1
|
Shaw I, Boafo GF, Ali YS, Liu Y, Mlambo R, Tan S, Chen C. Advancements and prospects of lipid-based nanoparticles: dual frontiers in cancer treatment and vaccine development. J Microencapsul 2024; 41:226-254. [PMID: 38560994 DOI: 10.1080/02652048.2024.2326091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Cancer is a complex heterogeneous disease that poses a significant public health challenge. In recent years, lipid-based nanoparticles (LBNPs) have expanded drug delivery and vaccine development options owing to their adaptable, non-toxic, tuneable physicochemical properties, versatile surface functionalisation, and biocompatibility. LBNPs are tiny artificial structures composed of lipid-like materials that can be engineered to encapsulate and deliver therapeutic agents with pinpoint accuracy. They have been widely explored in oncology; however, our understanding of their pharmacological mechanisms, effects of their composition, charge, and size on cellular uptake, tumour penetration, and how they can be utilised to develop cancer vaccines is still limited. Hence, we reviewed LBNPs' unique characteristics, biochemical features, and tumour-targeting mechanisms. Furthermore, we examined their ability to enhance cancer therapies and their potential contribution in developing anticancer vaccines. We critically analysed their advantages and challenges impeding swift advancements in oncology and highlighted promising avenues for future research.
Collapse
Affiliation(s)
- Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Yimer Seid Ali
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
- Department of Pharmacy, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Yang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Ronald Mlambo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
2
|
Navarro-Marchal SA, Martín-Contreras M, Castro-Santiago D, del Castillo-Santaella T, Graván P, Jódar-Reyes AB, Marchal JA, Peula-García JM. Effect of the Protein Corona Formation on Antibody Functionalized Liquid Lipid Nanocarriers. Int J Mol Sci 2023; 24:16759. [PMID: 38069079 PMCID: PMC10706289 DOI: 10.3390/ijms242316759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The main aim of this study is to report basic knowledge on how a protein corona (PC) could affect or modify the way in which multifunctionalized nanoparticles interact with cells. With this purpose, we have firstly optimized the development of a target-specific nanocarrier by coupling a specific fluorescent antibody on the surface of functionalized lipid liquid nanocapsules (LLNCs). Thus, an anti-HER2-FITC antibody (αHER2) has been used, HER2 being a surface receptor that is overexpressed in several tumor cells. Subsequently, the in vitro formation of a PC has been developed using fetal bovine serum supplemented with human fibrinogen. Dynamic Light Scattering (DLS), Nanoparticle Tracking Analysis (NTA), Laser Doppler Electrophoresis (LDE), and Gel Chromatography techniques have been used to assure a complete physico-chemical characterization of the nano-complexes with (LLNCs-αHER2-PC) and without (LLNCs-αHER2) the surrounding PC. In addition, cellular assays were performed to study the cellular uptake and the specific cellular-nanocarrier interactions using the SKBR3 (high expression of HER2) breast cancer cell line and human dermal fibroblasts (HDFa) (healthy cell line without expression of HER2 receptors as control), showing that the SKBR3 cell line had a higher transport rate (50-fold) than HDFa at 60 min with LLNCs-αHER2. Moreover, the SKBR3 cell line incubated with LLNCs-αHER2-PC suffered a significant reduction (40%) in the uptake. These results suggest that the formation of a PC onto LLNCs does not prevent specific cell targeting, although it does have an important influence on cell uptake.
Collapse
Affiliation(s)
- Saúl A. Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (S.A.N.-M.); (P.G.); (J.A.M.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Excellence Research Unit Modeling Nature (MNat), University of Granada, 18071 Granada, Spain;
| | - Marina Martín-Contreras
- Department of Applied Physics, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - David Castro-Santiago
- Department of Applied Physics, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Teresa del Castillo-Santaella
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain;
- Biocolloid and Fluid Physics Group, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Pablo Graván
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (S.A.N.-M.); (P.G.); (J.A.M.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Excellence Research Unit Modeling Nature (MNat), University of Granada, 18071 Granada, Spain;
- Biocolloid and Fluid Physics Group, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Ana Belén Jódar-Reyes
- Excellence Research Unit Modeling Nature (MNat), University of Granada, 18071 Granada, Spain;
- Department of Applied Physics, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Biocolloid and Fluid Physics Group, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (S.A.N.-M.); (P.G.); (J.A.M.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Excellence Research Unit Modeling Nature (MNat), University of Granada, 18071 Granada, Spain;
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - José Manuel Peula-García
- Biocolloid and Fluid Physics Group, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Department of Applied Physics II, University of Malaga, 29071 Malaga, Spain
| |
Collapse
|
3
|
Saunders C, de Villiers CA, Stevens MM. Single Particle Chemical Characterisation of Nanoformulations for Cargo Delivery. AAPS J 2023; 25:94. [PMID: 37783923 DOI: 10.1208/s12248-023-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/25/2023] [Indexed: 10/04/2023] Open
Abstract
Nanoparticles can encapsulate a range of therapeutics, from small molecule drugs to sensitive biologics, to significantly improve their biodistribution and biostability. Whilst the regulatory approval of several of these nanoformulations has proven their translatability, there remain several hurdles to the translation of future nanoformulations, leading to a high rate of candidate nanoformulations failing during the drug development process. One barrier is that the difficulty in tightly controlling nanoscale particle synthesis leads to particle-to-particle heterogeneity, which hinders manufacturing and quality control, and regulatory quality checks. To understand and mitigate this heterogeneity requires advancements in nanoformulation characterisation beyond traditional bulk methods to more precise, single particle techniques. In this review, we compare commercially available single particle techniques, with a particular focus on single particle Raman spectroscopy, to provide a guide to adoption of these methods into development workflows, to ultimately reduce barriers to the translation of future nanoformulations.
Collapse
Affiliation(s)
- Catherine Saunders
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Camille A de Villiers
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
- Institute of Biomedical Engineering, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
4
|
Liu Y, Chen M, Li G, Xu S, Liu H. Construction of Core-Cross-Linked Polymer Micelles with High Biocompatibility and Stability for pH/Reduction Controllable Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12671-12679. [PMID: 37647573 DOI: 10.1021/acs.langmuir.3c01341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Polymer micelles have been studied extensively in drug delivery systems (DDS), and their stability is well known to directly affect drug delivery. In this article, a series of amphiphilic copolymers LA-PDPAn-PVPm were synthesized to prepare core-cross-linked nanoparticles (CNP) applied to controllable and targeted anticancer drug delivery. The copolymers could self-assemble in aqueous solution and form homogeneous spherical micelles with particle sizes of between 100 and 150 nm. A comparison between un-cross-linked UCNP and CNP showed that the cross-linking of LA could significantly improve the stability and responsive ability of the nanoparticles. From the in vitro-simulated drug release experiments, CNP was found to have great drug blocking ability under normal physiological conditions and could achieve rapid and efficient drug release under acidic/reducing conditions. In addition, cell experiments showed that CNP had superior biocompatibility and could target tumor cells for drug release. In conclusion, a drug carrier based on copolymer LA-PDPA-PVP realized effective controlled drug release due to the cross-linking of LA. The results will provide guidance for the design strategy of polymer micelles for drug carriers.
Collapse
Affiliation(s)
- Yehong Liu
- Key Laboratory for Advanced Materials and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Miaoxin Chen
- Key Laboratory for Advanced Materials and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Gaoyang Li
- Key Laboratory for Advanced Materials and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shouhong Xu
- Key Laboratory for Advanced Materials and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Honglai Liu
- Key Laboratory for Advanced Materials and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
5
|
Mihailova L, Shalabalija D, Zimmer A, Geskovski N, Makreski P, Petrushevska M, Simonoska Crcarevska M, Glavas Dodov M. Comparative Studies of the Uptake and Internalization Pathways of Different Lipid Nano-Systems Intended for Brain Delivery. Pharmaceutics 2023; 15:2082. [PMID: 37631296 PMCID: PMC10458318 DOI: 10.3390/pharmaceutics15082082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Lipid nano-systems were prepared and characterized in a series of well-established in vitro tests that could assess their interactions with the hCMEC/D3 and SH-SY5Y cell lines as a model for the blood-brain barrier and neuronal function, accordingly. The prepared formulations of nanoliposomes and nanostructured lipid carriers were characterized by z-average diameters of ~120 nm and ~105 nm, respectively, following a unimodal particle size distribution (PDI < 0.3) and negative Z-potential (-24.30 mV to -31.20 mV). Stability studies implied that the nano-systems were stable in a physiologically relevant medium as well as human plasma, except nanoliposomes containing poloxamer on their surface, where there was an increase in particle size of ~26%. The presence of stealth polymer tends to decrease the amount of adsorbed proteins onto a particle's surface, according to protein adsorption studies. Both formulations of nanoliposomes were characterized by a low cytotoxicity, while their cell viability was reduced when incubated with the highest concentration (100 μg/mL) of nanostructured lipid formulations, which could have been associated with the consumption of cellular energy, thus resulting in a reduction in metabolic active cells. The uptake of all the nano-systems in the hCMEC/D3 and SH-SY5Y cell lines was successful, most likely following ATP-dependent internalization, as well as transport via passive diffusion.
Collapse
Affiliation(s)
- Ljubica Mihailova
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, North Macedonia; (L.M.); (D.S.); (N.G.); (M.S.C.); (M.G.D.)
| | - Dushko Shalabalija
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, North Macedonia; (L.M.); (D.S.); (N.G.); (M.S.C.); (M.G.D.)
| | - Andreas Zimmer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitatplatz 1/EG, A-8010 Graz, Austria
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, North Macedonia; (L.M.); (D.S.); (N.G.); (M.S.C.); (M.G.D.)
| | - Petre Makreski
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Arhimedova 5, 1000 Skopje, North Macedonia;
| | - Marija Petrushevska
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, 50 Divizija 6, 1000 Skopje, North Macedonia;
| | - Maja Simonoska Crcarevska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, North Macedonia; (L.M.); (D.S.); (N.G.); (M.S.C.); (M.G.D.)
| | - Marija Glavas Dodov
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, North Macedonia; (L.M.); (D.S.); (N.G.); (M.S.C.); (M.G.D.)
| |
Collapse
|
6
|
Najer A, Rifaie-Graham O, Yeow J, Adrianus C, Chami M, Stevens MM. Differences in Human Plasma Protein Interactions between Various Polymersomes and Stealth Liposomes as Observed by Fluorescence Correlation Spectroscopy. Macromol Biosci 2023; 23:e2200424. [PMID: 36447300 PMCID: PMC7615495 DOI: 10.1002/mabi.202200424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Indexed: 12/05/2022]
Abstract
A significant factor hindering the clinical translation of polymersomes as vesicular nanocarriers is the limited availability of comparative studies detailing their interaction with blood plasma proteins compared to liposomes. Here, polymersomes are self-assembled via film rehydration, solvent exchange, and polymerization-induced self-assembly using five different block copolymers. The hydrophilic blocks are composed of anti-fouling polymers, poly(ethylene glycol) (PEG) or poly(2-methyl-2-oxazoline) (PMOXA), and all the data is benchmarked to PEGylated "stealth" liposomes. High colloidal stability in human plasma (HP) is confirmed for all but two tested nanovesicles. In situ fluorescence correlation spectroscopy measurements are then performed after incubating unlabeled nanovesicles with fluorescently labeled HP or the specific labeled plasma proteins, human serum albumin, and clusterin (apolipoprotein J). The binding of HP to PMOXA-polymersomes could explain their relatively short circulation times found previously. In contrast, PEGylated liposomes also interact with HP but accumulate high levels of clusterin, providing them with their known prolonged circulation time. The absence of significant protein binding for most PEG-polymersomes indicates mechanistic differences in protein interactions and associated downstream effects, such as cell uptake and circulation time, compared to PEGylated liposomes. These are key observations for bringing polymersomes closer to clinical translation and highlighting the importance of such comparative studies.
Collapse
Affiliation(s)
- Adrian Najer
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ, UK
| | - Omar Rifaie-Graham
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ, UK
| | - Jonathan Yeow
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ, UK
| | - Christopher Adrianus
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ, UK
| | - Mohamed Chami
- BioEM lab, Biozentrum, University of Basel, Mattenstrasse 26, Basel 4058, Switzerland
| | - Molly M. Stevens
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ, UK
| |
Collapse
|
7
|
Portilla Y, Mulens-Arias V, Daviu N, Paradela A, Pérez-Yagüe S, Barber DF. Interaction of Iron Oxide Nanoparticles with Macrophages Is Influenced Distinctly by "Self" and "Non-Self" Biological Identities. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37478159 PMCID: PMC10401511 DOI: 10.1021/acsami.3c05555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Upon contact with biological fluids like serum, a protein corona (PC) complex forms on iron oxide nanoparticles (IONPs) in physiological environments and the proteins it contains influence how IONPs act in biological systems. Although the biological identity of PC-IONP complexes has often been studied in vitro and in vivo, there have been inconsistent results due to the differences in the animal of origin, the type of biological fluid, and the physicochemical properties of the IONPs. Here, we identified differences in the PC composition when it was derived from the sera of three species (bovine, murine, or human) and deposited on IONPs with similar core diameters but with different coatings [dimercaptosuccinic acid (DMSA), dextran (DEX), or 3-aminopropyl triethoxysilane (APS)], and we assessed how these differences influenced their effects on macrophages. We performed a comparative proteomic analysis to identify common proteins from the three sera that adsorb to each IONP coating and the 10 most strongly represented proteins in PCs. We demonstrated that the PC composition is dependent on the origin of the serum rather than the nature of the coating. The PC composition critically affects the interaction of IONPs with macrophages in self- or non-self identity models, influencing the activation and polarization of macrophages. However, such effects were more consistent for DMSA-IONPs. As such, a self biological identity of IONPs promotes the activation and M2 polarization of murine macrophages, while a non-self biological identity favors M1 polarization, producing larger quantities of ROS. In a human context, we observed the opposite effect, whereby a self biological identity of DMSA-IONPs promotes a mixed M1/M2 polarization with an increase in ROS production. Conversely, a non-self biological identity of IONPs provides nanoparticles with a stealthy character as no clear effects on human macrophages were evident. Thus, the biological identity of IONPs profoundly affects their interaction with macrophages, ultimately defining their biological impact on the immune system.
Collapse
Affiliation(s)
- Yadileiny Portilla
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Vladimir Mulens-Arias
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Neus Daviu
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Alberto Paradela
- Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Sonia Pérez-Yagüe
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
8
|
Tretiakova D, Kobanenko M, Alekseeva A, Boldyrev I, Khaidukov S, Zgoda V, Tikhonova O, Vodovozova E, Onishchenko N. Protein Corona of Anionic Fluid-Phase Liposomes Compromises Their Integrity Rather than Uptake by Cells. MEMBRANES 2023; 13:681. [PMID: 37505047 PMCID: PMC10384875 DOI: 10.3390/membranes13070681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
Despite the undisputable role of the protein corona in the biointeractions of liposome drug carriers, the field suffers from a lack of knowledge regarding the patterns of protein deposition on lipid surfaces with different compositions. Here, we investigated the protein coronas formed on liposomes of basic compositions containing combinations of egg phosphatidylcholine (PC), palmitoyloleoyl phosphatidylglycerol (POPG), and cholesterol. Liposome-protein complexes isolated by size-exclusion chromatography were delipidated and analyzed using label-free LC-MS/MS. The addition of the anionic lipid and cholesterol both affected the relative protein abundances (and not the total bound proteins) in the coronas. Highly anionic liposomes, namely those containing 40% POPG, carried corona enriched with cationic proteins (apolipoprotein C1, beta-2-glycoprotein 1, and cathelicidins) and were the least stable in the calcein release assay. Cholesterol improved the liposome stability in the plasma. However, the differences in the corona compositions had little effect on the liposome uptake by endothelial (EA.hy926) and phagocytic cells in the culture (U937) or ex vivo (blood-derived monocytes and neutrophils). The findings emphasize that the effect of protein corona on the performance of the liposomes as drug carriers occurs through compromising particle stability rather than interfering with cellular uptake.
Collapse
Affiliation(s)
- Daria Tretiakova
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maria Kobanenko
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anna Alekseeva
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Ivan Boldyrev
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Sergey Khaidukov
- Laboratory of Carbohydrates, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, ul. Pogodinskaya 10, 119121 Moscow, Russia
| | - Olga Tikhonova
- Institute of Biomedical Chemistry, ul. Pogodinskaya 10, 119121 Moscow, Russia
| | - Elena Vodovozova
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Natalia Onishchenko
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
9
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
10
|
Lehot V, Neuberg P, Ripoll M, Daubeuf F, Erb S, Dovgan I, Ursuegui S, Cianférani S, Kichler A, Chaubet G, Wagner A. Targeted Anticancer Agent with Original Mode of Action Prepared by Supramolecular Assembly of Antibody Oligonucleotide Conjugates and Cationic Nanoparticles. Pharmaceutics 2023; 15:1643. [PMID: 37376091 DOI: 10.3390/pharmaceutics15061643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Despite their clinical success, Antibody-Drug Conjugates (ADCs) are still limited to the delivery of a handful of cytotoxic small-molecule payloads. Adaptation of this successful format to the delivery of alternative types of cytotoxic payloads is of high interest in the search for novel anticancer treatments. Herein, we considered that the inherent toxicity of cationic nanoparticles (cNP), which limits their use as oligonucleotide delivery systems, could be turned into an opportunity to access a new family of toxic payloads. We complexed anti-HER2 antibody-oligonucleotide conjugates (AOC) with cytotoxic cationic polydiacetylenic micelles to obtain Antibody-Toxic-Nanoparticles Conjugates (ATNPs) and studied their physicochemical properties, as well as their bioactivity in both in vitro and in vivo HER2 models. After optimising their AOC/cNP ratio, the small (73 nm) HER2-targeting ATNPs were found to selectively kill antigen-positive SKBR-2 cells over antigen-negative MDA-MB-231 cells in serum-containing medium. Further in vivo anti-cancer activity was demonstrated in an SKBR-3 tumour xenograft model in BALB/c mice in which stable 60% tumour regression could be observed just after two injections of 45 pmol of ATNP. These results open interesting prospects in the use of such cationic nanoparticles as payloads for ADC-like strategies.
Collapse
Affiliation(s)
- Victor Lehot
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Patrick Neuberg
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Manon Ripoll
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - François Daubeuf
- UAR3286, Plate-Forme de Chimie Biologique Intégrative de Strasbourg, ESBS, CNRS-Strasbourg University, 67400 Illkirch-Graffenstaden, France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Institut du Médicament de Strasbourg, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Igor Dovgan
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Sylvain Ursuegui
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Institut du Médicament de Strasbourg, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Antoine Kichler
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
11
|
Abarca-Cabrera L, Xu L, Berensmeier S, Fraga-García P. Competition at the Bio-nano Interface: A Protein, a Polysaccharide, and a Fatty Acid Adsorb onto Magnetic Nanoparticles. ACS APPLIED BIO MATERIALS 2023; 6:146-156. [PMID: 36503228 DOI: 10.1021/acsabm.2c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Magnetic nanoparticles are an attractive bioseparation tool due to their magnetic susceptibility and high adsorption capacity for different types of molecules. A major challenge for separation is to generate selectivity for a target molecule, or for a group of molecules in complex environments such as cell lysates. It is crucial to understand the factors that determine the targets' adsorption behavior in mixtures for triggering intended interactions and selectivity. Here we use a model system containing three molecules, each of them a common representative of the more abundant types of macromolecules in living systems: sodium oleate (SO), a fatty acid; bovine serum albumin (BSA), a protein; and dextran, a polysaccharide. Our results show that (a) the BSA adsorption capacity on the iron oxide material depends markedly on the pH, with the maximum capacity at the pI of the protein (0.39 g gMNP-1 ); (b) sodium oleate, a strongly negatively charged molecule, an organic anion, renders a maximum adsorption capacity of 0.40 g gMNP-1, even at pHs at which oleate as well as the nanoparticle surface are negatively charged; (c) the adsorbed masses of dextran, a neutral sugar, are lower than for the other two molecules, between 0.09 and 0.13 g gMNP-1, regardless of the system's pH. We observe an unexpected behavior in mixtures: SO completely prevents the adsorption of BSA, and dextran decreases the adsorption of the other competitors, SO and BSA, while adsorbing at the same capacities, unaffected by either the presence of the other two molecules or the pH. BSA does not decrease the oleate adsorption capacity. We demonstrate the essential role of pH in the adsorption of BSA (a protein) and SO (a fatty acid), as well as its impact in the structural organization of the oleate molecules in water. Moreover, we present exciting data on the adsorption of the molecules in competition, revealing the need to focus on interaction studies in more complex environments. This study attempts to open the scope of the current research of bio-nano interactions to not only proteins but also to mixtures, and generally to molecules with other physicochemical characteristics. Furthermore, we contribute to the understanding of multicomponent systems with the vision set in enhancing biomass exploitation and biofractionation processes.
Collapse
Affiliation(s)
- Lucía Abarca-Cabrera
- Bioseparation Engineering Group, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Garching 85748, Germany
| | - Lianxin Xu
- Bioseparation Engineering Group, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Garching 85748, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Garching 85748, Germany
| | - Paula Fraga-García
- Bioseparation Engineering Group, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
12
|
Steffens RC, Wagner E. Directing the Way-Receptor and Chemical Targeting Strategies for Nucleic Acid Delivery. Pharm Res 2023; 40:47-76. [PMID: 36109461 PMCID: PMC9483255 DOI: 10.1007/s11095-022-03385-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022]
Abstract
Nucleic acid therapeutics have shown great potential for the treatment of numerous diseases, such as genetic disorders, cancer and infections. Moreover, they have been successfully used as vaccines during the COVID-19 pandemic. In order to unfold full therapeutical potential, these nano agents have to overcome several barriers. Therefore, directed transport to specific tissues and cell types remains a central challenge to receive carrier systems with enhanced efficiency and desired biodistribution profiles. Active targeting strategies include receptor-targeting, mediating cellular uptake based on ligand-receptor interactions, and chemical targeting, enabling cell-specific delivery as a consequence of chemically and structurally modified carriers. With a focus on synthetic delivery systems including polyplexes, lipid-based systems such as lipoplexes and lipid nanoparticles, and direct conjugates optimized for various types of nucleic acids (DNA, mRNA, siRNA, miRNA, oligonucleotides), we highlight recent achievements, exemplified by several nucleic acid drugs on the market, and discuss challenges for targeted delivery to different organs such as brain, eye, liver, lung, spleen and muscle in vivo.
Collapse
Affiliation(s)
- Ricarda Carolin Steffens
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany.
- Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, 81377, Munich, Germany.
| |
Collapse
|
13
|
Borges R, Pelosine AM, de Souza ACS, Machado J, Justo GZ, Gamarra LF, Marchi J. Bioactive Glasses as Carriers of Cancer-Targeted Drugs: Challenges and Opportunities in Bone Cancer Treatment. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9082. [PMID: 36556893 PMCID: PMC9781635 DOI: 10.3390/ma15249082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 05/20/2023]
Abstract
The treatment of bone cancer involves tumor resection followed by bone reconstruction of the defect caused by the tumor using biomaterials. Additionally, post-surgery protocols cover chemotherapy, radiotherapy, or drug administration, which are employed as adjuvant treatments to prevent tumor recurrence. In this work, we reviewed new strategies for bone cancer treatment based on bioactive glasses as carriers of cancer-targeted and other drugs that are intended for bone regeneration in conjunction with adjuvant treatments. Drugs used in combination with bioactive glasses can be classified into cancer-target, osteoclast-target, and new therapies (such as gene delivery and bioinorganic). Microparticulated, nanoparticulated, or mesoporous bioactive glasses have been used as drug-delivery systems. Additionally, surface modification through functionalization or the production of composites based on polymers and hydrogels has been employed to improve drug-release kinetics. Overall, although different drugs and drug delivery systems have been developed, there is still room for new studies involving kinase inhibitors or antibody-conjugated drugs, as these drugs have been poorly explored in combination with bioactive glasses.
Collapse
Affiliation(s)
- Roger Borges
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | - Agatha Maria Pelosine
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | | | - Joel Machado
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema 05508-070, Brazil
| | - Giselle Zenker Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo 05508-070, Brazil
| | | | - Juliana Marchi
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| |
Collapse
|
14
|
Haist M, Mailänder V, Bros M. Nanodrugs Targeting T Cells in Tumor Therapy. Front Immunol 2022; 13:912594. [PMID: 35693776 PMCID: PMC9174908 DOI: 10.3389/fimmu.2022.912594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
In contrast to conventional anti-tumor agents, nano-carriers allow co-delivery of distinct drugs in a cell type-specific manner. So far, many nanodrug-based immunotherapeutic approaches aim to target and kill tumor cells directly or to address antigen presenting cells (APC) like dendritic cells (DC) in order to elicit tumor antigen-specific T cell responses. Regulatory T cells (Treg) constitute a major obstacle in tumor therapy by inducing a pro-tolerogenic state in APC and inhibiting T cell activation and T effector cell activity. This review aims to summarize nanodrug-based strategies that aim to address and reprogram Treg to overcome their immunomodulatory activity and to revert the exhaustive state of T effector cells. Further, we will also discuss nano-carrier-based approaches to introduce tumor antigen-specific chimeric antigen receptors (CAR) into T cells for CAR-T cell therapy which constitutes a complementary approach to DC-focused vaccination.
Collapse
Affiliation(s)
| | | | - Matthias Bros
- University Medical Center Mainz, Department of Dermatology, Mainz, Germany
| |
Collapse
|
15
|
How CW, Teoh SL, Loh JS, Tan SLK, Foo JB, Ng HS, Wong SYW, Ong YS. Emerging Nanotheranostics for 5-Fluorouracil in Cancer Therapy: A Systematic Review on Efficacy, Safety, and Diagnostic Capability. Front Pharmacol 2022; 13:882704. [PMID: 35662688 PMCID: PMC9158334 DOI: 10.3389/fphar.2022.882704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
The conventional concept of using nanocarriers to deliver chemotherapeutic drugs has advanced to accommodate additional diagnostic capability. Nanotheranostic agents (NTA), combining both treatment and diagnostic tools, are an ideal example of engineering-health integration for cancer management. Owing to the diverse materials used to construct NTAs, their safety, effectiveness, and diagnostic accuracy could vary substantially. This systematic review consolidated current NTAs incorporating 5-fluorouracil and elucidated their toxicity, anticancer efficacy, and imaging capability. Medline and Embase databases were searched up to March 18, 2022. The search, selection, and extraction were performed by the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines to ensure completeness and reproducibility. Original research papers involving 5-fluorouracil in the preparation of nanoparticles which reported their efficacy, toxicity, and diagnostic capability in animal cancer models were recruited. The quality of included studies was assessed using the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) checklist. Nine studies were eligible for the systematic review. There was no significant toxicity reported based on animal weight and organ histology. Complete tumor remission was observed in several animal models using chemo-thermal ablation with NTAs, proving the enhancement of 5-fluorouracil efficacy. In terms of imaging performance, the time to achieve maximum tumor image intensity correlates with the presence of targeting ligand on NTAs. The NTAs, which are composed of tumor-targeting ligands, hold promises for further development. Based on the input of current NTA research on cancer, this review proposed a checklist of parameters to recommend researchers for their future NTA testing, especially in animal cancer studies. Systematic Review Registration: website, identifier registration number.
Collapse
Affiliation(s)
- Chee Wun How
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Siew Li Teoh
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Stella Li Kar Tan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Hui Suan Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | | | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
16
|
Khazaneha M, Tajedini O, Esmaeili O, Abdi M, Khasseh AA, Sadatmoosavi A. Thematic evolution of coronavirus disease: a longitudinal co-word analysis. LIBRARY HI TECH 2022. [DOI: 10.1108/lht-10-2021-0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PurposeUsing science mapping analysis approach and co-word analysis, the present study explores and visualizes research fields and thematic evolution of the coronavirus. Based on this method, one can get a picture of the real content of the themes in the mentioned thematic area and identify the main minor and emerging themes.Design/methodology/approachThis study was conducted based on co-word science mapping analysis under a longitudinal study (from 1988 to 2020). The collection of documents in this study was further divided into three subperiods: 1988–1998, 1999–2009 and 2010–2020. In order to perform science mapping analysis based on co-word bibliographic networks, SciMAT was utilized as a bibliometric tool. Moreover, WoS, PubMed and Scopus bibliographic databases were used to download all records.FindingsIn this study, strategic diagrams were demonstrated for the coronavirus research for a chronological period to assess the most relevant themes. Each diagram depended on the sum of documents linked to each research topic. In the first period (1988–1998), the most centralizations were on virology and evaluation of coronavirus structure and its structural and nonstructural proteins. In the second period (1999–2009), with due attention to high population density in eastern Asia and the increasing number of people affected with the new generation of coronavirus (named severe acute respiratory syndrome virus or SARS virus), publications have been concentrated on “antiviral activity.” In the third period (2010–2020), there was a tendency to investigate clinical syndromes, and most of the publications and citations were about hot topics like “severe acute respiratory syndrome,” “coronavirus” and “respiratory tract disease.” Scientometric analysis of the field of coronavirus can be regarded as a roadmap for future research and policymaking in this important area.Originality/valueThe originality of this research can be considered in two ways. First, the strategic diagrams of coronavirus are drawn in four thematic areas including motor cluster, basic and transversal cluster, highly developed cluster and emerging and declining cluster. Second, COVID-19 is mentioned as a hot topic of research.
Collapse
|
17
|
Le A, Wearing HJ, Li D. Streamlining physiologically‐based pharmacokinetic model design for intravenous delivery of nanoparticle drugs. CPT Pharmacometrics Syst Pharmacol 2022; 11:409-424. [PMID: 35045205 PMCID: PMC9007599 DOI: 10.1002/psp4.12762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Physiologically‐based pharmacokinetic (PBPK) modeling for nanoparticles elucidates the nanoparticle drug’s disposition in the body and serves a vital role in drug development and clinical studies. This paper offers a systematic and tutorial‐like approach to developing a model structure and writing distribution ordinary differential equations based on asking binary questions involving the physicochemical nature of the drug in question. Further, by synthesizing existing knowledge, we summarize pertinent aspects in PBPK modeling and create a guide for building model structure and distribution equations, optimizing nanoparticle and non‐nanoparticle specific parameters, and performing sensitivity analysis and model validation. The purpose of this paper is to facilitate a streamlined model development process for students and practitioners in the field.
Collapse
Affiliation(s)
- Anh‐Dung Le
- Nanoscience & Microsystems Engineering University of New Mexico Albuquerque New Mexico USA
| | - Helen J. Wearing
- Department of Biology Department of Mathematics & Statistics University of New Mexico Albuquerque New Mexico USA
| | - Dingsheng Li
- School of Community Health Sciences University of Nevada Reno Nevada USA
| |
Collapse
|
18
|
Luo Z, Lu L, Xu W, Meng N, Wu S, Zhou J, Xu Q, Xie C, Liu Y, Lu W. In vivo self-assembled drug nanocrystals for metastatic breast cancer all-stage targeted therapy. J Control Release 2022; 346:32-42. [PMID: 35378211 DOI: 10.1016/j.jconrel.2022.03.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 12/22/2022]
Abstract
Chemotherapy is still the mainstay treatment for metastatic triple-negative breast cancers (TNBC) currently in clinical practice. The unmet needs of chemotherapy for metastatic TNBC are mainly from the insufficient drug delivery and unavailable targeting strategy that thwart the whole progression of metastatic TNBC. The in vivo ligands-mediated active targeting efficiency is usually affected by protein corona. While, the protein corona-bridged natural targeting, in turn, provides a new way for specific drug delivery. Herein, we develop a novel metastatic progression-oriented in vivo self-assembled Cabazitaxel nanocrystals (CNC) delivery system (PC/CNC) through the CNC automatically absorbing functional plasma proteins (transferrin, apolipoprotein A-IV and apolipoprotein E) in vivo, aiming to achieve the simultaneously targeted delivery to primary tumors, circulating tumor cells and metastatic lesions. With the unique advantages of superhigh drug-loading and protein corona empowered active targeting properties to tumor cells, HUVECs, active-platelets and blood-brain barrier/blood-tumor barrier, the PC/CNC exhibits a significantly improved therapeutic effect in metastatic TNBC therapy compared with free drug and CNC-loaded liposomes.
Collapse
Affiliation(s)
- Zimiao Luo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine of Fudan University, Shanghai 200041, China
| | - Weixia Xu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Nana Meng
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jianfen Zhou
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Qianzhu Xu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine of Fudan University, Shanghai 200041, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine of Fudan University, Shanghai 200041, China; Minhang Branch, Zhongshan Hospital and Institute of Fudan-Minghang Academic Health System, Minghang Hospital, Fudan University, Shanghai 201199, China; Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
19
|
Liu K, Salvati A, Sabirsh A. Physiology, pathology and the biomolecular corona: the confounding factors in nanomedicine design. NANOSCALE 2022; 14:2136-2154. [PMID: 35103268 DOI: 10.1039/d1nr08101b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The biomolecular corona that forms on nanomedicines in different physiological and pathological environments confers a new biological identity. How the recipient biological system's state can potentially affect nanomedicine corona formation, and how this can be modulated, remains obscure. With this perspective, this review summarizes the current knowledge about the content of biological fluids in various compartments and how they can be affected by pathological states, thus impacting biomolecular corona formation. The content of representative biological fluids is explored, and the urgency of integrating corona formation, as an essential component of nanomedicine designs for effective cargo delivery, is highlighted.
Collapse
Affiliation(s)
- Kai Liu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713AV, The Netherlands
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
20
|
Salvati A, Poelstra K. Drug Targeting and Nanomedicine: Lessons Learned from Liver Targeting and Opportunities for Drug Innovation. Pharmaceutics 2022; 14:217. [PMID: 35057111 PMCID: PMC8777931 DOI: 10.3390/pharmaceutics14010217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023] Open
Abstract
Drug targeting and nanomedicine are different strategies for improving the delivery of drugs to their target. Several antibodies, immuno-drug conjugates and nanomedicines are already approved and used in clinics, demonstrating the potential of such approaches, including the recent examples of the DNA- and RNA-based vaccines against COVID-19 infections. Nevertheless, targeting remains a major challenge in drug delivery and different aspects of how these objects are processed at organism and cell level still remain unclear, hampering the further development of efficient targeted drugs. In this review, we compare properties and advantages of smaller targeted drug constructs on the one hand, and larger nanomedicines carrying higher drug payload on the other hand. With examples from ongoing research in our Department and experiences from drug delivery to liver fibrosis, we illustrate opportunities in drug targeting and nanomedicine and current challenges that the field needs to address in order to further improve their success.
Collapse
Affiliation(s)
- Anna Salvati
- Correspondence: (A.S.); (K.P.); Tel.: +31-503639831 (A.S.); +31-503633287 (K.P.)
| | - Klaas Poelstra
- Correspondence: (A.S.); (K.P.); Tel.: +31-503639831 (A.S.); +31-503633287 (K.P.)
| |
Collapse
|
21
|
Barth C, Spreen H, Mulac D, Keuter L, Behrens M, Humpf HU, Langer K. Spacer length and serum protein adsorption affect active targeting of trastuzumab-modified nanoparticles. BIOMATERIALS AND BIOSYSTEMS 2021; 5:100032. [PMID: 36825111 PMCID: PMC9934468 DOI: 10.1016/j.bbiosy.2021.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/15/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Receptor-mediated active targeting of nanocarriers is a widely investigated approach to specifically address cancerous cells and tissues in the human body. The idea is to use these formulations as drug carriers with enhanced specificity and therefore reduced systemic side effects. Until today a big obstacle to reach this goal remains the adsorption of serum proteins to the nanocarrier's surface after contact with biological fluids. In this context different nanoparticle characteristics could be beneficial for effective active targeting after formation of a protein corona which need to be identified. In this study trastuzumab was used as an active targeting ligand which was covalently attached to human serum albumin nanoparticles. For coupling reaction different molecular weight spacers were used and resulting physicochemical nanoparticle characteristics were evaluated. The in vitro cell association of the different nanoparticle formulations was tested in cell culture experiments with or without fetal bovine serum. For specific receptor-mediated cell interaction SK-BR-3 breast cancer cells with human epidermal growth factor receptor 2 (HER2) overexpression were used. MCF-7 breast cancer cells with normal HER2 expression served as control. Furthermore, serum protein adsorption on respective nanoparticles was characterized. The qualitative and quantitative composition of the protein corona was analyzed by SDS-PAGE and LC-MS/MS and the influence of protein adsorption on active targeting capability was determined.
Collapse
Affiliation(s)
- Christina Barth
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr. 48, 48149 Muenster, Germany
| | - Hendrik Spreen
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr. 48, 48149 Muenster, Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr. 48, 48149 Muenster, Germany
| | - Lucas Keuter
- Institute of Food Chemistry, University of Muenster, Corrensstr. 45, 48149 Muenster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, University of Muenster, Corrensstr. 45, 48149 Muenster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Muenster, Corrensstr. 45, 48149 Muenster, Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr. 48, 48149 Muenster, Germany,To whom correspondence should be addressed.
| |
Collapse
|
22
|
Kappel C, Seidl C, Medina-Montano C, Schinnerer M, Alberg I, Leps C, Sohl J, Hartmann AK, Fichter M, Kuske M, Schunke J, Kuhn G, Tubbe I, Paßlick D, Hobernik D, Bent R, Haas K, Montermann E, Walzer K, Diken M, Schmidt M, Zentel R, Nuhn L, Schild H, Tenzer S, Mailänder V, Barz M, Bros M, Grabbe S. Density of Conjugated Antibody Determines the Extent of Fc Receptor Dependent Capture of Nanoparticles by Liver Sinusoidal Endothelial Cells. ACS NANO 2021; 15:15191-15209. [PMID: 34431291 DOI: 10.1021/acsnano.1c05713] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Despite considerable progress in the design of multifunctionalized nanoparticles (NPs) that selectively target specific cell types, their systemic application often results in unwanted liver accumulation. The exact mechanisms for this general observation are still unclear. Here we asked whether the number of cell-targeting antibodies per NP determines the extent of NP liver accumulation and also addressed the mechanisms by which antibody-coated NPs are retained in the liver. We used polysarcosine-based peptobrushes (PBs), which in an unmodified form remain in the circulation for >24 h due to the absence of a protein corona formation and low unspecific cell binding, and conjugated them with specific average numbers (2, 6, and 12) of antibodies specific for the dendritic cell (DC) surface receptor, DEC205. We assessed the time-dependent biodistribution of PB-antibody conjugates by in vivo imaging and flow cytometry. We observed that PB-antibody conjugates were trapped in the liver and that the extent of liver accumulation strongly increased with the number of attached antibodies. PB-antibody conjugates were selectively captured in the liver via Fc receptors (FcR) on liver sinusoidal endothelial cells, since systemic administration of FcR-blocking agents or the use of F(ab')2 fragments prevented liver accumulation. Cumulatively, our study demonstrates that liver endothelial cells play a yet scarcely acknowledged role in liver entrapment of antibody-coated NPs and that low antibody numbers on NPs and the use of F(ab')2 antibody fragments are both sufficient for cell type-specific targeting of secondary lymphoid organs and necessary to minimize unwanted liver accumulation.
Collapse
Affiliation(s)
- Cinja Kappel
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Christine Seidl
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55099 Mainz, Germany
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Carolina Medina-Montano
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Meike Schinnerer
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Irina Alberg
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Christian Leps
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Julian Sohl
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Ann-Kathrin Hartmann
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Michael Fichter
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Michael Kuske
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Jenny Schunke
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Gabor Kuhn
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Ingrid Tubbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - David Paßlick
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Dominika Hobernik
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Rebekka Bent
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Katharina Haas
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Kerstin Walzer
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University GmbH, Freiligrathstraße 12, 55131 Mainz, Germany
| | - Mustafa Diken
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University GmbH, Freiligrathstraße 12, 55131 Mainz, Germany
- Biontech AG, An der Goldgrube 12, 55131 Mainz, Germany
| | - Manfred Schmidt
- Institute for Physical Chemistry, Johannes Gutenberg University, Welder Weg 11, 55099 Mainz, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hansjörg Schild
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Matthias Barz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55099 Mainz, Germany
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
23
|
Oligoarginine Peptide Conjugated to BSA Improves Cell Penetration of Gold Nanorods and Nanoprisms for Biomedical Applications. Pharmaceutics 2021; 13:pharmaceutics13081204. [PMID: 34452165 PMCID: PMC8400532 DOI: 10.3390/pharmaceutics13081204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/02/2023] Open
Abstract
Gold nanoparticles (AuNPs) have been shown to be outstanding tools for drug delivery and biomedical applications, mainly owing to their colloidal stability, surface chemistry, and photothermal properties. The biocompatibility and stability of nanoparticles can be improved by capping the nanoparticles with endogenous proteins, such as albumin. Notably, protein coating of nanoparticles can interfere with and decrease their cell penetration. Therefore, in the present study, we functionalized albumin with the r8 peptide (All-D, octaarginine) and used it for coating NIR-plasmonic anisotropic gold nanoparticles. Gold nanoprisms (AuNPrs) and gold nanorods (AuNRs) were coated with bovine serum albumin (BSA) previously functionalized using a cell penetrating peptide (CPP) with the r8 sequence (BSA-r8). The effect of the coated and r8-functionalized AuNPs on HeLa cell viability was assessed by the MTS assay, showing a low effect on cell viability after BSA coating. Moreover, the internalization of the nanostructures into HeLa cells was assessed by confocal microscopy and transmission electron microscopy (TEM). As a result, both nanoconstructs showed an improved internalization level after being capped with BSA-r8, in contrast to the BSA-functionalized control, suggesting the predominant role of CPP functionalization in cell internalization. Thus, our results validate both novel nanoconstructs as potential candidates to be coated by endogenous proteins and functionalized with a CPP to optimize cell internalization. In a further approach, coating AuNPs with CPP-functionalized BSA can broaden the possibilities for biomedical applications by combining their optical properties, biocompatibility, and cell-penetration abilities.
Collapse
|
24
|
Hong T, Miyazaki T, Matsumoto A, Koji K, Miyahara Y, Anraku Y, Cabral H. Phosphorylcholine-Installed Nanocarriers Target Pancreatic Cancer Cells through the Phospholipid Transfer Protein. ACS Biomater Sci Eng 2021; 7:4439-4445. [PMID: 34351746 DOI: 10.1021/acsbiomaterials.1c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphorylcholine (PC) has been used to improve the water solubility and biocompatibility of biomaterials. Here, we show that PC can also work as a ligand for targeting cancer cells based on their increased phospholipid metabolism. PC-installed multiarm poly(ethylene glycol)s and polymeric micelles achieved high and rapid internalization in pancreatic cancer cells. This enhanced cellular uptake was drastically reduced when the cells were incubated with excess free PC or at 4 °C, as well as by inhibiting the phospholipid transfer protein (PLTP) on the surface of cancer cells, indicating an energy dependent active transport mediated by PLTP.
Collapse
Affiliation(s)
- Taehun Hong
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuya Miyazaki
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan.,Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Akira Matsumoto
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan.,Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kyoko Koji
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yasutaka Anraku
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Horacio Cabral
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
25
|
Yang K, Reker‐Smit C, Stuart MCA, Salvati A. Effects of Protein Source on Liposome Uptake by Cells: Corona Composition and Impact of the Excess Free Proteins. Adv Healthc Mater 2021; 10:e2100370. [PMID: 34050634 PMCID: PMC11469121 DOI: 10.1002/adhm.202100370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Corona formation in biological fluids strongly affects nanomedicine interactions with cells. However, relatively less is known on additional effects from the free proteins in solution. Within this context, this study aims to gain a better understanding of nanomaterial-cell interactions in different biological fluids and, more specifically, to disentangle effects due to corona composition and those from the free proteins in solution. To this aim, the uptake of liposomes in medium with bovine and human serum are compared. Uptake efficiency in the two media differs strongly, as also corona composition. However, in contrast with similar studies on other nanomaterials, despite the very different corona, when the two corona-coated liposomes are exposed to cells in serum free medium, their uptake is comparable. Thus, in this case, the observed differences in uptake depend primarily on the presence and source of the free proteins. Similar results are obtained when testing the liposomes on different human cells, as well as in murine cells and in the presence of murine serum. Overall, these results show that the protein source affects nanomedicine uptake not only due to effects on corona composition, but also due to the presence and composition of the free proteins in solution.
Collapse
Affiliation(s)
- Keni Yang
- Department of Nanomedicine and Drug TargetingGroningen Research Institute of PharmacyUniversity of GroningenA. Deusinglaan 1Groningen9713 AVThe Netherlands
- Present address:
Key Laboratory for Nano‐Bio Interface ResearchDivision of NanobiomedicineSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Catharina Reker‐Smit
- Department of Nanomedicine and Drug TargetingGroningen Research Institute of PharmacyUniversity of GroningenA. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Marc C. A. Stuart
- Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 74Groningen9747 AGThe Netherlands
| | - Anna Salvati
- Department of Nanomedicine and Drug TargetingGroningen Research Institute of PharmacyUniversity of GroningenA. Deusinglaan 1Groningen9713 AVThe Netherlands
| |
Collapse
|
26
|
An W, Defaus S, Andreu D, Rivera-Gil P. In Vivo Sustained Release of Peptide Vaccine Mediated by Dendritic Mesoporous Silica Nanocarriers. Front Immunol 2021; 12:684612. [PMID: 34220835 PMCID: PMC8244784 DOI: 10.3389/fimmu.2021.684612] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Mesoporous silica nanoparticles have drawn increasing attention as promising candidates in vaccine delivery. Previous studies evaluating silica-based vaccine delivery systems concentrated largely on macromolecular antigens, such as inactivated whole viruses. In this study, we synthesized dendritic mesoporous silica nanoparticles (DMSNs), and we evaluated their effectiveness as delivery platforms for peptide-based subunit vaccines. We encapsulated and tested in vivo an earlier reported foot-and-mouth disease virus (FMDV) peptide vaccine (B2T). The B2T@DMSNs formulation contained the peptide vaccine and the DMSNs without further need of other compounds neither adjuvants nor emulsions. We measured in vitro a sustained release up to 930 h. B2T@DMSNs-57 and B2T@DMSNs-156 released 23.7% (135 µg) and 22.8% (132 µg) of the total B2T. The formation of a corona of serum proteins around the DMSNs increased the B2T release up to 61% (348 µg/mg) and 80% (464 µg/mg) for B2T@DMSNs-57 and B2T@DMSNs-156. In vitro results point out to a longer sustained release, assisted by the formation of a protein corona around DMSNs, compared to the reference formulation (i.e., B2T emulsified in Montanide). We further confirmed in vivo immunogenicity of B2T@DMSNs in a particle size-dependent manner. Since B2T@DMSNs elicited specific immune responses in mice with high IgG production like the reference B2T@Montanide™, self-adjuvant properties of the DMSNs could be ascribed. Our results display DMSNs as efficacious nanocarriers for peptide-based vaccine administration.
Collapse
Affiliation(s)
- Weiteng An
- Integrative Biomedical Materials and Nanomedicine Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sira Defaus
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Andreu
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Pilar Rivera-Gil
- Integrative Biomedical Materials and Nanomedicine Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
27
|
Lu L, Duong VT, Shalash AO, Skwarczynski M, Toth I. Chemical Conjugation Strategies for the Development of Protein-Based Subunit Nanovaccines. Vaccines (Basel) 2021; 9:563. [PMID: 34071482 PMCID: PMC8228360 DOI: 10.3390/vaccines9060563] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
The production of subunit nanovaccines relies heavily on the development of a vaccine delivery system that is safe and efficient at delivering antigens to the target site. Nanoparticles have been extensively investigated for vaccine delivery over the years, as they often possess self-adjuvanting properties. The conjugation of antigens to nanoparticles by covalent bonds ensures co-delivery of these components to the same subset of immune cells in order to trigger the desired immune responses. Herein, we review covalent conjugation strategies for grafting protein or peptide antigens onto other molecules or nanoparticles to obtain subunit nanovaccines. We also discuss the advantages of chemical conjugation in developing these vaccines.
Collapse
Affiliation(s)
| | | | | | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (L.L.); (V.T.D.); (A.O.S.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (L.L.); (V.T.D.); (A.O.S.)
| |
Collapse
|
28
|
Cationic Nanoparticle-Based Cancer Vaccines. Pharmaceutics 2021; 13:pharmaceutics13050596. [PMID: 33919378 PMCID: PMC8143365 DOI: 10.3390/pharmaceutics13050596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Cationic nanoparticles have been shown to be surprisingly effective as cancer vaccine vehicles in preclinical and clinical studies. Cationic nanoparticles deliver tumor-associated antigens to dendritic cells and induce immune activation, resulting in strong antigen-specific cellular immune responses, as shown for a wide variety of vaccine candidates. In this review, we discuss the relation between the cationic nature of nanoparticles and the efficacy of cancer immunotherapy. Multiple types of lipid- and polymer-based cationic nanoparticulate cancer vaccines with various antigen types (e.g., mRNA, DNA, peptides and proteins) and adjuvants are described. Furthermore, we focus on the types of cationic nanoparticles used for T-cell induction, especially in the context of therapeutic cancer vaccination. We discuss different cationic nanoparticulate vaccines, molecular mechanisms of adjuvanticity and biodistribution profiles upon administration via different routes. Finally, we discuss the perspectives of cationic nanoparticulate vaccines for improving immunotherapy of cancer.
Collapse
|
29
|
Spreen H, Behrens M, Mulac D, Humpf HU, Langer K. Identification of main influencing factors on the protein corona composition of PLGA and PLA nanoparticles. Eur J Pharm Biopharm 2021; 163:212-222. [PMID: 33862242 DOI: 10.1016/j.ejpb.2021.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Poly(DL-lactic-co-glycolic acid) and poly(DL-lactic acid) are widely used for the preparation of nanoparticles due to favorable characteristics for medical use like biodegradability and controllable degradation behavior. The contact with different media like human plasma or serum leads to the formation of a protein corona that determines the NP's in vivo processing. In this study, the impact of surface end group identity, matrix polymer hydrophobicity, molecular weight, and incubation medium on the protein corona composition was evaluated. Corona proteins were quantified using Bradford assay, separated by SDS-PAGE, and identified via LC-MS/MS. The acquired data revealed that surface end group identity had the most profound effect on corona composition in both quantitative and qualitative terms. Regarding matrix polymer hydrophobicity, adsorption profiles on NP systems with similar physicochemical characteristics resembled each other. The molecular weight of the matrix polymers proved to impact quantity, but not quality of corona bound proteins. The corona of plasma incubated NP showed adsorption of incubation medium-specific proteins but resembled those of serum incubated NP in terms of protein function, average mass and isoelectric point. Overall, the NP physicochemical properties proved to be easily adjustable determining factors of protein corona formation in physiological environments.
Collapse
Affiliation(s)
- Hendrik Spreen
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr, 48149 Muenster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, University of Muenster, Corrensstr, 48149 Muenster, Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr, 48149 Muenster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Muenster, Corrensstr, 48149 Muenster, Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr, 48149 Muenster, Germany.
| |
Collapse
|
30
|
Zhang L, Chen C, Tay SS, Wen S, Cao C, Biro M, Jin D, Stenzel MH. Optimizing the Polymer Cloak for Upconverting Nanoparticles: An Evaluation of Bioactivity and Optical Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16142-16154. [PMID: 33787198 DOI: 10.1021/acsami.1c01922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability of upconversion nanoparticles (UCNPs) to convert low-energy near-infrared (NIR) light into high-energy visible-ultraviolet light has resulted in their development as novel contrast agents for biomedical imaging. However, UCNPs often succumb to poor colloidal stability in aqueous media, which can be conquered by decorating the nanoparticle surface with polymers. The polymer cloak, therefore, plays an instrumental role in ensuring good stability in biological media. This study aims to understand the relationship between the length and grafting density of the polymer shell on the physicochemical and biological properties of these core-shell UCNPs. Poly(ethylene glycol) methyl ether methacrylate block ethylene glycol methacrylate phosphate (PPEGMEMAn-b-PEGMP3) with different numbers of PEGMEMA repeating units (26, 38, and 80) was prepared and attached to the UCNPs via the phosphate ligand of the poly(ethylene glycol methacrylate phosphate) (PEGMP) block at different polymer densities. The in vitro and in vivo protein corona, cellular uptake in two-dimensional (2D) monolayer and three-dimensional (3D) multicellular tumor spheroid (MCTS) models, and in vivo biodistribution in mice were evaluated. Furthermore, the photoluminescence of single-polymer-coated UCNPs was compared in solid state and cancer cells using laser scanning confocal microscopy (LSCM). Our results showed that the bioactivity and luminescence properties are chain length and grafting density dependent. The UCNPs coated with the longest PPEGMEMA chain, grafted at low brush density, were able to reduce the formation of the protein corona in vitro and in vivo, while these UCNPs also showed the brightest upconversion luminescence in the solid state. Moreover, these particular polymer-coated UCNPs showed enhanced cellular uptake, extended in vivo blood circulation time, and more accumulation in the liver, brain, and heart.
Collapse
Affiliation(s)
- Lin Zhang
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, 2052 NSW, Australia
| | - Chaohao Chen
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, 2006 NSW, Australia
| | - Szun S Tay
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, 2052 NSW, Australia
| | - Shihui Wen
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, 2006 NSW, Australia
| | - Cheng Cao
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, 2052 NSW, Australia
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, 2052 NSW, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, 2006 NSW, Australia
| | - Martina H Stenzel
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, 2052 NSW, Australia
| |
Collapse
|
31
|
Phosphatidylinositol Stabilizes Fluid-Phase Liposomes Loaded with a Melphalan Lipophilic Prodrug. Pharmaceutics 2021; 13:pharmaceutics13040473. [PMID: 33915726 PMCID: PMC8067299 DOI: 10.3390/pharmaceutics13040473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Previously, a liposomal formulation of a chemotherapeutic agent melphalan (Mlph) incorporated in a fluid lipid bilayer of natural phospholipids in the form of dioleoylglyceride ester (MlphDG) was developed and the antitumor effect was confirmed in mouse models. The formulation composed of egg phosphatidylcholine (ePC), soybean phosphatidylinositol (PI), and MlphDG (8:1:1, by mol) showed stability in human serum for at least 4–5 h. On the contrary, replacing PI with pegylation of the liposomes, promoted fast dissociation of the components from the bilayer. In this work, interactions of MlphDG-liposomes with the most abundant plasma protein—albumin—in function of the presence of PI in the formulation were explored using Fourier transform infrared spectroscopy. The release of MlphDG from the liposomes was studied by asymmetrical flow field-flow fractionation (AF4) using micelles formed by a polyethylene glycol conjugate with phosphatidylethanolamine to mimic the physiological lipid sink like lipoproteins. Our results show that PI actually protects the membrane of MlphDG-liposomes from the protein penetration, presumably due to pairing between the positively charged MlphDG and negatively charged PI, which compensates for the heterogeneity of the lipid bilayer. The AF4 technique also evidences high stability of the formulation as a drug carrier.
Collapse
|
32
|
Bednarczyk M, Medina-Montano C, Fittler FJ, Stege H, Roskamp M, Kuske M, Langer C, Vahldieck M, Montermann E, Tubbe I, Röhrig N, Dzionek A, Grabbe S, Bros M. Complement-Opsonized Nano-Carriers Are Bound by Dendritic Cells (DC) via Complement Receptor (CR)3, and by B Cell Subpopulations via CR-1/2, and Affect the Activation of DC and B-1 Cells. Int J Mol Sci 2021; 22:2869. [PMID: 33799879 PMCID: PMC8001596 DOI: 10.3390/ijms22062869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/22/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The development of nanocarriers (NC) for biomedical applications has gained large interest due to their potential to co-deliver drugs in a cell-type-targeting manner. However, depending on their surface characteristics, NC accumulate serum factors, termed protein corona, which may affect their cellular binding. We have previously shown that NC coated with carbohydrates to enable biocompatibility triggered the lectin-dependent complement pathway, resulting in enhanced binding to B cells via complement receptor (CR)1/2. Here we show that such NC also engaged all types of splenic leukocytes known to express CR3 at a high rate when NC were pre-incubated with native mouse serum resulting in complement opsonization. By focusing on dendritic cells (DC) as an important antigen-presenting cell type, we show that CR3 was essential for binding/uptake of complement-opsonized NC, whereas CR4, which in mouse is specifically expressed by DC, played no role. Further, a minor B cell subpopulation (B-1), which is important for first-line pathogen responses, and co-expressed CR1/2 and CR3, in general, engaged NC to a much higher extent than normal B cells. Here, we identified CR-1/2 as necessary for binding of complement-opsonized NC, whereas CR3 was dispensable. Interestingly, the binding of complement-opsonized NC to both DC and B-1 cells affected the expression of activation markers. Our findings may have important implications for the design of nano-vaccines against infectious diseases, which codeliver pathogen-specific protein antigen and adjuvant, aimed to induce a broad adaptive cellular and humoral immune response by inducing cytotoxic T lymphocytes that kill infected cells and pathogen-neutralizing antibodies, respectively. Decoration of nano-vaccines either with carbohydrates to trigger complement activation in vivo or with active complement may result in concomitant targeting of DC and B cells and thereby may strongly enhance the extent of dual cellular/humoral immune responses.
Collapse
Affiliation(s)
- Monika Bednarczyk
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| | - Carolina Medina-Montano
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| | - Frederic Julien Fittler
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| | - Henner Stege
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| | - Meike Roskamp
- Miltenyi Biotec GmbH, Friedrich-Ebert-Strasse 68, 51429 Bergisch Gladbach, Germany; (M.R.); (C.L.); (M.V.); (A.D.)
| | - Michael Kuske
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| | - Christian Langer
- Miltenyi Biotec GmbH, Friedrich-Ebert-Strasse 68, 51429 Bergisch Gladbach, Germany; (M.R.); (C.L.); (M.V.); (A.D.)
| | - Marco Vahldieck
- Miltenyi Biotec GmbH, Friedrich-Ebert-Strasse 68, 51429 Bergisch Gladbach, Germany; (M.R.); (C.L.); (M.V.); (A.D.)
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| | - Ingrid Tubbe
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| | - Nadine Röhrig
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| | - Andrzej Dzionek
- Miltenyi Biotec GmbH, Friedrich-Ebert-Strasse 68, 51429 Bergisch Gladbach, Germany; (M.R.); (C.L.); (M.V.); (A.D.)
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| |
Collapse
|
33
|
Ximendes E, Benayas A, Jaque D, Marin R. Quo Vadis, Nanoparticle-Enabled In Vivo Fluorescence Imaging? ACS NANO 2021; 15:1917-1941. [PMID: 33465306 DOI: 10.1021/acsnano.0c08349] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The exciting advancements that we are currently witnessing in terms of novel materials and synthesis approaches are leading to the development of colloidal nanoparticles (NPs) with increasingly greater tunable properties. We have now reached a point where it is possible to synthesize colloidal NPs with functionalities tailored to specific societal demands. The impact of this new wave of colloidal NPs has been especially important in the field of biomedicine. In that vein, luminescent NPs with improved brightness and near-infrared working capabilities have turned out to be optimal optical probes that are capable of fast and high-resolution in vivo imaging. However, luminescent NPs have thus far only reached a limited portion of their potential. Although we believe that the best is yet to come, the future might not be as bright as some of us think (and have hoped!). In particular, translation of NP-based fluorescence imaging from preclinical studies to clinics is not straightforward. In this Perspective, we provide a critical assessment and highlight promising research avenues based on the latest advances in the fields of luminescent NPs and imaging technologies. The disillusioned outlook we proffer herein might sound pessimistic at first, but we consider it necessary to avoid pursuing "pipe dreams" and redirect the efforts toward achievable-yet ambitious-goals.
Collapse
Affiliation(s)
- Erving Ximendes
- Fluorescence Imaging Group, Departamento de Fısica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar km. 9.100, Madrid 28034, Spain
| | - Antonio Benayas
- Fluorescence Imaging Group, Departamento de Fısica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar km. 9.100, Madrid 28034, Spain
| | - Daniel Jaque
- Fluorescence Imaging Group, Departamento de Fısica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar km. 9.100, Madrid 28034, Spain
| | - Riccardo Marin
- Fluorescence Imaging Group, Departamento de Fısica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| |
Collapse
|
34
|
Miederer M, Pektor S, Miederer I, Bausbacher N, Keil IS, Hefesha H, Haas H, Sahin U, Diken M. Iodine-124 PET quantification of organ-specific delivery and expression of NIS-encoding RNA. EJNMMI Res 2021; 11:14. [PMID: 33569663 PMCID: PMC7876195 DOI: 10.1186/s13550-021-00753-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/01/2021] [Indexed: 11/19/2022] Open
Abstract
Background RNA-based vaccination strategies tailoring immune response to specific reactions have become an important pillar for a broad range of applications. Recently, the use of lipid-based nanoparticles opened the possibility to deliver RNA to specific sites within the body, overcoming the limitation of rapid degradation in the bloodstream. Here, we have investigated whether small animal PET/MRI can be employed to image the biodistribution of RNA-encoded protein.
For this purpose, a reporter RNA coding for the sodium-iodide-symporter (NIS) was in vitro transcribed in cell lines and evaluated for expression. RNA-lipoplex nanoparticles were then assembled by complexing RNA with liposomes at different charge ratios, and functional NIS protein translation was imaged and quantified in vivo and ex vivo by Iodine-124 PET upon intravenous administration in mice. Results NIS expression was detected on the membrane of two cell lines as early as 6 h after transfection and gradually decreased over 48 h. In vivo and ex vivo PET/MRI of anionic spleen-targeting or cationic lung-targeting NIS-RNA lipoplexes revealed a visually detectable rapid increase of Iodine-124 uptake in the spleen or lung compared to control-RNA-lipoplexes, respectively, with minimal background in other organs except from thyroid, stomach and salivary gland. Conclusions The strong organ selectivity and high target-to-background acquisition of NIS-RNA lipoplexes indicate the feasibility of small animal PET/MRI to quantify organ-specific delivery of RNA. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00753-2.
Collapse
Affiliation(s)
- Matthias Miederer
- Department of Nuclear Medicine, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Stefanie Pektor
- Department of Nuclear Medicine, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Isabelle Miederer
- Department of Nuclear Medicine, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Nicole Bausbacher
- Department of Nuclear Medicine, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Isabell Sofia Keil
- TRON - Translational Oncology at the University Medical Center, Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Hossam Hefesha
- Biopharmaceutical New Technologies (BioNTech) SE, Mainz, Germany
| | - Heinrich Haas
- Biopharmaceutical New Technologies (BioNTech) SE, Mainz, Germany
| | - Ugur Sahin
- TRON - Translational Oncology at the University Medical Center, Johannes Gutenberg University Mainz gGmbH, Mainz, Germany.,Biopharmaceutical New Technologies (BioNTech) SE, Mainz, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center, Johannes Gutenberg University Mainz gGmbH, Mainz, Germany. .,Biopharmaceutical New Technologies (BioNTech) SE, Mainz, Germany.
| |
Collapse
|
35
|
Terracciano R, Zhang A, Butler EB, Demarchi D, Hafner JH, Grattoni A, Filgueira CS. Effects of Surface Protein Adsorption on the Distribution and Retention of Intratumorally Administered Gold Nanoparticles. Pharmaceutics 2021; 13:216. [PMID: 33562434 PMCID: PMC7914653 DOI: 10.3390/pharmaceutics13020216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
The heterogeneous distribution of delivery or treatment modalities within the tumor mass is a crucial limiting factor for a vast range of theranostic applications. Understanding the interactions between a nanomaterial and the tumor microenvironment will help to overcome challenges associated with tumor heterogeneity, as well as the clinical translation of nanotheranostic materials. This study aims to evaluate the influence of protein surface adsorption on gold nanoparticle (GNP) biodistribution using high-resolution computed tomography (CT) preclinical imaging in C57BL/6 mice harboring Lewis lung carcinoma (LLC) tumors. LLC provides a valuable model for study due to its highly heterogenous nature, which makes drug delivery to the tumor challenging. By controlling the adsorption of proteins on the GNP surface, we hypothesize that we can influence the intratumoral distribution pattern and particle retention. We performed an in vitro study to evaluate the uptake of GNPs by LLC cells and an in vivo study to assess and quantify the GNP biodistribution by injecting concentrated GNPs citrate-stabilized or passivated with bovine serum albumin (BSA) intratumorally into LLC solid tumors. Quantitative CT and inductively coupled plasma optical emission spectrometry (ICP-OES) results both confirm the presence of particles in the tumor 9 days post-injection (n = 8 mice/group). A significant difference is highlighted between citrate-GNP and BSA-GNP groups (** p < 0.005, Tukey's multiple comparisons test), confirming that the protein corona of GNPs modifies intratumoral distribution and retention of the particles. In conclusion, our investigations show that the surface passivation of GNPs influences the mechanism of cellular uptake and intratumoral distribution in vivo, highlighting the spatial heterogeneity of the solid tumor.
Collapse
Affiliation(s)
- Rossana Terracciano
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (R.T.); (A.G.)
- Department of Electronics, Politecnico di Torino, 10129 Torino, Italy;
| | - Aobo Zhang
- Department of Physics & Astronomy, Rice University, Houston, TX 77005, USA; (A.Z.); (J.H.H.)
| | - E. Brian Butler
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Danilo Demarchi
- Department of Electronics, Politecnico di Torino, 10129 Torino, Italy;
| | - Jason H. Hafner
- Department of Physics & Astronomy, Rice University, Houston, TX 77005, USA; (A.Z.); (J.H.H.)
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (R.T.); (A.G.)
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA;
- Department of Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Carly S. Filgueira
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (R.T.); (A.G.)
- Department of Cardiovascular Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
36
|
Grabowska J, Affandi AJ, van Dinther D, Nijen Twilhaar MK, Olesek K, Hoogterp L, Ambrosini M, Heijnen DAM, Klaase L, Hidalgo A, Asano K, Crocker PR, Storm G, van Kooyk Y, den Haan JMM. Liposome induction of CD8 + T cell responses depends on CD169 + macrophages and Batf3-dependent dendritic cells and is enhanced by GM3 inclusion. J Control Release 2021; 331:309-320. [PMID: 33493613 DOI: 10.1016/j.jconrel.2021.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Cancer vaccines aim to efficiently prime cytotoxic CD8+ T cell responses which can be achieved by vaccine targeting to dendritic cells. CD169+ macrophages have been shown to transfer antigen to dendritic cells and could act as an alternative target for cancer vaccines. Here, we evaluated liposomes containing the CD169/Siglec-1 binding ligand, ganglioside GM3, and the non-binding ligand, ganglioside GM1, for their capacity to target antigens to CD169+ macrophages and to induce immune responses. CD169+ macrophages demonstrated specific uptake of GM3 liposomes in vitro and in vivo that was dependent on a functional CD169 receptor. Robust antigen-specific CD8+ and CD4+ T and B cell responses were observed upon intravenous administration of GM3 liposomes containing the model antigen ovalbumin in the presence of adjuvant. Immunization of B16-OVA tumor bearing mice with all liposomes resulted in delayed tumor growth and improved survival. The absence of CD169+ macrophages, functional CD169 molecules, and cross-presenting Batf3-dependent dendritic cells (cDC1s) significantly impaired CD8+ T cell responses, while B cell responses were less affected. In conclusion, we demonstrate that inclusion of GM3 in liposomes enhance immune responses and that splenic CD169+ macrophages and cDC1s are required for induction of CD8+ T cell immunity after liposomal vaccination.
Collapse
Affiliation(s)
- J Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - A J Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - D van Dinther
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - M K Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - K Olesek
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - L Hoogterp
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - M Ambrosini
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - D A M Heijnen
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - L Klaase
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - A Hidalgo
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - K Asano
- Laboratory of Immune Regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - P R Crocker
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - G Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, the Netherlands; Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Y van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - J M M den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
37
|
Kimura S, Khalil IA, Elewa YHA, Harashima H. Novel lipid combination for delivery of plasmid DNA to immune cells in the spleen. J Control Release 2021; 330:753-764. [PMID: 33422500 DOI: 10.1016/j.jconrel.2021.01.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/22/2022]
Abstract
This study reports on the development of a novel lipid combination that permits the efficient and highly selective delivery of plasmid DNA (pDNA) to immune cells in the spleen. Using DODAP, an ionizable lipid that was previously thought to be inefficient for gene delivery, we show for the first time, that this ignored lipid can be successfully used for efficient and targeted gene delivery in vivo, but only when combined with DOPE, a specific helper lipid. Using certain DODAP and DOPE ratios resulted in the formation of lipid nanoparticles (LNPs) with a ~ 1000-fold higher gene expression, and this expression was specific for the spleen, making it the most spleen-selective system for transfection using pDNA. The developed DODAP/DOPE-LNPs target immune cells in the spleen via receptors for complement C3 and this pathway is critical for efficient gene expression. We hypothesize that the high spleen transfection activity of DODAP/DOPE-LNPs is caused by the promotion of gene expression associated with B cell activation via complement receptors. LNPs encapsulating tumor-antigen encoding pDNA showed both prophylactic and therapeutic anti-tumor effects. The optimized LNPs resulted in the production of different cytokines and antigen-specific antibodies as well as exerting antigen-specific cytotoxic effects. This study revives the use of DODAP in gene delivery and highlights the importance of using appropriate lipid combinations for delivering genes to specific cells.
Collapse
Affiliation(s)
- Seigo Kimura
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Ikramy A Khalil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt; Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Molecular Design of Pharmaceuticsx, Department of Biomedical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
38
|
Sebak AA, Gomaa IEO, ElMeshad AN, Farag MH, Breitinger U, Breitinger HG, AbdelKader MH. Distinct Proteins in Protein Corona of Nanoparticles Represent a Promising Venue for Endogenous Targeting - Part II: In vitro and in vivo Kinetics Study. Int J Nanomedicine 2020; 15:9539-9556. [PMID: 33299308 PMCID: PMC7721286 DOI: 10.2147/ijn.s273721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/30/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction Nanoparticles (NPs), upon introduction to the biological systems, become wrapped by serum and cellular proteins constituting the protein corona (PC). This PC contributes largely to the NPs’ interaction with the biological systems and their subsequent functions. On the one hand, PC can decrease the efficiency of targeting by directing the NPs to the reticuloendothelial system (RES) or by masking the active targeting moieties and decreasing their ability to bind to their target receptors. On the other hand, some components of PC have offered hopes for achieving endogenous targeting. Methods In this study, we aimed at the investigation of the role of the PC in determining the behavior of cRGDyk peptide-unconjugated and -conjugated NPs (uNPs and cNPs) exhibiting different physicochemical properties and their interaction with melanoma on in vitro and in vivo levels. Mathematical modeling has been utilized to understand the kinetics of the interaction of NPs with the tumor cells and different organs, respectively. Results Endocytosis and exocytosis were reported to occur simultaneously for the utilized NPs. The balance was largely dependent on the NPs’ physicochemical properties and the role of the PC. In addition, distinct proteins present in the PC (illustrated in the results of the PC analysis in part I) have also determined the patterns of the NPs’ distribution in different organs and tissues of the vascular system, the RES system and the target tumot tissue. Vitronectin (VN) was found to mediate higher accumulation in integrin receptor-expressing melanoma cells, while complement 3 protein (C3) and clusterin (CLU), as an opsonin and dysopsonin, respectively, regulated the balance between the RES uptake and blood circulation. Discussion PC, if properly modulated by tuning NPs’ physicochemical properties, can serve as a potential venue for optimum utilization of NPs in cancer therapy.
Collapse
Affiliation(s)
- Aya Ahmed Sebak
- Pharmaceutical Technology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo City, Egypt
| | - Iman Emam Omar Gomaa
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Aliaa Nabil ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud Hussien Farag
- Pharmaceutical Technology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo City, Egypt
| | - Ulrike Breitinger
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo City, Egypt
| | - Hans-Georg Breitinger
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo City, Egypt
| | - Mahmoud Hashem AbdelKader
- National Institute of Laser Enhanced Sciences (NILES), Cairo University (CU), Giza, Egypt.,European University in Egypt (EUE), New Administrative Capital, Cairo, Egypt
| |
Collapse
|
39
|
Torres J, Dhas N, Longhi M, García MC. Overcoming Biological Barriers With Block Copolymers-Based Self-Assembled Nanocarriers. Recent Advances in Delivery of Anticancer Therapeutics. Front Pharmacol 2020; 11:593197. [PMID: 33329001 PMCID: PMC7734332 DOI: 10.3389/fphar.2020.593197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022] Open
Abstract
Cancer is one of the most common life-threatening illness and it is the world's second largest cause of death. Chemotherapeutic anticancer drugs have many disadvantages, which led to the need to develop novel strategies to overcome these shortcomings. Moreover, tumors are heterogenous in nature and there are various biological barriers that assist in treatment reisistance. In this sense, nanotechnology has provided new strategies for delivery of anticancer therapeutics. Recently, delivery platforms for overcoming biological barriers raised by tumor cells and tumor-bearing hosts have been reported. Among them, amphiphilic block copolymers (ABC)-based self-assembled nanocarriers have attracted researchers worldwide owing to their unique properties. In this work, we addressed different biological barriers for effective cancer treatment along with several strategies to overcome them by using ABC-based self-assembled nanostructures, with special emphasis in those that have the ability to act as responsive nanocarriers to internal or external environmental clues to trigger release of the payload. These nanocarriers have shown promising properties to revolutionize cancer treatment and diagnosis, but there are still challenges for their successful translation to clinical applications.
Collapse
Affiliation(s)
- Jazmin Torres
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Namdev Dhas
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Marcela Longhi
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Mónica C. García
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
40
|
Yu F, Zhu Y, Liu Y, Qiu G, Shang X, Meng T, Yuan H, Hu F. Poly-γ-glutamic acid derived nanopolyplexes for up-regulation of gamma-glutamyl transpeptidase to augment tumor active targeting and enhance synergistic antitumor therapy by regulating intracellular redox homeostasis. Biomater Sci 2020; 8:5955-5968. [PMID: 32966382 DOI: 10.1039/d0bm01254h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The active targeting strategy has achieved inspiring progress for drug accumulation in tumor therapy; however, the insufficient expression level of many potential receptors poses challenges for drug delivery. Poly-γ-glutamic acid (γ-pGluA), a naturally occurring anionic biopolymer, showed high affinity with tumor-associated gamma-glutamyl transpeptidase (GGT), which localized on the cell surface and exhibited intracellular redox homeostasis-dependent expression pattern; thus, GGT was utilized for mediating endocytosis of nanoparticles. Herein, GGT-targeting nanopolyplexes (γ-pGluA-CSO@Fe3+, PCFN) consisting of cationic chitosan and GGT-targeting γ-pGluA blended with iron ion were constructed to load reactive oxygen species-induced menadione (MA) and doxorubicin, which were utilized to investigate the mechanism of GGT up-regulation. Briefly, the pretreated PCFN/MA induced an intracellular oxidative stress environment, which facilitated adjusted up-regulated GGT expression and boosted tumor targeting. Subsequently, the destroyed redox homeostasis sensitized tumors for synergistic therapy. The innovative strategy of augmenting active targeting by disturbing intracellular redox homeostasis offers insight for the application of γ-pGluA-derived nanopolyplexes.
Collapse
Affiliation(s)
- Fangying Yu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hager S, Fittler FJ, Wagner E, Bros M. Nucleic Acid-Based Approaches for Tumor Therapy. Cells 2020; 9:E2061. [PMID: 32917034 PMCID: PMC7564019 DOI: 10.3390/cells9092061] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Within the last decade, the introduction of checkpoint inhibitors proposed to boost the patients' anti-tumor immune response has proven the efficacy of immunotherapeutic approaches for tumor therapy. Furthermore, especially in the context of the development of biocompatible, cell type targeting nano-carriers, nucleic acid-based drugs aimed to initiate and to enhance anti-tumor responses have come of age. This review intends to provide a comprehensive overview of the current state of the therapeutic use of nucleic acids for cancer treatment on various levels, comprising (i) mRNA and DNA-based vaccines to be expressed by antigen presenting cells evoking sustained anti-tumor T cell responses, (ii) molecular adjuvants, (iii) strategies to inhibit/reprogram tumor-induced regulatory immune cells e.g., by RNA interference (RNAi), (iv) genetically tailored T cells and natural killer cells to directly recognize tumor antigens, and (v) killing of tumor cells, and reprograming of constituents of the tumor microenvironment by gene transfer and RNAi. Aside from further improvements of individual nucleic acid-based drugs, the major perspective for successful cancer therapy will be combination treatments employing conventional regimens as well as immunotherapeutics like checkpoint inhibitors and nucleic acid-based drugs, each acting on several levels to adequately counter-act tumor immune evasion.
Collapse
Affiliation(s)
- Simone Hager
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | | | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany;
| |
Collapse
|
42
|
Cacicedo ML, Medina-Montano C, Kaps L, Kappel C, Gehring S, Bros M. Role of Liver-Mediated Tolerance in Nanoparticle-Based Tumor Therapy. Cells 2020; 9:E1985. [PMID: 32872352 PMCID: PMC7563539 DOI: 10.3390/cells9091985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
In the last decades, the use of nanocarriers for immunotherapeutic purposes has gained a lot of attention, especially in the field of tumor therapy. However, most types of nanocarriers accumulate strongly in the liver after systemic application. Due to the default tolerance-promoting role of liver non-parenchymal cells (NPCs), Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs), and hepatic stellate cells (HSCs), their potential role on the immunological outcome of systemic nano-vaccination approaches for therapy of tumors in the liver and in other organs needs to be considered. Concerning immunological functions, KCs have been the focus until now, but recent studies have elucidated an important role of LSECs and HSCs as well. Therefore, this review aims to summarize current knowledge on the employment of nanocarriers for immunotherapeutic therapy of liver diseases and the overall role of liver NPCs in the context of nano-vaccination approaches. With regard to the latter, we discuss strategies on how to address liver NPCs, aiming to exploit and modulate their immunological properties, and alternatively how to avoid unwanted engagement of nano-vaccines by liver NPCs for tumor therapy.
Collapse
Affiliation(s)
- Maximiliano L. Cacicedo
- Children’s Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.L.C.); (S.G.)
| | - Carolina Medina-Montano
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (C.M.-M.); (C.K.)
| | - Leonard Kaps
- Department of Medicine, University Medical Center Mainz, I. Langenbeckstrasse 1, 55131 Mainz, Germany;
| | - Cinja Kappel
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (C.M.-M.); (C.K.)
| | - Stephan Gehring
- Children’s Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.L.C.); (S.G.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (C.M.-M.); (C.K.)
| |
Collapse
|
43
|
Mohammad-Beigi H, Scavenius C, Jensen PB, Kjaer-Sorensen K, Oxvig C, Boesen T, Enghild JJ, Sutherland DS, Hayashi Y. Tracing the In Vivo Fate of Nanoparticles with a "Non-Self" Biological Identity. ACS NANO 2020; 14:10666-10679. [PMID: 32806026 DOI: 10.1021/acsnano.0c05178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoparticles can acquire a biomolecular corona with a species-specific biological identity. However, "non-self" incompatibility of recipient biological systems is often not considered, for example, when rodents are used as a model organism for preclinical studies of biomolecule-inspired nanomedicines. Using zebrafish embryos as an emerging model for nanobioimaging, here we unravel the in vivo fate of intravenously injected 70 nm SiO2 nanoparticles with a protein corona preformed from fetal bovine serum (FBS), representing a non-self biological identity. Strikingly rapid sequestration and endolysosomal acidification of nanoparticles with the preformed FBS corona were observed in scavenger endothelial cells within minutes after injection. This led to loss of blood vessel integrity and to inflammatory activation of macrophages over the course of several hours. As unmodified nanoparticles or the equivalent dose of FBS proteins alone failed to induce the observed pathophysiology, this signifies how the corona enriched with a differential repertoire of proteins can determine the fate of the nanoparticles in vivo. Our findings thus reveal the adverse outcome triggered by incompatible protein coronas and indicate a potential pitfall in the use of mismatched species combinations during nanomedicine development.
Collapse
Affiliation(s)
- Hossein Mohammad-Beigi
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Pia Bomholt Jensen
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Kasper Kjaer-Sorensen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Thomas Boesen
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Duncan S Sutherland
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Yuya Hayashi
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| |
Collapse
|
44
|
Singh P, Szigyártó IC, Ricci M, Zsila F, Juhász T, Mihály J, Bősze S, Bulyáki É, Kardos J, Kitka D, Varga Z, Beke-Somfai T. Membrane Active Peptides Remove Surface Adsorbed Protein Corona From Extracellular Vesicles of Red Blood Cells. Front Chem 2020; 8:703. [PMID: 32850685 PMCID: PMC7432246 DOI: 10.3389/fchem.2020.00703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022] Open
Abstract
Besides the outstanding potential in biomedical applications, extracellular vesicles (EVs) are also promising candidates to expand our knowledge on interactions between vesicular surface proteins and small-molecules which exert biomembrane-related functions. Here we provide mechanistic details on interactions between membrane active peptides with antimicrobial effect (MAPs) and red blood cell derived EVs (REVs) and we demonstrate that they have the capacity to remove members of the protein corona from REVs even at lower than 5 μM concentrations. In case of REVs, the Soret-band arising from the membrane associated hemoglobins allowed to follow the detachment process by flow-Linear Dichroism (flow-LD). Further on, the significant change on the vesicle surfaces was confirmed by transmission electron microscopy (TEM). Since membrane active peptides, such as melittin have the affinity to disrupt vesicles, a combination of techniques, fluorescent antibody labeling, microfluidic resistive pulse sensing, and flow-LD were employed to distinguish between membrane destruction and surface protein detachment. The removal of protein corona members is a newly identified role for the investigated peptides, which indicates complexity of their in vivo function, but may also be exploited in synthetic and natural nanoparticle engineering. Furthermore, results also promote that EVs can be used as improved model systems for biophysical studies providing insight to areas with so far limited knowledge.
Collapse
Affiliation(s)
- Priyanka Singh
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Imola Cs Szigyártó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Maria Ricci
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Éva Bulyáki
- Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Diána Kitka
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
45
|
Lipid Nanoparticle Acts as a Potential Adjuvant for Influenza Split Vaccine without Inducing Inflammatory Responses. Vaccines (Basel) 2020; 8:vaccines8030433. [PMID: 32756368 PMCID: PMC7565178 DOI: 10.3390/vaccines8030433] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Vaccination is a critical and reliable strategy for controlling the spread of influenza viruses in populations. Conventional seasonal split vaccines (SVs) for influenza evoke weaker immune responses than other types of vaccines, such as inactivated whole-virion vaccines, although SVs are highly safe compared to other types. Here, we assessed the potential of the lipid nanoparticle (LNP) we developed as an adjuvant for conventional influenza SV as an antigen in mice. The LNP did not induce the production of cytokines such as interleukin-6 (IL-6) and IL-12 p40 by dendritic cells or the expression of co-stimulatory molecules on these cells in vitro. In contrast, an SV adjuvanted with LNP improved SV-specific IgG1 and IgG2 responses and the Th1 response compared to the SV alone in mice. In addition, SV adjuvanted with an LNP gave superior protection against the influenza virus challenge over the SV alone and was as effective as SV adjuvanted with aluminum salts in mice. The LNP did not provoke inflammatory responses such as inflammatory cytokine production and inflammatory immune cell infiltration in mice, whereas aluminum salts induced inflammatory responses. These results suggest the potential of the LNP as an adjuvant without inflammatory responses for influenza SVs. Our strategy should be useful for developing influenza vaccines with enhanced efficacy and safety.
Collapse
|
46
|
Huo D, Jiang X, Hu Y. Recent Advances in Nanostrategies Capable of Overcoming Biological Barriers for Tumor Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904337. [PMID: 31663198 DOI: 10.1002/adma.201904337] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/27/2019] [Indexed: 05/22/2023]
Abstract
Engineered nanomaterials have been extensively employed as therapeutics for tumor management. Meanwhile, the complex tumor niche along with multiple barriers at the cellular level collectively hinders the action of nanomedicines. Here, the advanced strategies that hold promise for overcoming the numerous biological barriers facing nanomedicines are summarized. Starting from tumor entry, methods that promote tissue penetration of nanomedicine and address the hypoxia issue are also highlighted. Then, emphasis is given to the significance of overcoming both physical barriers, such as membrane-associated efflux pumps, and biological features, such as resistance to apoptosis. The pros and cons for an individual approach are presented. In addition, the associated technical problems are discussed, along with the importance of balancing the therapeutic merits and the additional cost of sophisticated nanomedicine designs.
Collapse
Affiliation(s)
- Da Huo
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
47
|
Chen D, Ganesh S, Wang W, Amiji M. Protein Corona-Enabled Systemic Delivery and Targeting of Nanoparticles. AAPS JOURNAL 2020; 22:83. [DOI: 10.1208/s12248-020-00464-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
|
48
|
Zapata A, Nguyen ML, Ling C, Rogers J, Domiano S, Hayzelden C, Wheeler KE. The role of human serum and solution chemistry in fibrinogen peptide-nanoparticle interactions. NANOSCALE ADVANCES 2020; 2:2429-2440. [PMID: 32864565 PMCID: PMC7448706 DOI: 10.1039/c9na00793h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In living systems, the biomolecules that coat nanoparticles (NPs) alter the NP biological identity and response. Although some biomolecules are more effective in mediating NP stability or biological fate, it is difficult to monitor an individual biomolecule within the complexity of the biota. To understand the dependence of protein-NP interactions on common variations in blood, we have evaluated binding between silica NPs and a model gamma-fibrinogen (GF) peptide. Fibrinogen is commonly identified within the protein corona fingerprint of human serum, but its abundance on the NP varies. To assess the relative importance of human serum and solution conditions, GF peptide and silica NP interactions were evaluated with and without serum across pH, NaCl concentrations, and glucose concentrations. Initial evaluation of the GF peptide and silica NP complexes using circular dichroism and dynamic light scattering show little change in the secondary structure of the peptide and no significant agglomeration of NPs, suggesting peptide-NP complexes are stable across study conditions. Fluorescence anisotropy was used to monitor GF peptide-NP binding. Both with and without serum, binding constants for the gamma-fibrinogen peptide vary significantly upon addition of diluted HS (1:500) and 29 mM sodium chloride. Yet, results indicated that gamma-fibrinogen binding interactions with silica NPs are comparatively insensitive to physiologically relevant pH changes and dramatic increases in glucose concentrations. Results highlight the importance of blood chemistries, which vary across individuals and disease states, in mediating protein corona formation.
Collapse
Affiliation(s)
- Angela Zapata
- Department of Chemistry & Biochemistry, Santa Clara UniversitySanta ClaraCA 95053USA
| | - Mai-Loan Nguyen
- Department of Chemistry & Biochemistry, Santa Clara UniversitySanta ClaraCA 95053USA
| | - Caleb Ling
- Department of Chemistry & Biochemistry, Santa Clara UniversitySanta ClaraCA 95053USA
| | - Jacqueline Rogers
- Department of Chemistry & Biochemistry, Santa Clara UniversitySanta ClaraCA 95053USA
| | - Sangeetha Domiano
- Department of Chemistry & Biochemistry, Santa Clara UniversitySanta ClaraCA 95053USA
| | - Clive Hayzelden
- Department of Biology, San Francisco State UniversitySan FranciscoCA 94132USA
| | - Korin E. Wheeler
- Department of Chemistry & Biochemistry, Santa Clara UniversitySanta ClaraCA 95053USA
| |
Collapse
|
49
|
Cao ZT, Gan LQ, Jiang W, Wang JL, Zhang HB, Zhang Y, Wang Y, Yang X, Xiong M, Wang J. Protein Binding Affinity of Polymeric Nanoparticles as a Direct Indicator of Their Pharmacokinetics. ACS NANO 2020; 14:3563-3575. [PMID: 32053346 DOI: 10.1021/acsnano.9b10015] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymeric nanoparticles (NPs) are an important category of drug delivery systems, and their in vivo fate is closely associated with delivery efficacy. Analysis of the protein corona on the surface of NPs to understand the in vivo fate of different NPs has been shown to be reliable but complicated and time-consuming. In this work, we establish a simple approach for predicting the in vivo fate of polymeric NPs. We prepared a series of poly(ethylene glycol)-block-poly(d,l-lactide) (PEG-b-PLA) NPs with different protein binding behaviors by adjusting their PEG densities, which were determined by analyzing the serum protein adsorption. We further determined the protein binding affinity, denoted as the equilibrium association constant (KA), to correlate with in vivo fate of NPs. The in vivo fate, including blood clearance and Kupffer cell uptake, was studied, and the maximum concentration (Cmax), the area under the plasma concentration-time curve (AUC), and the mean residence time (MRT) were negatively linearly dependent, while Kupffer cell uptake was positively linearly dependent on KA. Subsequently, we verified the reliability of the approach for in vivo fate prediction using poly(methoxyethyl ethylene phosphate)-block-poly(d,l-lactide) (PEEP-b-PLA) and poly(vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PLA) NPs, and the linear relationship between the KA value and their PK parameters further suggests that the protein binding affinity of polymeric NPs can be a direct indicator of their pharmacokinetics.
Collapse
Affiliation(s)
- Zhi-Ting Cao
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, P.R. China
| | - Li-Qin Gan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Wei Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Ji-Long Wang
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, P.R. China
| | - Hou-Bing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Yue Zhang
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yucai Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Xianzhu Yang
- Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou 510006, P.R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, P.R. China
| | - Menghua Xiong
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Jun Wang
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, P.R. China
| |
Collapse
|
50
|
Baboci L, Capolla S, Di Cintio F, Colombo F, Mauro P, Dal Bo M, Argenziano M, Cavalli R, Toffoli G, Macor P. The Dual Role of the Liver in Nanomedicine as an Actor in the Elimination of Nanostructures or a Therapeutic Target. JOURNAL OF ONCOLOGY 2020; 2020:4638192. [PMID: 32184825 PMCID: PMC7060440 DOI: 10.1155/2020/4638192] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
The development of nanostructures for therapeutic purpose is rapidly growing, following the results obtained in vivo in animal models and in the clinical trials. Unfortunately, the potential therapeutic efficacy is not completely exploited, yet. This is mainly due to the fast clearance of the nanostructures in the body. Nanoparticles and the liver have a unique interaction because the liver represents one of the major barriers for drug delivery. This interaction becomes even more relevant and complex when the drug delivery strategies employing nanostructures are proposed for the therapy of liver diseases, such as hepatocellular carcinoma (HCC). In this case, the selective delivery of therapeutic nanoparticles to the tumor microenvironment collides with the tendency of nanostructures to be quickly eliminated by the organ. The design of a new therapeutic approach based on nanoparticles to treat HCC has to particularly take into consideration passive and active mechanisms to avoid or delay liver elimination and to specifically address cancer cells or the cancer microenvironment. This review will analyze the different aspects concerning the dual role of the liver, both as an organ carrying out a clearance activity for the nanostructures and as target for therapeutic strategies for HCC treatment.
Collapse
Affiliation(s)
- Lorena Baboci
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Federico Colombo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Prisca Mauro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Paolo Macor
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|