd1-deficient mice. The dearth of OA permitted DOT1L to increase H3K79me2 levels at the Atp2a2 locus of thymocytes at the DN2-DN3 transition stage. Such epigenetic modification persisted in naive CD4+ T cells and facilitated Atp2a2 expression. Upon T cell receptor activation, ATP2A2 enhanced the activity of the calcium-NFAT1-Foxp3 axis to promote naive CD4+ T cells to differentiate into Treg cells. Therefore, OA availability is critical for preprogramming thymocytes with Treg cell differentiation propensities in the periphery.
Collapse
Affiliation(s)
- Liangyu Lin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingyuan Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liming Du
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yueqing Xue
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fanjun Zheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fei Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Keli Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yu Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiayin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xu Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuefeng Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiaqi Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingjie Zhai
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Benming Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongzhen Xie
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanqin You
- Department of Obstetrics and Gynecology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jinyong Wang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dechun Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China.
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Yilmazer A, Zevla DM, Malmkvist R, Rodríguez CAB, Undurraga P, Kirgin E, Boernert M, Voehringer D, Kershaw O, Schlenner S, Kretschmer K. Selective ablation of thymic and peripheral Foxp3 + regulatory T cell development. Front Immunol 2023; 14:1298938. [PMID: 38164128 PMCID: PMC10757929 DOI: 10.3389/fimmu.2023.1298938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Foxp3+ regulatory T (Treg) cells of thymic (tTreg) and peripheral (pTreg) developmental origin are thought to synergistically act to ensure immune homeostasis, with self-reactive tTreg cells primarily constraining autoimmune responses. Here we exploited a Foxp3-dependent reporter with thymus-specific GFP/Cre activity to selectively ablate either tTreg (ΔtTreg) or pTreg (ΔpTreg) cell development, while sparing the respective sister populations. We found that, in contrast to the tTreg cell behavior in ΔpTreg mice, pTreg cells acquired a highly activated suppressor phenotype and replenished the Treg cell pool of ΔtTreg mice on a non-autoimmune C57BL/6 background. Despite the absence of tTreg cells, pTreg cells prevented early mortality and fatal autoimmunity commonly observed in Foxp3-deficient models of complete Treg cell deficiency, and largely maintained immune tolerance even as the ΔtTreg mice aged. However, only two generations of backcrossing to the autoimmune-prone non-obese diabetic (NOD) background were sufficient to cause severe disease lethality associated with different, partially overlapping patterns of organ-specific autoimmunity. This included a particularly severe form of autoimmune diabetes characterized by an early onset and abrogation of the sex bias usually observed in the NOD mouse model of human type 1 diabetes. Genetic association studies further allowed us to define a small set of autoimmune risk loci sufficient to promote β cell autoimmunity, including genes known to impinge on Treg cell biology. Overall, these studies show an unexpectedly high functional adaptability of pTreg cells, emphasizing their important role as mediators of bystander effects to ensure self-tolerance.
Collapse
Affiliation(s)
- Acelya Yilmazer
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Dimitra Maria Zevla
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Rikke Malmkvist
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Carlos Alejandro Bello Rodríguez
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Pablo Undurraga
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Emre Kirgin
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Marie Boernert
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Olivia Kershaw
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Susan Schlenner
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
6
|
Lagou MK, Karagiannis GS. Obesity-induced thymic involution and cancer risk. Semin Cancer Biol 2023; 93:3-19. [PMID: 37088128 DOI: 10.1016/j.semcancer.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Declining thymic functions associated either with old age (i.e., age-related thymic involution), or with acute involution as a result of stress, infectious disease, or cytoreductive therapies (e.g., chemotherapy/radiotherapy), have been associated with cancer development. A key mechanism underlying such increased cancer risk is the thymus-dependent debilitation of adaptive immunity, which is responsible for orchestrating immunoediting mechanisms and tumor immune surveillance. In the past few years, a blooming set of evidence has intriguingly linked obesity with cancer development and progression. The majority of such studies has focused on obesity-driven chronic inflammation, steroid/sex hormone and adipokine production, and hyperinsulinemia, as principal factors affecting the tumor microenvironment and driving the development of primary malignancy. However, experimental observations about the negative impact of obesity on T cell development and maturation have existed for more than half a century. Here, we critically discuss the molecular and cellular mechanisms of obesity-driven thymic involution as a previously underrepresented intermediary pathology leading to cancer development and progression. This knowledge could be especially relevant in the context of childhood obesity, because impaired thymic function in young individuals leads to immune system abnormalities, and predisposes to various pediatric cancers. A thorough understanding behind the molecular and cellular circuitries governing obesity-induced thymic involution could therefore help towards the rationalized development of targeted thymic regeneration strategies for obese individuals at high risk of cancer development.
Collapse
Affiliation(s)
- Maria K Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Inaba M, Fukushima H, Hara M, Hosaka S, Fujiyama S, Maruo K, Nomura T, Okiyama N, Takada H. Antigen-specific T cell balance reveals Why patients with atopic dermatitis fail to achieve immune tolerance. Clin Immunol 2023; 252:109649. [PMID: 37209805 DOI: 10.1016/j.clim.2023.109649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
The number of regulatory T cells (Tregs) and how they behave in the pathogenesis of atopic dermatitis (AD) are still controversial. We identified and quantified Tregs, mite-specific Tregs, and mite-specific effector T cells (Teffs) in patients with AD and healthy controls (HCs). We collected peripheral blood and analyzed the cells using flow cytometry after stimulation with mite antigens. Mite-specific Tregs and mite-specific Teffs were recognized by the expression of CD137 and CD154, respectively. Patients with AD had more Tregs than HCs; however, when focusing on a single antigen, the ratio of mite-specific Tregs/Teffs was lower in patients with AD than in HCs. Furthermore, the mite-specific Teffs in patients with AD were more likely to produce proinflammatory cytokines interleukin (IL)-4 and IL-13. This Teff-dominant imbalance is thought to be the cause of development of atopic status in patients with AD without immune tolerance.
Collapse
Affiliation(s)
- Masako Inaba
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Hiroko Fukushima
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan; Department of Child Health, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Monami Hara
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Sho Hosaka
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Satoshi Fujiyama
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Kazushi Maruo
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Toshifumi Nomura
- Department of Dermatology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Naoko Okiyama
- Department of Dermatology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan; Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan; Department of Child Health, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
8
|
Bulygin AS, Khantakova JN, Shkaruba NS, Shiku H, Sennikov SS. The role of metabolism on regulatory T cell development and its impact in tumor and transplantation immunity. Front Immunol 2022; 13:1016670. [PMID: 36569866 PMCID: PMC9767971 DOI: 10.3389/fimmu.2022.1016670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Regulatory CD4+ T (Treg) cells play a key role in the induction of immune tolerance and in the prevention of autoimmune diseases. Treg cells are defined by the expression of transcription factor FOXP3, which ensures proliferation and induction of the suppressor activity of this cell population. In a tumor microenvironment, after transplantation or during autoimmune diseases, Treg cells can respond to various signals from their environment and this property ensures their suppressor function. Recent studies showed that a metabolic signaling pathway of Treg cells are essential in the control of Treg cell proliferation processes. This review presents the latest research highlights on how the influence of extracellular factors (e.g. nutrients, vitamins and metabolites) as well as intracellular metabolic signaling pathways regulate tissue specificity of Treg cells and heterogeneity of this cell population. Understanding the metabolic regulation of Treg cells should provide new insights into immune homeostasis and disorders along with important therapeutic implications for autoimmune diseases, cancer and other immune-system-mediated disorders.
Collapse
|
9
|
Benlaribi R, Gou Q, Takaba H. Thymic self-antigen expression for immune tolerance and surveillance. Inflamm Regen 2022; 42:28. [PMID: 36056452 PMCID: PMC9440513 DOI: 10.1186/s41232-022-00211-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
T cells are a group of lymphocytes that play a central role in the immune system, notably, eliminating pathogens and attacking cancer while being tolerant of the self. Elucidating how immune tolerance is ensured has become a significant research issue for understanding the pathogenesis of autoimmune diseases as well as cancer immunity. T cell immune tolerance is established mainly in the thymic medulla by the removal of self-responsive T cells and the generation of regulatory T cells, this process depends mainly on the expression of a variety of tissue restricted antigens (TRAs) by medullary thymic epithelial cells (mTECs). The expression of TRAs is known to be regulated by at least two independent factors, Fezf2 and Aire, which play non-redundant and complementary roles by different mechanisms. In this review, we introduce the molecular logic of thymic self-antigen expression that underlies T cell selection for the prevention of autoimmunity and the establishment of immune surveillance.
Collapse
Affiliation(s)
- Rayene Benlaribi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Qiao Gou
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takaba
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
10
|
Pohar J, O'Connor R, Manfroi B, Behi ME, Jouneau L, Boudinot P, Bunse M, Uckert W, Luka M, Ménager M, Liblau R, Anderton SM, Fillatreau S. Antigen receptor-engineered Tregs inhibit CNS autoimmunity in cell therapy using non-redundant immune mechanisms in mice. Eur J Immunol 2022; 52:1335-1349. [PMID: 35579560 PMCID: PMC9542066 DOI: 10.1002/eji.202249845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/28/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022]
Abstract
CD4+FOXP3+ Tregs are currently explored to develop cell therapies against immune‐mediated disorders, with an increasing focus on antigen receptor‐engineered Tregs. Deciphering their mode of action is necessary to identify the strengths and limits of this approach. Here, we addressed this issue in an autoimmune disease of the CNS, EAE. Following disease induction, autoreactive Tregs upregulated LAG‐3 and CTLA‐4 in LNs, while IL‐10 and amphiregulin (AREG) were increased in CNS Tregs. Using genetic approaches, we demonstrated that IL‐10, CTLA‐4, and LAG‐3 were nonredundantly required for the protective function of antigen receptor‐engineered Tregs against EAE in cell therapy whereas AREG was dispensable. Treg‐derived IL‐10 and CTLA‐4 were both required to suppress acute autoreactive CD4+ T‐cell activation, which correlated with disease control. These molecules also affected the accumulation in the recipients of engineered Tregs themselves, underlying complex roles for these molecules. Noteworthy, despite the persistence of the transferred Tregs and their protective effect, autoreactive T cells eventually accumulated in the spleen of treated mice. In conclusion, this study highlights the remarkable power of antigen receptor‐engineered Tregs to appropriately provide multiple suppressive factors nonredundantly necessary to prevent autoimmune attacks.
Collapse
Affiliation(s)
- Jelka Pohar
- Institut Necker Enfants Malades, Institut National de la Santé et de la Recherche Médicale INSERM U1151 - Centre National de la Recherche Scientifique CNRS UMR 8253, 156-160, rue de Vaugirard, Paris, 75015, France
| | | | - Benoît Manfroi
- Institut Necker Enfants Malades, Institut National de la Santé et de la Recherche Médicale INSERM U1151 - Centre National de la Recherche Scientifique CNRS UMR 8253, 156-160, rue de Vaugirard, Paris, 75015, France
| | - Mohamed El Behi
- Institut Necker Enfants Malades, Institut National de la Santé et de la Recherche Médicale INSERM U1151 - Centre National de la Recherche Scientifique CNRS UMR 8253, 156-160, rue de Vaugirard, Paris, 75015, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France
| | - Mario Bunse
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Wolfgang Uckert
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marine Luka
- Université de Paris, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Paris, F-75015, France.,Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, Paris, F-75015, France
| | - Mickael Ménager
- Université de Paris, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Paris, F-75015, France.,Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, Paris, F-75015, France
| | - Roland Liblau
- Infinity - Institut Toulousain des Maladies Infectieuses et Inflammatoires, NSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | | | - Simon Fillatreau
- Institut Necker Enfants Malades, Institut National de la Santé et de la Recherche Médicale INSERM U1151 - Centre National de la Recherche Scientifique CNRS UMR 8253, 156-160, rue de Vaugirard, Paris, 75015, France.,Université de Paris, Faculté de Médecine, Paris, France.,AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
11
|
Holzer MT, Almanzar G, Woidich R, Hügle B, Haas JP, Prelog M. Mitigated suppressive function of regulatory T cells (Treg) upon Th17-inducing cytokines in oligo- and polyarticular Juvenile Idiopathic Arthritis (JIA) patients. Pediatr Rheumatol Online J 2022; 20:26. [PMID: 35410224 PMCID: PMC8996624 DOI: 10.1186/s12969-022-00680-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/22/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The plasticity of T helper-17 (Th17) and regulatory T (Treg) cells may be a clue to pathogenesis of Juvenile Idiopathic Arthritis (JIA). It is still unclear, whether targeted suppression of Interleukin (IL)-17 is able to influence regulatory function of Treg to control pro-inflammatory effectors in JIA. This study aimed to assess the effect of a Th17-stimulating cytokine environment and of IL-17A-inhibition on phenotype plasticity and suppressive function of Treg derived from JIA patients. METHODS Th17 and Treg characteristics of CD4+ helper T cells were investigated in blood samples of JIA patients with oligo- and polyarticular pattern and healthy controls (HC). Isolated CD4+CD25+CD127- cells defined as Treg were cultivated with Th17-inducing cytokine environment as well as with IL-17A-inhibitors and analyzed for plasticity of phenotype by flow cytometry. Furthermore, inhibitory function of Treg on autologous effectors after cultivation with these stimuli was determined by suppression assays. RESULTS Our findings demonstrated significantly elevated proportions of Th17 and Th17-like Treg in JIA compared to HC. After incubation with Th17-inducing stimuli, increased FoxP3 expression in separated Treg in JIA and an impaired suppressive capacity in JIA and HC were found. Blockade of IL-17A resulted in adjustment of FoxP3-expression in JIA to proportions found in controls and in regular suppressive function. CONCLUSIONS Our results demonstrate an induction of FoxP3 expressing Treg by Th17-inducing cytokines with concomitant mitigated suppressive function. In contrast, specific IL-17A blockade maintains suppressive Treg function and adjusted FoxP3-expression in JIA to levels found in controls. These findings may help to provide experimental evidence for the successful clinical use of IL-17A inhibition in JIA patients.
Collapse
Affiliation(s)
- Marie-Therese Holzer
- Department of Pediatrics, Pediatric Rheumatology/Special Immunology, University Hospital Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany. .,Department of Internal Medicine III. (Nephrology and Rheumatology With Section Endocrinology), University Hospital Hamburg- Eppendorf, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Giovanni Almanzar
- grid.411760.50000 0001 1378 7891Department of Pediatrics, Pediatric Rheumatology/Special Immunology, University Hospital Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Robert Woidich
- grid.411760.50000 0001 1378 7891Department of Pediatrics, Pediatric Rheumatology/Special Immunology, University Hospital Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Boris Hügle
- German Centre of Pediatric Rheumatology, Gehfeldstraße 24, 82467 Garmisch-Partenkirchen, Germany
| | - Johannes-Peter Haas
- German Centre of Pediatric Rheumatology, Gehfeldstraße 24, 82467 Garmisch-Partenkirchen, Germany
| | - Martina Prelog
- Department of Pediatrics, Pediatric Rheumatology/Special Immunology, University Hospital Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany.
| |
Collapse
|
12
|
Stojić-Vukanić Z, Pilipović I, Arsenović-Ranin N, Dimitrijević M, Leposavić G. Sex-specific remodeling of T-cell compartment with aging: Implications for rat susceptibility to central nervous system autoimmune diseases. Immunol Lett 2021; 239:42-59. [PMID: 34418487 DOI: 10.1016/j.imlet.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/12/2021] [Accepted: 08/12/2021] [Indexed: 11/15/2022]
Abstract
The incidence of multiple sclerosis (MS) and susceptibility of animals to experimental autoimmune encephalomyelitis (EAE), the most commonly used experimental model of MS, decrease with aging. Generally, autoimmune diseases develop as the ultimate outcome of an imbalance between damaging immune responses against self and regulatory immune responses (keeping the former under control). Thus, in this review the age-related changes possibly underlying this balance were discussed. Specifically, considering the central role of T cells in MS/EAE, the impact of aging on overall functional capacity (reflecting both overall count and individual functional cell properties) of self-reactive conventional T cells (Tcons) and FoxP3+ regulatory T cells (Tregs), as the most potent immunoregulatory/suppressive cells, was analyzed, as well. The analysis encompasses three distinct compartments: thymus (the primary lymphoid organ responsible for the elimination of self-reactive T cells - negative selection and the generation of Tregs, compensating for imperfections of the negative selection), peripheral blood/lymphoid tissues ("afferent" compartment), and brain/spinal cord tissues ("target" compartment). Given that the incidence of MS and susceptibility of animals to EAE are greater in women/females than in age-matched men/males, sex as independent variable was also considered. In conclusion, with aging, sex-specific alterations in the balance of self-reactive Tcons/Tregs are likely to occur not only in the thymus/"afferent" compartment, but also in the "target" compartment, reflecting multifaceted changes in both T-cell types. Their in depth understanding is important not only for envisaging effects of aging, but also for designing interventions to slow-down aging without any adverse effect on incidence of autoimmune diseases.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, University of Belgrade - Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| |
Collapse
|
13
|
Thomas R, Oh J, Wang W, Su DM. Thymic atrophy creates holes in Treg-mediated immuno-regulation via impairment of an antigen-specific clone. Immunology 2021; 163:478-492. [PMID: 33786850 DOI: 10.1111/imm.13333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
Age-related thymic atrophy results in reduced output of naïve conventional T (Tcon) cells. However, its impact on regulatory T (Treg) cells is insufficiently understood. Given evidence that thymic Treg (tTreg) cell generation is enhanced in the aged, atrophy thymus and that the aged periphery accumulates peripheral Treg (pTreg) cells, we asked why these Treg cells are unable to effectively attenuate increased autoreactivity-induced chronic inflammation in the elderly. We designed a mock-self-antigen chimera mouse model, in which membrane-bound ovalbumin (mOVA) transgenic mice, bearing a FoxN1-floxed gene for induction of conditional thymic atrophy, received OVA-specific (OT-II) T-cell receptor (TCR) transgenic progenitor cells. The chimeric mice with thymic atrophy exhibited a significant decrease in OVA-specific tTreg and pTreg cells but not polyclonal (pan)-Treg cells. These OVA-specific pTreg cells were significantly less able to suppress OVA-specific stimulation-induced proliferation in vitro and exhibited lower FoxP3 expression. Additionally, we conducted preliminary TCR repertoire diversity sequencing for Treg cells among recent thymic emigrants (RTEs) from RagGFP -FoxP3RFP dual-reporter mice and observed a trend for decreased diversity in mice with thymic atrophy compared to littermates with normal thymus. These data indicate that although the effects of age-related thymic atrophy do not affect pan-Treg generation, certain tissue-specific Treg clones may experience abnormal agonist selection. This, combined with enhanced pan-pTreg cells, may greatly contribute to age-related chronic inflammation, even in the absence of acute autoimmune disease in the elderly.
Collapse
Affiliation(s)
- Rachel Thomas
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Jiyoung Oh
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weikan Wang
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Dong-Ming Su
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
14
|
Dees S, Ganesan R, Singh S, Grewal IS. Regulatory T cell targeting in cancer: Emerging strategies in immunotherapy. Eur J Immunol 2020; 51:280-291. [PMID: 33302322 DOI: 10.1002/eji.202048992] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
The adaptive immune system is modulated by an important subset of CD4+ T lymphocytes called Treg cells that function in maintaining immune homeostasis by preventing excessive immune activation. Both deficiency and overactivation of Treg cell function can result in disease pathology. While loss of Treg function can lead to autoimmunity, an overabundance of Treg activity can promote tumorigenesis. Blocking and/or depleting Tregs has emerged as a viable strategy to enhance antitumor immunity. A major limitation underlying the limited efficacy observed with Treg therapies in the clinic is lack of selective targeting, often attributed to concurrent depletion of antitumor effector T-cell populations. Novel approaches to improve the specificity of Treg targeting in the context of cancer include the use of T-cell receptor mimic antibodies, bispecific antibodies, and near-infrared photoimmunotherapy. Next-generation technology platforms and transcriptomic/computational-based screening methods have been recently developed to identify preferential Treg targets. Herein, we highlight key advancements and challenges pertaining to the development of novel Treg targeting cancer therapeutics and discuss ongoing clinical trials evaluating next-generation Treg therapies for solid tumors.
Collapse
Affiliation(s)
- Sundee Dees
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Rajkumar Ganesan
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Sanjaya Singh
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Iqbal S Grewal
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| |
Collapse
|
15
|
Kim J, Hope CM, Perkins GB, Stead SO, Scaffidi JC, Kette FD, Carroll RP, Barry SC, Coates PT. Rapamycin and abundant TCR stimulation are required for the generation of stable human induced regulatory T cells. Clin Transl Immunology 2020; 9:e1223. [PMID: 33425354 PMCID: PMC7780108 DOI: 10.1002/cti2.1223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 07/07/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Regulatory T cells (Tregs) are a vital sub-population of CD4+ T cells with major roles in immune tolerance and homeostasis. Given such properties, the use of regulatory T cells for immunotherapies has been extensively investigated, with a focus on adoptive transfer of ex vivo expanded natural Tregs (nTregs). For immunotherapies, induced Tregs (iTregs), generated in vitro from naïve CD4+ T cells, provide an attractive alternative, given the ease of generating cell numbers required for clinical dosage. While the combination of TGF-β, ATRA and rapamycin has been shown to generate highly suppressive iTregs, the challenge for therapeutic iTreg generation has been their instability. Here, we investigate the impact of rapamycin concentrations and α-CD3/CD28 bead ratios on human iTreg stability. METHODS We assess iTregs generated with various concentrations of rapamycin and differing ratios of α-CD3/CD28 beads for their differentiation, stability, expression of Treg signature molecules and T helper effector cytokines, and Treg-specific demethylation region (TSDR) status. RESULTS iTregs generated in the presence of TGF-β, ATRA, rapamycin and a higher ratio of α-CD3/CD28 beads were highly suppressive and stable upon in vitro re-stimulation. These iTregs exhibited a similar expression profile of Treg signature molecules and T helper effector cytokines to nTregs, in the absence of TSDR demethylation. CONCLUSION This work establishes a method to generate human iTregs which maintain stable phenotype and function upon in vitro re-stimulation. Further validation in pre-clinical models will be needed to ensure its suitability for applications in adoptive transfer.
Collapse
Affiliation(s)
- Juewan Kim
- The Department of Molecular & Biomedical ScienceThe School of Biological SciencesThe Faculty of SciencesThe University of AdelaideAdelaideSAAustralia
| | - Christopher M Hope
- Department of GastroenterologyWomen’s and Children’s HospitalAdelaideSAAustralia
- Molecular Immunology GroupRobinson Research InstituteSchool of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Griffith B Perkins
- The Department of Molecular & Biomedical ScienceThe School of Biological SciencesThe Faculty of SciencesThe University of AdelaideAdelaideSAAustralia
| | - Sebastian O Stead
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- College of Medicine and Public HealthDiscipline of MedicineFlinders UniversityBedford ParkSAAustralia
| | - Jacqueline C Scaffidi
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Francis D Kette
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- College of Medicine and Public HealthDiscipline of MedicineFlinders UniversityBedford ParkSAAustralia
| | - Robert P Carroll
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS)The Royal Adelaide HospitalAdelaideSAAustralia
- Division of Medical SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Simon C Barry
- Department of GastroenterologyWomen’s and Children’s HospitalAdelaideSAAustralia
- Molecular Immunology GroupRobinson Research InstituteSchool of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Patrick Toby Coates
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS)The Royal Adelaide HospitalAdelaideSAAustralia
| |
Collapse
|
16
|
Mannie MD, DeOca KB, Bastian AG, Moorman CD. Tolerogenic vaccines: Targeting the antigenic and cytokine niches of FOXP3 + regulatory T cells. Cell Immunol 2020; 355:104173. [PMID: 32712270 PMCID: PMC7444458 DOI: 10.1016/j.cellimm.2020.104173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
FOXP3+ regulatory T cells (Tregs) constitute a critical barrier that enforces tolerance to both the self-peptidome and the extended-self peptidome to ensure tissue-specific resistance to autoimmune, allergic, and other inflammatory disorders. Here, we review intuitive models regarding how T cell antigen receptor (TCR) specificity and antigen recognition efficiency shape the Treg and conventional T cell (Tcon) repertoires to adaptively regulate T cell maintenance, tissue-residency, phenotypic stability, and immune function in peripheral tissues. Three zones of TCR recognition efficiency are considered, including Tcon recognition of specific low-efficiency self MHC-ligands, Treg recognition of intermediate-efficiency agonistic self MHC-ligands, and Tcon recognition of cross-reactive high-efficiency agonistic foreign MHC-ligands. These respective zones of TCR recognition efficiency are key to understanding how tissue-resident immune networks integrate the antigenic complexity of local environments to provide adaptive decisions setting the balance of suppressive and immunogenic responses. Importantly, deficiencies in the Treg repertoire appear to be an important cause of chronic inflammatory disease. Deficiencies may include global deficiencies in Treg numbers or function, subtle 'holes in the Treg repertoire' in tissue-resident Treg populations, or simply Treg insufficiencies that are unable to counter an overwhelming molecular mimicry stimulus. Tolerogenic vaccination and Treg-based immunotherapy are two therapeutic modalities meant to restore dominance of Treg networks to reverse chronic inflammatory disease. Studies of these therapeutic modalities in a preclinical setting have provided insight into the Treg niche, including the concept that intermediate-efficiency TCR signaling, high IFN-β concentrations, and low IL-2 concentrations favor Treg responses and active dominant mechanisms of immune tolerance. Overall, the purpose here is to assimilate new and established concepts regarding how cognate TCR specificity of the Treg repertoire and the contingent cytokine networks provide a foundation for understanding Treg suppressive strategy.
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| | - Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Alexander G Bastian
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
17
|
Usharauli D, Kamala T. Could cross-reactivity rescue Foxp3+ regulatory T cell precursors from thymic deletion? Scand J Immunol 2020; 93:e12940. [PMID: 32776320 DOI: 10.1111/sji.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 11/28/2022]
Abstract
Thymocytes that bind with high affinity to peptides displayed by MHC class II (pMHC-II) are deleted while low-affinity binders differentiate into naive CD4+ T cells. However, Foxp3+ regulatory T cells (Tregs) seem to defy this binary choice as their precursors require high-affinity interaction with pMHC-II for maturation in the thymus. Here, we rely on the antigen-specific interpretive framework, SPIRAL (Specific ImmunoRegulatory Algorithm), to propose that Tregs escape thymic deletion by forming dyads with IL-2-producing T cells via antigen cross-reactivity. This interpretation reconciles contradictions related to Treg ontogeny in the thymus and their role in modulating antigen-specific immune responses.
Collapse
|
18
|
Tukaj S. Heat Shock Protein 70 as a Double Agent Acting Inside and Outside the Cell: Insights into Autoimmunity. Int J Mol Sci 2020; 21:ijms21155298. [PMID: 32722570 PMCID: PMC7432326 DOI: 10.3390/ijms21155298] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (Hsp) are a diverse group of constitutive and/or stress-induced molecules that are categorized into several classes on the basis of their molecular weight. Mammalian Hsp have been mostly regarded as intracellular chaperones that mediate a range of essential cellular functions, including proper folding of newly synthesized polypeptides, refolding of denatured proteins, protein transport, and stabilization of native proteins' structures. The well-characterized and highly evolutionarily conserved, stress-inducible 70-kDa heat shock protein (Hsp70), is a key molecular chaperone that is overexpressed in the cell in response to stress of various origin. Hsp70 exhibits an immunosuppressive activity via, e.g., downregulation of the nuclear factor-kappa B (NF-κB) activation, and pharmacological induction of Hsp70 can ameliorate the autoimmune arthritis development in animal models. Moreover, Hsp70 might be passively or actively released from the necrotic or stressed cells, respectively. Highly immunogenic extracellular Hsp70 has been reported to impact both the innate and adaptive immune responses, and to be implicated in the autoimmune reaction. In addition, preclinical studies revealed that immunization with highly conserved Hsp70 peptides could be regarded as a potential treatment target for autoimmune arthritis, such as the rheumatoid arthritis, via induction of antigen-specific regulatory T helper cells (also called Treg). Here, a dual role of the intra- and extracellular Hsp70 is presented in the context of the autoimmune reaction.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
19
|
Churov AV, Mamashov KY, Novitskaia AV. Homeostasis and the functional roles of CD4 + Treg cells in aging. Immunol Lett 2020; 226:83-89. [PMID: 32717201 DOI: 10.1016/j.imlet.2020.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE An upward trend in life expectancy has been observed in a majority of developed countries and leading to increasing in aging-related diseases. Aging is a risk factor for the development of widespread clinical conditions such as cardiovascular and autoimmune diseases, cancer, infections. Although studies have been very active, the problem of aging still remains one of the most obscure aspects of human biology. Regulatory T (Treg) cells with immunosuppressive properties have a pivotal role in the maintenance of immune homeostasis. Alterations in Treg cell functionality appear to be of great importance in the development of immune senescence and contribute to increased susceptibility to immune-mediated diseases with age. DESIGN This review highlights recent findings regarding the age-related changes in the numbers and functional activity of human Tregs. Some of the mechanisms that maintain the balance of Tregs during human aging are discussed. The possible roles of Tregs in the pathogenesis of diseases associated with advanced age are also considered. RESULTS Age-related systemic changes, such as thymic involution, hormonal status, and epigenetic modifications, may affect the state of the Treg population and trigger various diseases. These changes involve decline or amplification in the functional activity of Tregs, an increase in the memory Treg subset and shifting of a Th17/Treg balance. CONCLUSION Taken together, the reviewed data suggest equal or even increased Treg functionality with age. Thus, age-mediated Treg expansion and higher Treg activity may contribute to elevated immune suppression and increased risk of infections and cancer.
Collapse
Affiliation(s)
- Alexey V Churov
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia.
| | | | - Anastasiia V Novitskaia
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| |
Collapse
|
20
|
Pontrelli P, Rascio F, Castellano G, Grandaliano G, Gesualdo L, Stallone G. The Role of Natural Killer Cells in the Immune Response in Kidney Transplantation. Front Immunol 2020; 11:1454. [PMID: 32793200 PMCID: PMC7390843 DOI: 10.3389/fimmu.2020.01454] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Natural killer cells (NK) represent a population of lymphocytes involved in innate immune response. In addition to their role in anti-viral and anti-tumor defense, they also regulate several aspects of the allo-immune response in kidney transplant recipients. Growing evidence suggests a key role of NK cells in the pathogenesis of immune-mediated graft damage in kidney transplantation. Specific NK cell subsets are associated with operational tolerance in kidney transplant patients. On the other side, allo-reactive NK cells are associated with chronic antibody-mediated rejection and graft loss. Moreover, NK cells can prime the adaptive immune system and promote the migration of other immune cells, such as dendritic cells, into the graft leading to an increased allo-immune response and, eventually, to chronic graft rejection. Finally, activated NK cells can infiltrate the transplanted kidney and cause a direct graft damage. Interestingly, immunosuppression can influence NK cell numbers and function, thus causing an increased risk of post-transplant neoplasia or infection. In this review, we will describe how these cells can influence the innate and the adaptive immune response in kidney transplantation and how immunosuppression can modulate NK behavior.
Collapse
Affiliation(s)
- Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Federica Rascio
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Grandaliano
- Nephrology Unit, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
21
|
Meunier S, de Bourayne M, Hamze M, Azam A, Correia E, Menier C, Maillère B. Specificity of the T Cell Response to Protein Biopharmaceuticals. Front Immunol 2020; 11:1550. [PMID: 32793213 PMCID: PMC7387651 DOI: 10.3389/fimmu.2020.01550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
The anti-drug antibody (ADA) response is an undesired humoral response raised against protein biopharmaceuticals (BPs) which can dramatically disturb their therapeutic properties. One particularity of the ADA response resides in the nature of the immunogens, which are usually human(ized) proteins and are therefore expected to be tolerated. CD4 T cells initiate, maintain and regulate the ADA response and are therefore key players of this immune response. Over the last decade, advances have been made in characterizing the T cell responses developed by patients treated with BPs. Epitope specificity and phenotypes of BP-specific T cells have been reported and highlight the effector and regulatory roles of T cells in the ADA response. BP-specific T cell responses are assessed in healthy subjects to anticipate the immunogenicity of BP prior to their testing in clinical trials. Immunogenicity prediction, also called preclinical immunogenicity assessment, aims at identifying immunogenic BPs and immunogenic BP sequences before any BP injection in humans. All of the approaches that have been developed to date rely on the detection of BP-specific T cells in donors who have never been exposed to BPs. The number of BP-specific T cells circulating in the blood of these donors is therefore limited. T cell assays using cells collected from healthy donors might reveal the weak tolerance induced by BPs, whose endogenous form is expressed at a low level. These BPs have a complete human sequence, but the level of their endogenous form appears insufficient to promote the negative selection of autoreactive T cell clones. Multiple T cell epitopes have also been identified in therapeutic antibodies and some other BPs. The pattern of identified T cell epitopes differs across the antibodies, notwithstanding their humanized, human or chimeric nature. However, in all antibodies, the non-germline amino acid sequences mainly found in the CDRs appear to be the main driver of immunogenicity, provided they can be presented by HLA class II molecules. Considering the fact that the BP field is expanding to include new formats and gene and cell therapies, we face new challenges in understanding and mastering the immunogenicity of new biological products.
Collapse
Affiliation(s)
- Sylvain Meunier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Marie de Bourayne
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Moustafa Hamze
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Aurélien Azam
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Evelyne Correia
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Catherine Menier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Bernard Maillère
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| |
Collapse
|
22
|
Wang W, Thomas R, Sizova O, Su DM. Thymic Function Associated With Cancer Development, Relapse, and Antitumor Immunity - A Mini-Review. Front Immunol 2020; 11:773. [PMID: 32425946 PMCID: PMC7203483 DOI: 10.3389/fimmu.2020.00773] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
The thymus is the central lymphoid organ for T cell development, a cradle of T cells, and for central tolerance establishment, an educator of T cells, maintaining homeostatic cellular immunity. T cell immunity is critical to control cancer occurrence, relapse, and antitumor immunity. Evidence on how aberrant thymic function influences cancer remains largely insufficient, however, there has been recent progress. For example, the involuted thymus results in reduced output of naïve T cells and a restricted T cell receptor (TCR) repertoire, inducing immunosenescence and potentially dampening immune surveillance of neoplasia. In addition, the involuted thymus relatively enhances regulatory T (Treg) cell generation. This coupled with age-related accumulation of Treg cells in the periphery, potentially provides a supportive microenvironment for tumors to escape T cell-mediated antitumor responses. Furthermore, acute thymic involution from chemotherapy can create a tumor reservoir, resulting from an inflammatory microenvironment in the thymus, which is suitable for disseminated tumor cells to hide, survive chemotherapy, and become dormant. This may eventually result in cancer metastatic relapse. On the other hand, if thymic involution is wisely taken advantage of, it may be potentially beneficial to antitumor immunity, since the involuted thymus increases output of self-reactive T cells, which may recognize certain tumor-associated self-antigens and enhance antitumor immunity, as demonstrated through depletion of autoimmune regulator (AIRE) gene in the thymus. Herein, we briefly review recent research progression regarding how altered thymic function modifies T cell immunity against tumors.
Collapse
Affiliation(s)
- Weikan Wang
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Rachel Thomas
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Olga Sizova
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dong-Ming Su
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
23
|
Motwani K, Peters LD, Vliegen WH, El-sayed AG, Seay HR, Lopez MC, Baker HV, Posgai AL, Brusko MA, Perry DJ, Bacher R, Larkin J, Haller MJ, Brusko TM. Human Regulatory T Cells From Umbilical Cord Blood Display Increased Repertoire Diversity and Lineage Stability Relative to Adult Peripheral Blood. Front Immunol 2020; 11:611. [PMID: 32351504 PMCID: PMC7174770 DOI: 10.3389/fimmu.2020.00611] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/17/2020] [Indexed: 12/22/2022] Open
Abstract
The human T lymphocyte compartment is highly dynamic over the course of a lifetime. Of the many changes, perhaps most notable is the transition from a predominantly naïve T cell state at birth to the acquisition of antigen-experienced memory and effector subsets following environmental exposures. These phenotypic changes, including the induction of T cell exhaustion and senescence, have the potential to negatively impact efficacy of adoptive T cell therapies (ACT). When considering ACT with CD4+CD25+CD127-/lo regulatory T cells (Tregs) for the induction of immune tolerance, we previously reported ex vivo expanded umbilical cord blood (CB) Tregs remained more naïve, suppressed responder T cells equivalently, and exhibited a more diverse T cell receptor (TCR) repertoire compared to expanded adult peripheral blood (APB) Tregs. Herein, we hypothesized that upon further characterization, we would observe increased lineage heterogeneity and phenotypic diversity in APB Tregs that might negatively impact lineage stability, engraftment capacity, and the potential for Tregs to home to sites of tissue inflammation following ACT. We compared the phenotypic profiles of human Tregs isolated from CB versus the more traditional source, APB. We conducted analysis of fresh and ex vivo expanded Treg subsets at both the single cell (scRNA-seq and flow cytometry) and bulk (microarray and cytokine profiling) levels. Single cell transcriptional profiles of pre-expansion APB Tregs highlighted a cluster of cells that showed increased expression of genes associated with effector and pro-inflammatory phenotypes (CCL5, GZMK, CXCR3, LYAR, and NKG7) with low expression of Treg markers (FOXP3 and IKZF2). CB Tregs were more diverse in TCR repertoire and homogenous in phenotype, and contained fewer effector-like cells in contrast with APB Tregs. Interestingly, expression of canonical Treg markers, such as FOXP3, TIGIT, and IKZF2, were increased in CB CD4+CD127+ conventional T cells (Tconv) compared to APB Tconv, post-expansion, implying perinatal T cells may adopt a default regulatory program. Collectively, these data identify surface markers (namely CXCR3) that could be depleted to improve purity and stability of APB Tregs, and support the use of expanded CB Tregs as a potentially optimal ACT modality for the treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Keshav Motwani
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Leeana D. Peters
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Willem H. Vliegen
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Ahmed Gomaa El-sayed
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Howard R. Seay
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - M. Cecilia Lopez
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Henry V. Baker
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Maigan A. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Daniel J. Perry
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Joseph Larkin
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Michael J. Haller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
24
|
Alvarez F, Al-Aubodah TA, Yang YH, Piccirillo CA. Mechanisms of T REG cell adaptation to inflammation. J Leukoc Biol 2020; 108:559-571. [PMID: 32202345 DOI: 10.1002/jlb.1mr0120-196r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/19/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammation is an important defense mechanism. In this complex and dynamic process, drastic changes in the tissue micro-environment play key roles in dictating the nature of the evolving immune response. However, uncontrolled inflammation is detrimental, leading to unwanted cellular damage, loss of physiological functions, and even death. As such, the immune system possesses tools to limit inflammation while ensuring rapid and effective clearance of the inflammatory trigger. Foxp3+ regulatory T (TREG ) cells, a potently immunosuppressive CD4+ T cell subset, play a crucial role in immune tolerance by controlling the extent of the response to self and non-self Ags, all-the-while promoting a quick return to immune homeostasis. TREG cells adapt to changes in the local micro-environment enabling them to migrate, proliferate, survive, differentiate, and tailor their suppressive ability at inflamed sites. Several inflammation-associated factors can impact TREG cell functional adaptation in situ including locally released alarmins, oxygen availability, tissue acidity and osmolarity and nutrient availability. Here, we review some of these key signals and pathways that control the adaptation of TREG cell function in inflammatory settings.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada
| | - Tho-Alfakar Al-Aubodah
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada
| | - Yujian H Yang
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
25
|
Thomas R, Wang W, Su DM. Contributions of Age-Related Thymic Involution to Immunosenescence and Inflammaging. IMMUNITY & AGEING 2020; 17:2. [PMID: 31988649 PMCID: PMC6971920 DOI: 10.1186/s12979-020-0173-8] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/02/2020] [Indexed: 01/10/2023]
Abstract
Immune system aging is characterized by the paradox of immunosenescence (insufficiency) and inflammaging (over-reaction), which incorporate two sides of the same coin, resulting in immune disorder. Immunosenescence refers to disruption in the structural architecture of immune organs and dysfunction in immune responses, resulting from both aged innate and adaptive immunity. Inflammaging, described as a chronic, sterile, systemic inflammatory condition associated with advanced age, is mainly attributed to somatic cellular senescence-associated secretory phenotype (SASP) and age-related autoimmune predisposition. However, the inability to reduce senescent somatic cells (SSCs), because of immunosenescence, exacerbates inflammaging. Age-related adaptive immune system deviations, particularly altered T cell function, are derived from age-related thymic atrophy or involution, a hallmark of thymic aging. Recently, there have been major developments in understanding how age-related thymic involution contributes to inflammaging and immunosenescence at the cellular and molecular levels, including genetic and epigenetic regulation, as well as developments of many potential rejuvenation strategies. Herein, we discuss the research progress uncovering how age-related thymic involution contributes to immunosenescence and inflammaging, as well as their intersection. We also describe how T cell adaptive immunity mediates inflammaging and plays a crucial role in the progression of age-related neurological and cardiovascular diseases, as well as cancer. We then briefly outline the underlying cellular and molecular mechanisms of age-related thymic involution, and finally summarize potential rejuvenation strategies to restore aged thymic function.
Collapse
Affiliation(s)
- Rachel Thomas
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, Fort Worth, Texas 76107 USA
| | - Weikan Wang
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, Fort Worth, Texas 76107 USA
| | - Dong-Ming Su
- 2Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107 USA
| |
Collapse
|
26
|
Shevyrev D, Tereshchenko V. Treg Heterogeneity, Function, and Homeostasis. Front Immunol 2020; 10:3100. [PMID: 31993063 PMCID: PMC6971100 DOI: 10.3389/fimmu.2019.03100] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
T-regulatory cells (Tregs) represent a unique subpopulation of helper T-cells by maintaining immune equilibrium using various mechanisms. The role of T-cell receptors (TCR) in providing homeostasis and activation of conventional T-cells is well-known; however, for Tregs, this area is understudied. In the last two decades, evidence has accumulated to confirm the importance of the TCR in Treg homeostasis and antigen-specific immune response regulation. In this review, we describe the current view of Treg subset heterogeneity, homeostasis and function in the context of TCR involvement. Recent studies of the TCR repertoire of Tregs, combined with single-cell gene expression analysis, revealed the importance of TCR specificity in shaping Treg phenotype diversity, their functions and homeostatic maintenance in various tissues. We propose that Tregs, like conventional T-helper cells, act to a great extent in an antigen-specific manner, which is provided by a specific distribution of Tregs in niches.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Research Institute for Fundamental and Clinical Immunology (RIFCI), Novosibirsk, Russia
| | - Valeriy Tereshchenko
- Research Institute for Fundamental and Clinical Immunology (RIFCI), Novosibirsk, Russia
| |
Collapse
|
27
|
Activation-induced cell death of self-reactive regulatory T cells drives autoimmunity. Proc Natl Acad Sci U S A 2019; 116:26788-26797. [PMID: 31818938 DOI: 10.1073/pnas.1910281116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Activation of self-reactive T cells is a major driver to autoimmunity and is suppressed by mechanisms of regulation. In a humanized model of autoimmune thyroiditis, we investigated the mechanism underlying break of tolerance. Here, we found that a human TCR specific for the self-antigen thyroid peroxidase (TPO) is positively selected in the thymus of RAG KO mice on both T effector (Teff) and T regulatory (Treg) CD4+Foxp3+ cells. In vivo Teff are present in all immune organs, whereas the TPO-specific Treg are present in all lymphoid organs with the exception of the thyroid-draining lymph nodes. We suggest that the presence of TPO in the thyroid draining lymph nodes induces the activation of Teff and the depletion of Treg via activation-induced cell death (AICD). Our findings provide insights on the failure of the mechanisms of immune tolerance, with potential implications in designing immunotherapeutic strategies.
Collapse
|
28
|
Dembic Z. On integrity in immunity during ontogeny or how thymic regulatory T cells work. Scand J Immunol 2019; 90:e12806. [PMID: 31276223 DOI: 10.1111/sji.12806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022]
Abstract
The Standard model of T cell recognition asserts that T cell receptor (TCR) specificities are positively and negatively selected during ontogeny in the thymus and that peripheral T cell repertoire has mild self-major histocompatibility complex (MHC) reactivity, known as MHC restriction of foreign antigen. Thus, the TCR must bind both a restrictive molecule (MHC allele) and a peptide reclining in its groove (pMHC ligand) in order to transmit signal into a T cell. The Standard and Cohn's Tritope models suggest contradictory roles for complementarity-determining regions (CDRs) of the TCRs. Here, I discuss both concepts and propose a different solution to ontogenetic mechanism for TCR-MHC-conserved interaction. I suggest that double (CD4+ CD8+ )-positive (DP) developing thymocytes compete with their αβTCRs for binding to self-pMHC on cortical thymic epithelial cells (cTECs) that present a selected set of tissue-restricted antigens. The competition between DPs involves TCR editing and secondary rearrangements, similar to germinal-centre B cell somatic hypermutation. These processes would generate cells with higher TCR affinity for self-pMHC, facilitating sufficiently long binding to cTECs to become thymic T regulatory cells (tTregs). Furthermore, CD4+ Foxp3+ tTregs can be generated by mTECs via Aire-dependent and Aire-independent pathways, and additionally on thymic bone marrow-derived APCs including thymic Aire-expressing B cells. Thymic Tregs differ from the induced peripheral Tregs, which comprise the negative feedback loop to restrain immune responses. The implication of thymocytes' competition for the highest binding to self-pMHC is the co-evolution of species-specific αβTCR V regions with MHC alleles.
Collapse
Affiliation(s)
- Zlatko Dembic
- Department of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|