1
|
Wang Y, Wang Z, Yang J, Lei X, Liu Y, Frankiw L, Wang J, Li G. Deciphering Membrane-Protein Interactions and High-Throughput Antigen Identification with Cell Doublets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305750. [PMID: 38342599 PMCID: PMC10987144 DOI: 10.1002/advs.202305750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/02/2024] [Indexed: 02/13/2024]
Abstract
Deciphering cellular interactions is essential to both understand the mechanisms underlying a broad range of human diseases, but also to manipulate therapies targeting these diseases. Here, the formation of cell doublets resulting from specific membrane ligand-receptor interactions is discovered. Based on this phenomenon, the study developed DoubletSeeker, a novel high-throughput method for the reliable identification of ligand-receptor interactions. The study shows that DoubletSeeker can accurately identify T cell receptor (TCR)-antigen interactions with high sensitivity and specificity. Notably, DoubletSeeker effectively captured paired TCR-peptide major histocompatibility complex (pMHC) information during a highly complex library-on-library screening and successfully identified three mutant TCRs that specifically recognize the MART-1 epitope. In turn, DoubletSeeker can act as an antigen discovery platform that allows for the development of novel immunotherapy targets, making it valuable for investigating fundamental tumor immunology.
Collapse
Affiliation(s)
- Yuqian Wang
- National Key Laboratory of Immunity and InflammationSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
- Key Laboratory of Synthetic Biology Regulatory ElementSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
| | - Zhe Wang
- National Key Laboratory of Immunity and InflammationSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
- Key Laboratory of Synthetic Biology Regulatory ElementSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
| | - Juan Yang
- National Key Laboratory of Immunity and InflammationSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
- Key Laboratory of Synthetic Biology Regulatory ElementSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
| | - Xiaobo Lei
- NHC Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Yisu Liu
- National Key Laboratory of Immunity and InflammationSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
- Key Laboratory of Synthetic Biology Regulatory ElementSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
| | - Luke Frankiw
- Department of PediatricsBoston Children's HospitalBostonMA02115USA
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Guideng Li
- National Key Laboratory of Immunity and InflammationSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
- Key Laboratory of Synthetic Biology Regulatory ElementSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
| |
Collapse
|
2
|
McComb S, Nguyen T, Shepherd A, Henry KA, Bloemberg D, Marcil A, Maclean S, Zafer A, Gilbert R, Gadoury C, Pon RA, Sulea T, Zhu Q, Weeratna RD. Programmable Attenuation of Antigenic Sensitivity for a Nanobody-Based EGFR Chimeric Antigen Receptor Through Hinge Domain Truncation. Front Immunol 2022; 13:864868. [PMID: 35935988 PMCID: PMC9354126 DOI: 10.3389/fimmu.2022.864868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Epidermal growth factor family receptor (EGFR) is commonly overexpressed in many solid tumors and an attractive target for chimeric antigen receptor (CAR)-T therapy, but as EGFR is also expressed at lower levels in healthy tissues a therapeutic strategy must balance antigenic responsiveness against the risk of on-target off-tumor toxicity. Herein, we identify several camelid single-domain antibodies (also known as nanobodies) that are effective EGFR targeting moieties for CARs (EGFR-sdCARs) with very strong reactivity to EGFR-high and EGFR-low target cells. As a strategy to attenuate their potent antigenic sensitivity, we performed progressive truncation of the human CD8 hinge commonly used as a spacer domain in many CAR constructs. Single amino acid hinge-domain truncation progressively decreased both EGFR-sdCAR-Jurkat cell binding to EGFR-expressing targets and expression of the CD69 activation marker. Attenuated signaling in hinge-truncated EGFR-sdCAR constructs increased selectivity for antigen-dense EGFR-overexpressing cells over an EGFR-low tumor cell line or healthy donor derived EGFR-positive fibroblasts. We also provide evidence that epitope location is critical for determining hinge-domain requirement for CARs, as hinge truncation similarly decreased antigenic sensitivity of a membrane-proximal epitope targeting HER2-CAR but not a membrane-distal EGFRvIII-specific CAR. Hinge-modified EGFR-sdCAR cells showed clear functional attenuation in Jurkat-CAR-T cells and primary human CAR-T cells from multiple donors in vitro and in vivo. Overall, these results indicate that hinge length tuning provides a programmable strategy for throttling antigenic sensitivity in CARs targeting membrane-proximal epitopes, and could be employed for CAR-optimization and improved tumor selectivity.
Collapse
Affiliation(s)
- Scott McComb
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Scott McComb,
| | - Tina Nguyen
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Alex Shepherd
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kevin A. Henry
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Darin Bloemberg
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Anne Marcil
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Susanne Maclean
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Ahmed Zafer
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Rénald Gilbert
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| | - Christine Gadoury
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Robert A. Pon
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Qin Zhu
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Risini D. Weeratna
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| |
Collapse
|
3
|
Preclinical In Vitro and In Vivo Models for Adoptive Cell Therapy of Cancer. Cancer J 2022; 28:257-262. [PMID: 35880934 DOI: 10.1097/ppo.0000000000000609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
ABSTRACT Adoptive cellular therapies are making major strides in the treatment of cancer, both for hematologic and solid tumors. These cellular products include chimeric antigen receptor T cells and T-cell receptor-modified T cells, tumor-infiltrating lymphocytes, marrow-infiltrating T cells, natural killer cells as well as macrophage-based therapeutics. Advancement in genomics, computational biology, immunology, and cell therapy manufacturing has facilitated advancement of adoptive T cell therapies into the clinic, whereas clinical efficacy has driven Food and Drug Administration approvals. The growth of adoptive cellular therapy has, in turn, led to innovation in the preclinical models available, from ex vivo cell-based models to in vivo xenograft models of treatment. This review focuses on the development and application of in vitro models and in vivo models (cell line xenograft, humanized mice, and patient-derived xenograft models) that directly evaluate these human cellular products.
Collapse
|
4
|
Pan J, Jiang Y, Li C, Jin T, Yu K, Jin Z. Characteristics of Pyroptosis-Related Subtypes and Novel Scoring Tool for the Prognosis and Chemotherapy Response in Acute Myeloid Leukemia. Front Oncol 2022; 12:898236. [PMID: 35756629 PMCID: PMC9229173 DOI: 10.3389/fonc.2022.898236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is usually associated with poor prognosis and low complete remission (CR) rate due to individual biological heterogeneity. Pyroptosis is a special form of inflammatory programmed cell death related to the progression, treatment response, and prognosis of multiple tumors. However, the potential connection of pyroptosis-related genes (PRGs) and AML still remains unclear. We described the genetic and transcriptional alterations of PRGs in 151 AML samples and presented a consensus clustering of these patients into two subtypes with distinct immunological and prognostic characteristics. Cluster A, associated with better prognosis, was characterized by relatively lower PRG expression, activated immune cells, higher immune scores in the tumor microenvironment (TME), and downregulation of immunotherapy checkpoints. Subsequently, a PRG score was constructed to predict overall survival (OS) of AML patients by using univariate and multivariate Cox regression analysis, and its immunological characteristics and predictive capability were further validated by 1,054 AML samples in external datasets. Besides an immune-activated status, low-PRG score cohorts exhibited higher chemotherapeutic drug sensitivity and significant positive correlation with the cancer stem cell (CSC) index. Combined with age, clinical French-American-British (FAB) subtypes, and PRG score, we successfully constructed a nomogram to effectively predict the 1-/3-/5-year survival rate of AML patients, and the predictive capability was further validated in multiple external datasets with a high area under the curve (AUC) value. The various transcriptomic analysis helps us screen significant pyroptosis-related signatures of AML and provide a new clinical application of PRG scores in predicting the prognosis and benefits of treatment for AML patients.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yinyan Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changhong Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ting Jin
- Department of Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenlin Jin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Hino C, Pham B, Park D, Yang C, Nguyen MH, Kaur S, Reeves ME, Xu Y, Nishino K, Pu L, Kwon SM, Zhong JF, Zhang KK, Xie L, Chong EG, Chen CS, Nguyen V, Castillo DR, Cao H. Targeting the Tumor Microenvironment in Acute Myeloid Leukemia: The Future of Immunotherapy and Natural Products. Biomedicines 2022; 10:biomedicines10061410. [PMID: 35740430 PMCID: PMC9219790 DOI: 10.3390/biomedicines10061410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) plays an essential role in the development, proliferation, and survival of leukemic blasts in acute myeloid leukemia (AML). Within the bone marrow and peripheral blood, various phenotypically and functionally altered cells in the TME provide critical signals to suppress the anti-tumor immune response, allowing tumor cells to evade elimination. Thus, unraveling the complex interplay between AML and its microenvironment may have important clinical implications and are essential to directing the development of novel targeted therapies. This review summarizes recent advancements in our understanding of the AML TME and its ramifications on current immunotherapeutic strategies. We further review the role of natural products in modulating the TME to enhance response to immunotherapy.
Collapse
Affiliation(s)
- Christopher Hino
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.H.); (B.P.); (K.N.); (L.P.); (S.M.K.)
| | - Bryan Pham
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.H.); (B.P.); (K.N.); (L.P.); (S.M.K.)
| | - Daniel Park
- Department of Internal Medicine, School of Medicine, University of California San Francisco–Fresno, Fresno, CA 93701, USA;
| | - Chieh Yang
- Department of Internal Medicine, School of Medicine, University of California Riverside, Riverside, CA 92521, USA;
| | - Michael H.K. Nguyen
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
| | - Simmer Kaur
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
| | - Mark E. Reeves
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
| | - Yi Xu
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
| | - Kevin Nishino
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.H.); (B.P.); (K.N.); (L.P.); (S.M.K.)
| | - Lu Pu
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.H.); (B.P.); (K.N.); (L.P.); (S.M.K.)
| | - Sue Min Kwon
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.H.); (B.P.); (K.N.); (L.P.); (S.M.K.)
| | - Jiang F. Zhong
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA;
| | - Ke K. Zhang
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA; (K.K.Z.); (L.X.)
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA; (K.K.Z.); (L.X.)
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Esther G. Chong
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
| | - Chien-Shing Chen
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
| | - Vinh Nguyen
- Department of Biology, University of California Riverside, Riverside, CA 92521, USA;
| | - Dan Ran Castillo
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
- Correspondence: (D.R.C.); (H.C.)
| | - Huynh Cao
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
- Correspondence: (D.R.C.); (H.C.)
| |
Collapse
|
6
|
Hao F, Sholy C, Wang C, Cao M, Kang X. The Role of T Cell Immunotherapy in Acute Myeloid Leukemia. Cells 2021; 10:cells10123376. [PMID: 34943884 PMCID: PMC8699747 DOI: 10.3390/cells10123376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease associated with various alterations in T cell phenotype and function leading to an abnormal cell population, ultimately leading to immune exhaustion. However, restoration of T cell function allows for the execution of cytotoxic mechanisms against leukemic cells in AML patients. Therefore, long-term disease control, which requires multiple therapeutic approaches, includes those aimed at the re-establishment of cytotoxic T cell activity. AML treatments that harness the power of T lymphocytes against tumor cells have rapidly evolved over the last 3 to 5 years through various stages of preclinical and clinical development. These include tissue-infiltrated lymphocytes (TILs), bispecific antibodies, immune checkpoint inhibitors (ICIs), chimeric antigen receptor T (CAR-T) cell therapy, and tumor-specific T cell receptor gene-transduced T (TCR-T) cells. In this review, these T cell-based immunotherapies and the potential of TILs as a novel antileukemic therapy will be discussed.
Collapse
|
7
|
The immunomodulatory drugs lenalidomide and pomalidomide enhance the potency of AMG 701 in multiple myeloma preclinical models. Blood Adv 2021; 4:4195-4207. [PMID: 32898244 DOI: 10.1182/bloodadvances.2020002524] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022] Open
Abstract
We investigated here the novel immunomodulation and anti-multiple myeloma (MM) function of T cells engaged by the bispecific T-cell engager molecule AMG 701, and further examined the impact of AMG 701 in combination with immunomodulatory drugs (IMiDs; lenalidomide and pomalidomide). AMG 701 potently induced T-cell-dependent cellular cytotoxicity (TDCC) against MM cells expressing B-cell maturation antigen, including autologous cells from patients with relapsed and refractory MM (RRMM) (half maximal effective concentration, <46.6 pM). Besides inducing T-cell proliferation and cytolytic activity, AMG 701 also promoted differentiation of patient T cells to central memory, effector memory, and stem cell-like memory (scm) phenotypes, more so in CD8 vs CD4 T subsets, resulting in increased CD8/CD4 ratios in 7-day ex vivo cocultures. IMiDs and AMG 701 synergistically induced TDCC against MM cell lines and autologous RRMM patient cells, even in the presence of immunosuppressive bone marrow stromal cells or osteoclasts. IMiDs further upregulated AMG 701-induced patient T-cell differentiation toward memory phenotypes, associated with increased CD8/CD4 ratios, increased Tscm, and decreased interleukin 10-positive T and T regulatory cells (CD25highFOXP3high), which may downregulate T effector cells. Importantly, the combination of AMG 701 with lenalidomide induced sustained inhibition of MM cell growth in SCID mice reconstituted with human T cells; tumor regrowth was eventually observed in cohorts treated with either agent alone (P < .001). These results strongly support AMG 701 clinical studies as monotherapy in patients with RRMM (NCT03287908) and the combination with IMiDs to improve patient outcomes in MM.
Collapse
|
8
|
Guo R, Lü M, Cao F, Wu G, Gao F, Pang H, Li Y, Zhang Y, Xing H, Liang C, Lyu T, Du C, Li Y, Guo R, Xie X, Li W, Liu D, Song Y, Jiang Z. Single-cell map of diverse immune phenotypes in the acute myeloid leukemia microenvironment. Biomark Res 2021; 9:15. [PMID: 33648605 PMCID: PMC7919996 DOI: 10.1186/s40364-021-00265-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Knowledge of immune cell phenotypes, function, and developmental trajectory in acute myeloid leukemia (AML) microenvironment is essential for understanding mechanisms of evading immune surveillance and immunotherapy response of targeting special microenvironment components. METHODS Using a single-cell RNA sequencing (scRNA-seq) dataset, we analyzed the immune cell phenotypes, function, and developmental trajectory of bone marrow (BM) samples from 16 AML patients and 4 healthy donors, but not AML blasts. RESULTS We observed a significant difference between normal and AML BM immune cells. Here, we defined the diversity of dendritic cells (DC) and macrophages in different AML patients. We also identified several unique immune cell types including T helper cell 17 (TH17)-like intermediate population, cytotoxic CD4+ T subset, T cell: erythrocyte complexes, activated regulatory T cells (Treg), and CD8+ memory-like subset. Emerging AML cells remodels the BM immune microenvironment powerfully, leads to immunosuppression by accumulating exhausted/dysfunctional immune effectors, expending immune-activated types, and promoting the formation of suppressive subsets. CONCLUSION Our results provide a comprehensive AML BM immune cell census, which can help to select pinpoint targeted drug and predict efficacy of immunotherapy.
Collapse
Affiliation(s)
- Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengdie Lü
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Fujiao Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guanghua Wu
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China
| | - Fengcai Gao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haili Pang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yadan Li
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yinyin Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyan Liang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tianxin Lyu
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Chunyan Du
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Delong Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
9
|
Kast F, Klein C, Umaña P, Gros A, Gasser S. Advances in identification and selection of personalized neoantigen/T-cell pairs for autologous adoptive T cell therapies. Oncoimmunology 2021; 10:1869389. [PMID: 33520408 PMCID: PMC7808433 DOI: 10.1080/2162402x.2020.1869389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Based on the success of tumor-infiltrating lymphocytes (TIL)-based therapies, personalized adoptive cell therapies (ACT) targeting neoantigens have the potential to become a disruptive technology and lead to highly effective treatments for cancer patients for whom no other options exist. ACT of TIL, peripheral blood or gene-engineered peripheral blood lymphocytes (PBLs) targeting neoantigens is a highly personalized intervention that requires three discrete steps: i) Identification of suitable personal targets (neoantigens), ii) selection of T cells or their T cell receptors (TCRs) that are specific for the identified neoantigens and iii) expansion of the selected T cell population or generation of sufficient number of TCR modified T cells. In this review, we provide an introduction into challenges and approaches to identify neoantigens and to select the Adoptive Cell Therapy, ACT, Neoantigen, T cell, Cancer respective neoantigen-reactive T cells for use in ACT.
Collapse
Affiliation(s)
- Florian Kast
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Christian Klein
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Pablo Umaña
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Alena Gros
- Vall d'Hebron Institute of Oncology, Cellex Center, Barcelona, Spain
| | - Stephan Gasser
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| |
Collapse
|
10
|
RORα Regulates Cholesterol Metabolism of CD8 + T Cells for Anticancer Immunity. Cancers (Basel) 2020; 12:cancers12071733. [PMID: 32610705 PMCID: PMC7407186 DOI: 10.3390/cancers12071733] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Retinoic acid-related orphan receptor α (RORα) functions as a transcription factor for various biological processes, including circadian rhythm, inflammation, cancer, and lipid metabolism. Here, we demonstrate that RORα is crucial for maintaining cholesterol homeostasis in CD8+ T cells by attenuating NF-κB transcriptional activity. Cholesterol sulfate, the established natural agonist of RORα, exhibits cellular cytotoxicity on, and increased effector responses in, CD8+ T cells. Transcript analysis reveals that the suppression of RORα leads to the upregulation of NF-κB target genes in T cells. Chromatin immunoprecipitation analysis was used to determine the corecruitment of RORα and histone deacetylase (HDAC) on NF-κB target promoters and the subsequent dismissal of coactivators for transcriptional repression. We demonstrate that RORα/HDAC-mediated attenuation of NF-κB signaling controls the balance of cholesterol metabolism in CD8+ T cells, and that therapeutic strategies targeting this epigenetic regulation could be beneficial to the treatment of solid tumors including colon cancers.
Collapse
|
11
|
Huang J, Tan J, Chen Y, Huang S, Xu L, Zhang Y, Lu Y, Yu Z, Chen S, Li Y. A skewed distribution and increased PD-1+Vβ+CD4+/CD8+ T cells in patients with acute myeloid leukemia. J Leukoc Biol 2019; 106:725-732. [PMID: 31136687 DOI: 10.1002/jlb.ma0119-021r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/14/2019] [Accepted: 05/19/2019] [Indexed: 12/16/2022] Open
Abstract
The limited application of immunotherapy in acute myeloid leukemia (AML) may be due to poor understanding of the global T cell immune dysfunction in AML. In this study, we analyzed the distribution characteristics of 24 TCR Vβ subfamilies in CD3+, CD4+, and CD8+ T cells in AML patients and healthy controls. The percentage of TCR Vβ subfamily T cells was predominately lower in most AML cases, while it was increased in some cases. TCR Vβ2+T cells were increased in AML, particularly TCR Vβ2+CD4+T cells, which were significantly higher. To further address the immunosuppression in different Vβ subfamilies, we characterized the distribution of program death-1 (PD-1)+T cells in TCR Vβ subfamilies of CD4+ and CD8+T cells. Significantly higher levels of PD-1+Vβ+T cells were found for most Vβ subfamilies in most AML cases. A higher percentage of PD-1+Vβ2+T cells with a high number of Vβ2+T cells was found in all of the CD3+, CD4+, and CD8+ T cell subsets. Moreover, increasing PD-1+Vβ7.2, Vβ8+, Vβ14+, Vβ16+, and Vβ22+CD8+T cells were distributed in the AML-M5 subtype group compared with the AML-M3 group. In addition, higher PD-1+ Vβ5.2+ and PD-1+ Vβ12+CD8+T cells were associated with AML patients who had a poor response to chemotherapy. In conclusion, increased PD-1+Vβ+T cells is a common characteristic of AML, higher PD-1+Vβ2+T cells may be associated with a low antileukemia effect, and higher PD-1+Vβ5.2+ and PD-1+Vβ12+CD8+T cells may be related to poor prognosis in AML. These characteristics may be worth considering as immune biomarkers for clinical outcome in AML.
Collapse
Affiliation(s)
- Jingying Huang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Jiaxiong Tan
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Youchun Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Shuxin Huang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Ling Xu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yikai Zhang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Yuhong Lu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhi Yu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shaohua Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|