1
|
Hassan MSH, Sharif S. Immune responses to avian influenza viruses in chickens. Virology 2025; 603:110405. [PMID: 39837219 DOI: 10.1016/j.virol.2025.110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Chickens are a key species in both the manifestation of avian influenza and the potential for zoonotic transmission. Avian influenza virus (AIV) infection in chickens can range from asymptomatic or mild disease with low pathogenic AIVs (LPAIVs) to systemic fatal disease with high pathogenic AIVs (HPAIVs). During AIV infection in chickens, Toll-like receptor 7 and melanoma differentiation-associated gene 5 are upregulated to detect the single-stranded ribonucleic acid genomes of AIV, triggering a signaling cascade that produces interferons (IFNs) and pro-inflammatory cytokines. These inflammatory mediators induce the expression of antiviral proteins and recruit immune system cells, such as macrophages and dendritic cells, to the infection site. AIV evades these antiviral responses primarily through its non-structural protein 1, which suppresses type I IFNs, influencing viral pathogenicity. The uncontrolled release of pro-inflammatory cytokines may contribute to the pathogenicity and high mortality associated with HPAIV infections. AIV modulates apoptosis in chicken cells to enhance its replication, with variations in apoptosis pathways influenced by viral strain and host cell type. The presentation of AIV antigens to T and B cells leads to the production of neutralizing antibodies and the targeted destruction of infected cells by CD8+ T cells, respectively, which enhances protection and establishes immunological memory. This review explores the diverse innate and adaptive immune responses in chickens to different AIVs, focusing on the dynamics of these responses relative to protection, susceptibility, and potential immunopathology. By understanding these immune mechanisms, informed strategies for controlling AIV infection and improving chicken health can be developed.
Collapse
Affiliation(s)
- Mohamed S H Hassan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
2
|
He X, Zhang S, Zou Z, Gao P, Yang L, Xiang B. Antiviral Effects of Avian Interferon-Stimulated Genes. Animals (Basel) 2024; 14:3062. [PMID: 39518785 PMCID: PMC11545081 DOI: 10.3390/ani14213062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Interferons (IFNs) stimulate the expression of numerous IFN-stimulating genes via the Janus kinase-signal transducers and activators of the transcription (JAK-STAT) signaling pathway, which plays an important role in the host defense against viral infections. In mammals, including humans and mice, a substantial number of IFN-stimulated genes (ISGs) have been identified, and their molecular mechanisms have been elucidated. It is important to note that avian species are phylogenetically distant from mammals, resulting in distinct IFN-induced ISGs that may have different functions. At present, only a limited number of avian ISGs have been identified. In this review, we summarized the identified avian ISGs and their antiviral activities. As gene-editing technology is widely used in avian breeding, the identification of avian ISGs and the elucidation of their molecular mechanism may provide important support for the breeding of avians for disease resistance.
Collapse
Affiliation(s)
- Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyuan Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Ziheng Zou
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453000, China;
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Li R, Zhai S, Gao S, Yang X, Zhao J, Zhang X, Wang Z. Goose IFIT5 positively regulates goose astrovirus replication in GEF cells. Poult Sci 2024; 103:103930. [PMID: 38908126 PMCID: PMC11253660 DOI: 10.1016/j.psj.2024.103930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/21/2024] [Accepted: 05/29/2024] [Indexed: 06/24/2024] Open
Abstract
Interferon-induced protein with tetratricopeptide repeats (IFITs), a family of proteins strongly induced by type I interferon (IFN-I), are deeply involved in many cellular and viral processes. IFIT5, the sole protein in this family found in birds, also plays a crucial role in regulating virus infection. In this study, goose IFIT5 (gIFIT5) was first cloned from peripheral blood lymphocyte (PBL) and phylogenetic analysis showed that it was highly homologous with duck IFIT5 (dIFIT5), sharing 94.6% identity in amino acid sequence. Subsequently, the expression kinetics of gIFIT5 during goose astrovirus (GAstV) infection and the regulatory effect of gIFIT5 on GAstV proliferation were evaluated. Results showed that the mRNA and protein expression level of gIFIT5 was greatly induced by GAstV infection, especially at 12 hpi. Importantly, gIFIT5 could conversely promote GAstV replication in GEF cells. Virus titers in gIFIT5 overexpression group were significantly higher than those in control group at 12 and 24 hpi. Western blot and quantitative real-time PCR (qRT-PCR) further demonstrated that the production of viral cap protein was significantly facilitated in gIFIT5-transfected group. Collectively, GAstV facilitates self-replication via promoting gIFIT5 expression.
Collapse
Affiliation(s)
- Ruixue Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Saimin Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Shenyan Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Jun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zeng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Husain M. Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs. Pathogens 2024; 13:127. [PMID: 38392865 PMCID: PMC10893265 DOI: 10.3390/pathogens13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza virus has been one of the most prevalent and researched viruses globally. Consequently, there is ample information available about influenza virus lifecycle and pathogenesis. However, there is plenty yet to be known about the determinants of influenza virus pathogenesis and disease severity. Influenza virus exploits host factors to promote each step of its lifecycle. In turn, the host deploys antiviral or restriction factors that inhibit or restrict the influenza virus lifecycle at each of those steps. Two broad categories of host restriction factors can exist in virus-infected cells: (1) encoded by the interferon-stimulated genes (ISGs) and (2) encoded by the constitutively expressed genes that are not stimulated by interferons (non-ISGs). There are hundreds of ISGs known, and many, e.g., Mx, IFITMs, and TRIMs, have been characterized to restrict influenza virus infection at different stages of its lifecycle by (1) blocking viral entry or progeny release, (2) sequestering or degrading viral components and interfering with viral synthesis and assembly, or (3) bolstering host innate defenses. Also, many non-ISGs, e.g., cyclophilins, ncRNAs, and HDACs, have been identified and characterized to restrict influenza virus infection at different lifecycle stages by similar mechanisms. This review provides an overview of those ISGs and non-ISGs and how the influenza virus escapes the restriction imposed by them and aims to improve our understanding of the host restriction mechanisms of the influenza virus.
Collapse
Affiliation(s)
- Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
5
|
Rohaim MA, Gardiner EL, El Naggar RF, Abdelsabour MA, Madbouly YM, Atasoy MO, Ahmed KA, El-Safty MM, Munir M. Avian sarcoma/leukosis virus (RCAS)-mediated over-expression of IFITM3 protects chicks from highly pathogenic avian influenza virus subtype H5N1. Microbes Infect 2024; 26:105231. [PMID: 37777054 DOI: 10.1016/j.micinf.2023.105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/25/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Broad-spectrum antiviral activities of interferon-induced transmembrane proteins (IFITMs) are primarily attributed to in vitro inhibition of viral entry. Here, we used an avian sarcoma-leukosis virus (RCAS)-based gene transfer system and successfully generated chicks that constitutively express chicken IFITM3 (chIFITM3). The chIFITM3-overexpressing chicks showed significant protection and disease tolerance against highly pathogenic avian influenza virus (HPAIV) H5N1 (Clade 2.2.1.2). The chicks, overexpressing chIFITM3, also showed delayed onset of clinical symptoms, reduced viral shedding, and alleviated histopathologic alterations compared to control and challenged chicks. These findings highlight that overexpression of chIFITM3 provide a substantial defense against zoonotic H5N1 in vivo.
Collapse
Affiliation(s)
- Mohammed A Rohaim
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK; Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Emma Louise Gardiner
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Rania F El Naggar
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK; Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt
| | - Mohammed A Abdelsabour
- Department of Poultry Viral Vaccines, Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Centre (ARC), Cairo 11435, Egypt
| | - Yahia M Madbouly
- Department of Poultry Viral Vaccines, Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Centre (ARC), Cairo 11435, Egypt
| | - Mustafa O Atasoy
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Kawkab A Ahmed
- Central Laboratory for Evaluation of Veterinary Biologics, Abbasia, Cairo, 11381, Egypt
| | - Munir M El-Safty
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK.
| |
Collapse
|
6
|
Song H, Liu X, Gao X, Li J, Shang Y, Gao W, Li Y, Zhang Z. Transcriptome analysis of pre-immune state induced by interferon gamma inhibiting the replication of H 9N 2 avian influenza viruses in chicken embryo fibroblasts. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105332. [PMID: 35811034 DOI: 10.1016/j.meegid.2022.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Interferon (IFN), a critical antiviral cytokine produced by pathogens-induced cells, plays an important role in host innate immune system. In this study, to investigate the inhibition effect of IFN on avian influenza virus (AIV), Chicken Embryo Fibroblasts (CEFs) was infected by H9N2 AIV. The pre-immune state and transcriptome analysis have been observed and performed. The result showed chicken interferon gamma (chIFN-γ) have the most inhibitory effect on H9N2 virus among three types of chicken interferons (chIFNs). Inhibition of chIFN-γ on H9N2 virus was verified by indirect immunofluorescence, RT-qPCR and western blot. The possible signaling pathways induced by chIFN-γ with or without virus were analyzed by transcriptome. The transcriptome data were compared among H9N2-infected, chIFN-γ-treated, chIFN-γ + H9N2-treated, and Control groups. In summary, RNA-sequencing (RNA-seq) data suggested that H9N2 virus infection resulted in corresponding response of certain defensive, inflammatory and metabolism pathways to the virus replication in CEFs. Furthermore, while CEFs were treated with chIFN-γ, many immune-related signaling pathways in cells are affected and altered. Antiviral genes involved in these immune pathways such as interferon regulatory factors, chemokines, interferon-stimulated genes (ISGs) and transcription factors were significantly up-regulated, and showed significant antiviral responses. Compared with virus infected CEFs alone, pretreatment with IFN induced the expression of antiviral genes and activated related antiviral pathways, inhibited the viral replication as result. Our study provided functional annotations for antiviral genes and the basis for studying the mechanism of chIFN-γ mediated response against H9N2 AIV.
Collapse
Affiliation(s)
- Haozhi Song
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingjian Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xintao Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jialei Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuting Shang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weisong Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinü Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhifang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
7
|
Vu TH, Hong Y, Truong AD, Lee S, Heo J, Lillehoj HS, Hong YH. The highly pathogenic H5N1 avian influenza virus induces the mitogen-activated protein kinase signaling pathway in the trachea of two Ri chicken lines. Anim Biosci 2022; 35:964-974. [PMID: 34991196 PMCID: PMC9271386 DOI: 10.5713/ab.21.0420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/19/2021] [Accepted: 12/18/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The highly pathogenic avian influenza virus (HPAIV) is a threat to the poultry industry and economy and remains a potential source of pandemic infection in humans. Antiviral genes are considered a potential factor for studies on HPAIV resistance. Therefore, in this study, we investigated gene expression related to the mitogen-activated protein kinase (MAPK) signaling pathway by comparing non-infected, HPAI-infected resistant, and susceptible Ri chicken lines. METHODS Resistant (Mx/A; BF2/B21) and susceptible Ri chickens (Mx/G; BF2/B13) were selected by genotyping the Mx and BF2 genes. Then, the tracheal tissues of non-infected and HPAIV H5N1 infected chickens were collected for RNA sequencing. RESULTS A gene set overlapping test between the analyzed differentially expressed genes (DEGs) and functionally categorized genes was performed, including biological processes of the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways. A total of 1,794 DEGs were observed between control and H5N1-infected resistant Ri chickens, 432 DEGs between control and infected susceptible Ri chickens, and 1,202 DEGs between infected susceptible and infected resistant Ri chickens. The expression levels of MAPK signaling pathway-related genes (including MyD88, NF-κB, AP-1, c-fos, Jun, JunD, MAX, c-Myc), cytokines (IL-1β, IL-6, IL-8), type I interferons (IFN-α, IFN-β), and IFN-stimulated genes (Mx1, CCL19, OASL, and PRK) were higher in H5N1-infected than in non-infected resistant Ri chickens. MyD88, Jun, JunD, MAX, cytokines, chemokines, IFNs, and IFN-stimulated expressed genes were higher in resistant-infected than in susceptible-infected Ri chickens. CONCLUSION Resistant Ri chickens showed higher antiviral activity compared to susceptible Ri chickens, and H5N1-infected resistant Ri chickens had immune responses and antiviral activity (cytokines, chemokines, interferons, and IFN-stimulated genes), which may have been induced through the MAPK signaling pathway in response to H5N1 infection.
Collapse
Affiliation(s)
- Thi Hao Vu
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000,
Vietnam
| | - Sooyeon Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Jubi Heo
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Hyun S. Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705,
USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| |
Collapse
|
8
|
Escalante-Sansores AR, Absalón AE, Cortés-Espinosa DV. Improving immunogenicity of poultry vaccines by use of molecular adjuvants. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2091502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Angel E. Absalón
- Vaxbiotek SC Departamento de Investigación y Desarrollo, Cuautlancingo, Puebla, Mexico
| | - Diana V. Cortés-Espinosa
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicadla, Tlaxcala, Mexico
| |
Collapse
|
9
|
Dolinski AC, Homola JJ, Jankowski MD, Robinson JD, Owen JC. Differential gene expression reveals host factors for viral shedding variation in mallards ( Anas platyrhynchos) infected with low-pathogenic avian influenza virus. J Gen Virol 2022; 103:10.1099/jgv.0.001724. [PMID: 35353676 PMCID: PMC10519146 DOI: 10.1099/jgv.0.001724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intraspecific variation in pathogen shedding impacts disease transmission dynamics; therefore, understanding the host factors associated with individual variation in pathogen shedding is key to controlling and preventing outbreaks. In this study, ileum and bursa of Fabricius tissues of wild-bred mallards (Anas platyrhynchos) infected with low-pathogenic avian influenza (LPAIV) were evaluated at various post-infection time points to determine genetic host factors associated with intraspecific variation in viral shedding. By analysing transcriptome sequencing data (RNA-seq), we found that LPAIV-infected wild-bred mallards do not exhibit differential gene expression compared to uninfected birds, but that gene expression was associated with cloacal viral shedding quantity early in the infection. In both tissues, immune gene expression was higher in high/moderate shedding birds compared to low shedding birds, and significant positive relationships with viral shedding were observed. In the ileum, expression for host genes involved in viral cell entry was lower in low shedders compared to moderate shedders at 1 day post-infection (DPI), and expression for host genes promoting viral replication was higher in high shedders compared to low shedders at 2 DPI. Our findings indicate that viral shedding is a key factor for gene expression differences in LPAIV-infected wild-bred mallards, and the genes identified in this study could be important for understanding the molecular mechanisms driving intraspecific variation in pathogen shedding.
Collapse
Affiliation(s)
- Amanda C. Dolinski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jared J. Homola
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Mark D. Jankowski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- U.S. Environmental Protection Agency, Region 10, Seattle,
WA 98101
| | - John D. Robinson
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jennifer C. Owen
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan
State University, East Lansing, MI, USA
| |
Collapse
|
10
|
Bowen L, Waters S, Stott JL, Duncan A, Meyerson R, Woodhouse S. Baseline Gene Expression Levels in Falkland-Malvinas Island Penguins: Towards a New Monitoring Paradigm. Life (Basel) 2022; 12:life12020258. [PMID: 35207543 PMCID: PMC8880734 DOI: 10.3390/life12020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/29/2022] Open
Abstract
Health diagnostics of wildlife have historically relied on the evaluation of select serum biomarkers and the identification of a contaminant or pathogen burden within specific tissues as an indicator of a level of insult. However, these approaches fail to measure the physiological reaction of the individual to stressors, thus limiting the scope of interpretation. Gene-based health diagnostics provide an opportunity for an alternate, whole-system, or holistic assessment of health, not only in individuals or populations but potentially in ecosystems. Seabirds are among the most threatened marine taxonomic groups in the world, with ~25% of this species currently listed as threatened or considered of special concern; among seabirds, the penguins (Family Spheniscidae) are the most threatened seabird Family. We used gene expression to develop baseline physiological indices for wild penguins in the Falkland-Malvinas Islands, and captive zoo penguins. We identified the almost complete statistical separation of penguin groups (gentoo Detroit Zoo, gentoo Falkland-Malvinas Islands, rockhopper Detroit Zoo, and rockhopper Falkland-Malvinas Islands) based on gene expression profiles. Implementation of long-term longitudinal studies would allow for the assessment of temporal increases or decreases of select transcripts and would facilitate interpretation of the drivers of change.
Collapse
Affiliation(s)
- Lizabeth Bowen
- U.S. Geological Survey, Western Ecological Research Center, One Shields Avenue, Davis, CA 95616, USA;
- Correspondence: ; Tel.: +1-530-574-4353
| | - Shannon Waters
- U.S. Geological Survey, Western Ecological Research Center, One Shields Avenue, Davis, CA 95616, USA;
| | - Jeffrey L. Stott
- Department of Pathology, Microbiology and Immunology, University of California, One Shields Avenue, Davis, CA 95616, USA;
| | - Ann Duncan
- Detroit Zoo, 8450 W. 10 Mile Road, Royal Oak, MI 48067, USA;
| | | | - Sarah Woodhouse
- Henry Doorly Zoo and Aquarium, 3701 S 10th St, Omaha, NE 68107, USA;
| |
Collapse
|
11
|
Prashanth G, Vastrad B, Vastrad C, Kotrashetti S. Potential Molecular Mechanisms and Remdesivir Treatment for Acute Respiratory Syndrome Corona Virus 2 Infection/COVID 19 Through RNA Sequencing and Bioinformatics Analysis. Bioinform Biol Insights 2022; 15:11779322211067365. [PMID: 34992355 PMCID: PMC8725226 DOI: 10.1177/11779322211067365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction: Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infections
(COVID 19) is a progressive viral infection that has been investigated
extensively. However, genetic features and molecular pathogenesis underlying
remdesivir treatment for SARS-CoV-2 infection remain unclear. Here, we used
bioinformatics to investigate the candidate genes associated in the
molecular pathogenesis of remdesivir-treated SARS-CoV-2-infected
patients. Methods: Expression profiling by high-throughput sequencing dataset (GSE149273) was
downloaded from the Gene Expression Omnibus, and the differentially
expressed genes (DEGs) in remdesivir-treated SARS-CoV-2 infection samples
and nontreated SARS-CoV-2 infection samples with an adjusted
P value of <.05 and a |log fold change| > 1.3
were first identified by limma in R software package. Next, pathway and gene
ontology (GO) enrichment analysis of these DEGs was performed. Then, the hub
genes were identified by the NetworkAnalyzer plugin and the other
bioinformatics approaches including protein-protein interaction network
analysis, module analysis, target gene—miRNA regulatory network, and target
gene—TF regulatory network. Finally, a receiver-operating characteristic
analysis was performed for diagnostic values associated with hub genes. Results: A total of 909 DEGs were identified, including 453 upregulated genes and 457
downregulated genes. As for the pathway and GO enrichment analysis, the
upregulated genes were mainly linked with influenza A and defense response,
whereas downregulated genes were mainly linked with drug
metabolism—cytochrome P450 and reproductive process. In addition, 10 hub
genes (VCAM1, IKBKE, STAT1, IL7R, ISG15, E2F1, ZBTB16, TFAP4, ATP6V1B1, and
APBB1) were identified. Receiver-operating characteristic analysis showed
that hub genes (CIITA, HSPA6, MYD88, SOCS3, TNFRSF10A, ADH1A, CACNA2D2,
DUSP9, FMO5, and PDE1A) had good diagnostic values. Conclusion: This study provided insights into the molecular mechanism of
remdesivir-treated SARS-CoV-2 infection that might be useful in further
investigations.
Collapse
Affiliation(s)
- G Prashanth
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, India
| | | | | |
Collapse
|
12
|
Campbell LK, Fleming-Canepa X, Webster RG, Magor KE. Tissue Specific Transcriptome Changes Upon Influenza A Virus Replication in the Duck. Front Immunol 2021; 12:786205. [PMID: 34804075 PMCID: PMC8602823 DOI: 10.3389/fimmu.2021.786205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Ducks are the natural host and reservoir of influenza A virus (IAV), and as such are permissive to viral replication while being unharmed by most strains. It is not known which mechanisms of viral control are globally regulated during infection, and which are specific to tissues during infection. Here we compare transcript expression from tissues from Pekin ducks infected with a recombinant H5N1 strain A/Vietnam 1203/04 (VN1203) or an H5N2 strain A/British Columbia 500/05 using RNA-sequencing analysis and aligning reads to the NCBI assembly ZJU1.0 of the domestic duck (Anas platyrhynchos) genome. Highly pathogenic VN1203 replicated in lungs and showed systemic dissemination, while BC500, like most low pathogenic strains, replicated in the intestines. VN1203 infection induced robust differential expression of genes all three days post infection, while BC500 induced the greatest number of differentially expressed genes on day 2 post infection. While there were many genes globally upregulated in response to either VN1203 or BC500, tissue specific gene expression differences were observed. Lungs of ducks infected with VN1203 and intestines of birds infected with BC500, tissues important in influenza replication, showed highest upregulation of pattern recognition receptors and interferon stimulated genes early in the response. These tissues also appear to have specific downregulation of inflammatory components, with downregulation of distinct sets of proinflammatory cytokines in lung, and downregulation of key components of leukocyte recruitment and complement pathways in intestine. Our results suggest that global and tissue specific regulation patterns help the duck control viral replication as well as limit some inflammatory responses in tissues involved in replication to avoid damage.
Collapse
Affiliation(s)
- Lee K Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | | | - Robert G Webster
- Division of Virology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Zamperin G, Bianco A, Smith J, Bortolami A, Vervelde L, Schivo A, Fortin A, Marciano S, Panzarin V, Mazzetto E, Milani A, Berhane Y, Digard P, Bonfante F, Monne I. Heterogeneity of Early Host Response to Infection with Four Low-Pathogenic H7 Viruses with a Different Evolutionary History in the Field. Viruses 2021; 13:2323. [PMID: 34835129 PMCID: PMC8620788 DOI: 10.3390/v13112323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Once low-pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes from wild birds enter into poultry species, there is the possibility of them mutating into highly pathogenic avian influenza viruses (HPAIVs), resulting in severe epizootics with up to 100% mortality. This mutation from a LPAIV to HPAIV strain is the main cause of an AIV's major economic impact on poultry production. Although AIVs are inextricably linked to their hosts in their evolutionary history, the contribution of host-related factors in the emergence of HPAI viruses has only been marginally explored so far. In this study, transcriptomic sequencing of tracheal tissue from chickens infected with four distinct LP H7 viruses, characterized by a different history of pathogenicity evolution in the field, was implemented. Despite the inoculation of a normalized infectious dose of viruses belonging to the same subtype (H7) and pathotype (LPAI), the use of animals of the same age, sex and species as well as the identification of a comparable viral load in the target samples, the analyses revealed a heterogeneity in the gene expression profile in response to infection with each of the H7 viruses administered.
Collapse
Affiliation(s)
- Gianpiero Zamperin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Alice Bianco
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Jacqueline Smith
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Alessio Bortolami
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Lonneke Vervelde
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Alessia Schivo
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Andrea Fortin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Sabrina Marciano
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Valentina Panzarin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Eva Mazzetto
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Adelaide Milani
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington, Winnipeg, MB R3E 3M4, Canada;
| | - Paul Digard
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Francesco Bonfante
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| |
Collapse
|
14
|
Indicators of the molecular pathogenesis of virulent Newcastle disease virus in chickens revealed by transcriptomic profiling of spleen. Sci Rep 2021; 11:17570. [PMID: 34475461 PMCID: PMC8413450 DOI: 10.1038/s41598-021-96929-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Newcastle disease virus (NDV) has caused significant outbreaks in South-East Asia, particularly in Indonesia in recent years. Recently emerged genotype VII NDVs (NDV-GVII) have shifted their tropism from gastrointestinal/respiratory tropism to a lymphotropic virus, invading lymphoid organs including spleen and bursa of Fabricius to cause profound lymphoid depletion. In this study, we aimed to identify candidate genes and biological pathways that contribute to the disease caused by this velogenic NDV-GVII. A transcriptomic analysis based on RNA-Seq of spleen was performed in chickens challenged with NDV-GVII and a control group. In total, 6361 genes were differentially expressed that included 3506 up-regulated genes and 2855 down-regulated genes. Real-Time PCR of ten selected genes validated the RNA-Seq results as the correlation between them is 0.98. Functional and network analysis of Differentially Expressed Genes (DEGs) showed altered regulation of ElF2 signalling, mTOR signalling, proliferation of cells of the lymphoid system, signalling by Rho family GTPases and synaptogenesis signalling in spleen. We have also identified modified expression of IFIT5, PI3K, AGT and PLP1 genes in NDV-GVII infected chickens. Our findings in activation of autophagy-mediated cell death, lymphotropic and synaptogenesis signalling pathways provide new insights into the molecular pathogenesis of this newly emerged NDV-GVII.
Collapse
|
15
|
Rohaim MA, Al-Natour MQ, Abdelsabour MA, El Naggar RF, Madbouly YM, Ahmed KA, Munir M. Transgenic Chicks Expressing Interferon-Inducible Transmembrane Protein 1 (IFITM1) Restrict Highly Pathogenic H5N1 Influenza Viruses. Int J Mol Sci 2021; 22:ijms22168456. [PMID: 34445163 PMCID: PMC8395118 DOI: 10.3390/ijms22168456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Mammalian cells utilize a wide spectrum of pathways to antagonize the viral replication. These pathways are typically regulated by antiviral proteins and can be constitutively expressed but also exacerbated by interferon induction. A myriad of interferon-stimulated genes (ISGs) have been identified in mounting broad-spectrum antiviral responses. Members of the interferon-induced transmembrane (IFITM) family of proteins are unique among these ISGs due to their ability to prevent virus entry through the lipid bilayer into the cell. In the current study, we generated transgenic chickens that constitutively and stably expressed chicken IFITM1 (chIFITM1) using the avian sarcoma-leukosis virus (RCAS)-based gene transfer system. The challenged transgenic chicks with clinical dose 104 egg infective dose 50 (EID50) of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 (clade 2.2.1.2) showed 100% protection and significant infection tolerance. Although challenged transgenic chicks displayed 60% protection against challenge with the sub-lethal dose (EID50 105), the transgenic chicks showed delayed clinical symptoms, reduced virus shedding, and reduced histopathologic alterations compared to non-transgenic challenged control chickens. These finding indicate that the sterile defense against H5N1 HPAIV offered by the stable expression of chIFITM1 is inadequate; however, the clinical outcome can be substantially ameliorated. In conclusion, chIFITM proteins can inhibit influenza virus replication that can infect various host species and could be a crucial barrier against zoonotic infections.
Collapse
Affiliation(s)
- Mohammed A. Rohaim
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK; (M.A.R.); (M.Q.A.-M.)
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohammad Q. Al-Natour
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK; (M.A.R.); (M.Q.A.-M.)
- Department of Veterinary Pathology & Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology (JUST), P.O. Box 3030, Irbid 22110, Jordan
| | - Mohammed A. Abdelsabour
- Department of Poultry Viral Vaccines, Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Centre (ARC), Cairo 11435, Egypt; (M.A.A.); (Y.M.M.)
| | - Rania F. El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt;
| | - Yahia M. Madbouly
- Department of Poultry Viral Vaccines, Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Centre (ARC), Cairo 11435, Egypt; (M.A.A.); (Y.M.M.)
| | - Kawkab A. Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK; (M.A.R.); (M.Q.A.-M.)
- Correspondence:
| |
Collapse
|
16
|
Vu TH, Hong Y, Truong AD, Lee J, Lee S, Song KD, Cha J, Dang HV, Tran HTT, Lillehoj HS, Hong YH. Cytokine-cytokine receptor interactions in the highly pathogenic avian influenza H5N1 virus-infected lungs of genetically disparate Ri chicken lines. Anim Biosci 2021; 35:367-376. [PMID: 34289580 PMCID: PMC8902228 DOI: 10.5713/ab.21.0163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Objective The highly pathogenic avian influenza virus (HPAIV) is a threat to the poultry industry as well as the economy and remains a potential source of pandemic infection in humans. Antiviral genes are considered a potential factor for HPAIV resistance. Therefore, in this study, we investigated gene expression related to cytokine-cytokine receptor interactions by comparing resistant and susceptible Ri chicken lines for avian influenza virus infection. Methods Ri chickens of resistant (Mx/A; BF2/B21) and susceptible (Mx/G; BF2/B13) lines were selected by genotyping the Mx dynamin like GTPase (Mx) and major histocompatibility complex class I antigen BF2 genes. These chickens were then infected with influenza A virus subtype H5N1, and their lung tissues were collected for RNA sequencing. Results In total, 972 differentially expressed genes (DEGs) were observed between resistant and susceptible Ri chickens, according to the gene ontology and Kyoto encyclopedia of genes and genomes pathways. In particular, DEGs associated with cytokine-cytokine receptor interactions were most abundant. The expression levels of cytokines (interleukin-1β [IL-1β], IL-6, IL-8, and IL-18), chemokines (C-C Motif chemokine ligand 4 [CCL4] and CCL17), interferons (IFN-γ), and IFN-stimulated genes (Mx1, CCL19, 2′-5′-oligoadenylate synthase-like, and protein kinase R) were higher in H5N1-resistant chickens than in H5N1-susceptible chickens. Conclusion Resistant chickens show stronger immune responses and antiviral activity (cytokines, chemokines, and IFN-stimulated genes) than those of susceptible chickens against HPAIV infection.
Collapse
Affiliation(s)
- Thi Hao Vu
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Jiae Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sooyeon Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jihye Cha
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
17
|
McKellar J, Rebendenne A, Wencker M, Moncorgé O, Goujon C. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses 2021; 13:522. [PMID: 33810083 PMCID: PMC8005160 DOI: 10.3390/v13030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The threat of a new influenza pandemic is real. With past pandemics claiming millions of lives, finding new ways to combat this virus is essential. Host cells have developed a multi-modular system to detect incoming pathogens, a phenomenon called sensing. The signaling cascade triggered by sensing subsequently induces protection for themselves and their surrounding neighbors, termed interferon (IFN) response. This response induces the upregulation of hundreds of interferon-stimulated genes (ISGs), including antiviral effectors, establishing an antiviral state. As well as the antiviral proteins induced through the IFN system, cells also possess a so-called intrinsic immunity, constituted of antiviral proteins that are constitutively expressed, creating a first barrier preceding the induction of the interferon system. All these combined antiviral effectors inhibit the virus at various stages of the viral lifecycle, using a wide array of mechanisms. Here, we provide a review of mammalian and avian influenza A restriction factors, detailing their mechanism of action and in vivo relevance, when known. Understanding their mode of action might help pave the way for the development of new influenza treatments, which are absolutely required if we want to be prepared to face a new pandemic.
Collapse
Affiliation(s)
- Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Antoine Rebendenne
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie, INSERM/CNRS/UCBL1/ENS de Lyon, 69007 Lyon, France;
| | - Olivier Moncorgé
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| |
Collapse
|
18
|
Cao J, Zhang Y, Chen Y, Liang S, Liu D, Fan W, Xu Y, Liu H, Zhou Z, Liu X, Hou S. Dynamic Transcriptome Reveals the Mechanism of Liver Injury Caused by DHAV-3 Infection in Pekin Duck. Front Immunol 2020; 11:568565. [PMID: 33240261 PMCID: PMC7677298 DOI: 10.3389/fimmu.2020.568565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/08/2020] [Indexed: 01/17/2023] Open
Abstract
Duck hepatitis A virus 3 (DHAV-3) is a wild endemic virus, which seriously endangers the duck industry in China. The present study aims to elucidate the mechanism of duck resistance to DHAV-3 infection. Both resistant and susceptible ducks were challenged with DHAV-3 in this experiment. The histopathological features and serum biochemical indices (ALT and AST) were analyzed to estimate liver injury status at 6, 12, 15, and 24 h post-infection (hpi). The dynamic transcriptomes of liver were analyzed to explain the molecular regulation mechanism in ducks against DHAV-3. The result showed that the liver injury in susceptible ducks was more serious than that in the resistant ducks throughout the four time points. A total of 2,127 differentially expressed genes (DEGs) were identified by comparing the transcriptome of the two populations. The expression levels of genes involved in innate immune response increased rapidly in susceptible ducks from 12 hpi. Similarly, the expression of genes involved in cytokine regulation also increased at the same time points, while the expression levels of these genes in resistant ducks remained similar between the various time points. KEGG enrichment analysis of the DEGs revealed that the genes involved in cytokine regulation and apoptosis were highly expressed in susceptible ducks than that in resistant ducks, suggesting that excessive cytokine storm and apoptosis may partially explain the mechanism of liver injury caused by DHAV-3 infection. Besides, we found that the FUT9 gene may contribute to resistance towards DHAV-3 in resistant ducklings. These findings will provide insight into duck resistance and susceptibility to DHAV-3 infection in the early phases, facilitate the development of a strategy for DHAV-3 prevention and treatment, and enhance genetic resistance via genetic selection in animal breeding.
Collapse
Affiliation(s)
- Junting Cao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsheng Zhang
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Chen
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suyun Liang
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dapeng Liu
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlei Fan
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yaxi Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hehe Liu
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengkui Zhou
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolin Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shuisheng Hou
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Bioinformatics analyses of significant genes, related pathways, and candidate diagnostic biomarkers and molecular targets in SARS-CoV-2/COVID-19. GENE REPORTS 2020; 21:100956. [PMID: 33553808 PMCID: PMC7854084 DOI: 10.1016/j.genrep.2020.100956] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infection is a leading cause of pneumonia and death. The aim of this investigation is to identify the key genes in SARS-CoV-2 infection and uncover their potential functions. We downloaded the expression profiling by high throughput sequencing of GSE152075 from the Gene Expression Omnibus database. Normalization of the data from primary SARS-CoV-2 infected samples and negative control samples in the database was conducted using R software. Then, joint analysis of the data was performed. Pathway and Gene ontology (GO) enrichment analyses were performed, and the protein-protein interaction (PPI) network, target gene - miRNA regulatory network, target gene - TF regulatory network of the differentially expressed genes (DEGs) were constructed using Cytoscape software. Identification of diagnostic biomarkers was conducted using receiver operating characteristic (ROC) curve analysis. 994 DEGs (496 up regulated and 498 down regulated genes) were identified. Pathway and GO enrichment analysis showed up and down regulated genes mainly enriched in the NOD-like receptor signaling pathway, Ribosome, response to external biotic stimulus and viral transcription in SARS-CoV-2 infection. Down and up regulated genes were selected to establish the PPI network, modules, target gene - miRNA regulatory network, target gene - TF regulatory network revealed that these genes were involved in adaptive immune system, fluid shear stress and atherosclerosis, influenza A and protein processing in endoplasmic reticulum. In total, ten genes (CBL, ISG15, NEDD4, PML, REL, CTNNB1, ERBB2, JUN, RPS8 and STUB1) were identified as good diagnostic biomarkers. In conclusion, the identified DEGs, hub genes and target genes contribute to the understanding of the molecular mechanisms underlying the advancement of SARS-CoV-2 infection and they may be used as diagnostic and molecular targets for the treatment of patients with SARS-CoV-2 infection in the future.
Collapse
Key Words
- Bioinformatics
- CBL, Cbl proto-oncogene
- DEGs, differentially expressed genes
- Diagnosis
- GO, Gene ontology
- ISG15, ISG15 ubiquitin like modifier
- Key genes
- NEDD4, NEDD4 E3 ubiquitin protein ligase
- PML, promyelocyticleukemia
- PPI, protein-protein interaction
- Pathways
- REL, REL proto-oncogene, NF-kB subunit
- ROC, receiver operating characteristic
- SARS-CoV-2 infection
- SARS-CoV-2, Severe acute respiratory syndrome corona virus 2
Collapse
|
20
|
Transcriptome Analysis Reveals Inhibitory Effects of Lentogenic Newcastle Disease Virus on Cell Survival and Immune Function in Spleen of Commercial Layer Chicks. Genes (Basel) 2020; 11:genes11091003. [PMID: 32859030 PMCID: PMC7565929 DOI: 10.3390/genes11091003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
As a major infectious disease in chickens, Newcastle disease virus (NDV) causes considerable economic losses in the poultry industry, especially in developing countries where there is limited access to effective vaccination. Therefore, enhancing resistance to the virus in commercial chickens through breeding is a promising way to promote poultry production. In this study, we investigated gene expression changes at 2 and 6 days post inoculation (dpi) at day 21 with a lentogenic NDV in a commercial egg-laying chicken hybrid using RNA sequencing analysis. By comparing NDV-challenged and non-challenged groups, 526 differentially expressed genes (DEGs) (false discovery rate (FDR) < 0.05) were identified at 2 dpi, and only 36 at 6 dpi. For the DEGs at 2 dpi, Ingenuity Pathway Analysis predicted inhibition of multiple signaling pathways in response to NDV that regulate immune cell development and activity, neurogenesis, and angiogenesis. Up-regulation of interferon induced protein with tetratricopeptide repeats 5 (IFIT5) in response to NDV was consistent between the current and most previous studies. Sprouty RTK signaling antagonist 1 (SPRY1), a DEG in the current study, is in a significant quantitative trait locus associated with virus load at 6 dpi in the same population. These identified pathways and DEGs provide potential targets to further study breeding strategy to enhance NDV resistance in chickens.
Collapse
|
21
|
Barjesteh N, O'Dowd K, Vahedi SM. Antiviral responses against chicken respiratory infections: Focus on avian influenza virus and infectious bronchitis virus. Cytokine 2020; 127:154961. [PMID: 31901597 PMCID: PMC7129915 DOI: 10.1016/j.cyto.2019.154961] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Abstract
Some of the respiratory viral infections in chickens pose a significant threat to the poultry industry and public health. In response to viral infections, host innate responses provide the first line of defense against viruses, which often act even before the establishment of the infection. Host cells sense the presence of viral components through germinal encoded pattern recognition receptors (PRRs). The engagement of PRRs with pathogen-associated molecular patterns leads to the induction of pro-inflammatory and interferon productions. Induced antiviral responses play a critical role in the outcome of the infections. In order to improve current strategies for control of viral infections or to advance new strategies aimed against viral infections, a deep understanding of host-virus interaction and induction of antiviral responses is required. In this review, we summarized recent progress in understanding innate antiviral responses in chickens with a focus on the avian influenza virus and infectious bronchitis virus.
Collapse
Affiliation(s)
- Neda Barjesteh
- Research Group on Infectious Diseases in Production Animals (GREMIP), and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.
| | - Kelsey O'Dowd
- Research Group on Infectious Diseases in Production Animals (GREMIP), and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Seyed Milad Vahedi
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
22
|
Anjum FR, Rahman SU, Aslam MA, Qureshi AS. Comprehensive network map of transcriptional activation of chicken type I IFNs and IFN-stimulated genes. Comp Immunol Microbiol Infect Dis 2019; 68:101407. [PMID: 31877494 DOI: 10.1016/j.cimid.2019.101407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
Chicken type I interferons (type I IFNs) are key antiviral players of the chicken immune system and mediate the first line of defense against viral pathogens infecting the avian species. Recognition of viral pathogens by specific pattern recognition receptors (PRRs) induce chicken type I IFNs expression followed by their subsequent interaction to IFN receptors and induction of a variety of IFN stimulated antiviral proteins. These antiviral effectors establish the antiviral state in neighboring cells and thus protect the host from infection. Three subtypes of chicken type I IFNs; chIFN-α, chIFN-β, and a recently discovered chIFN-κ have been identified and characterized in chicken. Chicken type I IFNs are activated by various host cell pathways and constitute a major antiviral innate defense in chicken. This review will help to understand the chicken type 1 IFNs, host cellular pathways that are involved in activation of chicken type I IFNs and IFN stimulated antiviral effectors along with the gaps in knowledge which will be important for future investigation. These findings will help us to comprehend the role of chicken type I IFNs and to develop different strategies for controlling viral infection in poultry.
Collapse
Affiliation(s)
| | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | | - Anas Sarwar Qureshi
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
23
|
Drobik-Czwarno W, Wolc A, Kucharska K, Martyniuk E. Genetic determinants of resistance to highly pathogenic avian influenza in chickens. ROCZNIKI NAUKOWE POLSKIEGO TOWARZYSTWA ZOOTECHNICZNEGO 2019. [DOI: 10.5604/01.3001.0013.5065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) poses a huge threat to poultry production and also introduces an epidemiological risk in the human population. Thus far, HPAI has been controlled mainly through widespread implementation of biosecurity, and in the case of an outbreak, liquidation of flocks and establishment of protection zones. Alternative strategies for combating HPAI include the use of vaccines, genetic modification, and genetic selection for increased general and specific immunity in birds. These kinds of strategies often require identification of the genes involved in the immune response to the pathogen. Many genes have been identified as potentially associated with differences in the response to HPAI between poultry species and between individuals. Thus far, the most attention has been focused on genes taking part in regulating the innate immune response, which is responsible for preventing infection and limiting the replication and spread of the virus. The most commonly mentioned candidates for layer chickens include interferon-stimulated genes (ISGs) and RIG-I-like receptors. Proteins encoded by genes of the BTLN family, defensins, and proteins involved in apoptosis have also been associated with differences in the response to HPAI. Recent years have seen an increasing number of studies on the genetic determinants of individual differences in the response to HPAI in chickens. Data from HPAI outbreaks in the US in the spring of 2015 and Mexico in the years 2012-2016 have enabled a more precise analysis of this problem. A number of genes have been identified as associated with the immune response, but their specific role in determining the survival of birds requires further study. Preliminary results indicate that genetic determinants of resistance to HPAI are highly complex and can vary depending on the virus strain and the genetic line of birds.
Collapse
Affiliation(s)
- Wioleta Drobik-Czwarno
- Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wydział Nauk o Zwierzętach Katedra Genetyki i Ogólnej Hodowli Zwierząt
| | - Anna Wolc
- Iowa State University Department of Animal Science
| | - Kornelia Kucharska
- Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wydział Nauk o Zwierzętach Katedra Biologii Środowiska Zwierząt, Zakład Zoologii
| | - Elżbieta Martyniuk
- Szkoła Główna Gospodarstwa Wiejskiego w Warszawie; Wydział Nauk o Zwierzętach
| |
Collapse
|
24
|
Chico V, Salvador-Mira ME, Nombela I, Puente-Marin S, Ciordia S, Mena MC, Perez L, Coll J, Guzman F, Encinar JA, Mercado L, Ortega-Villaizan MDM. IFIT5 Participates in the Antiviral Mechanisms of Rainbow Trout Red Blood Cells. Front Immunol 2019; 10:613. [PMID: 31040842 PMCID: PMC6476978 DOI: 10.3389/fimmu.2019.00613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/07/2019] [Indexed: 12/14/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV) infection appears to be halted in rainbow trout nucleated red blood cells (RBCs). Diverse mechanisms are thought to be related to the antiviral immune response of rainbow trout RBCs to VHSV. However, the specific rainbow trout RBC proteins that interact directly with VHSV are still unknown. In an attempt to identify VHSV-RBC protein interactions, we characterized the immunoprecipitated (IP) proteome of RBCs exposed to VHSV using an antibody against the N protein of VHSV. The IP proteomic characterization identified 31 proteins by mass spectrometry analysis. Among them, we identified interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), a protein belonging to a family of proteins that are induced after the production of type I interferon. Importantly, IFIT5 has been implicated in the antiviral immune response. We confirmed the participation of IFIT5 in the rainbow trout RBC antiviral response by examining the expression profile of IFIT5 in RBCs after VHSV exposure at transcriptional and protein levels. We detected a correlation between the highest IFIT5 expression levels and the decline in VHSV replication at 6 h post-exposure. In addition, silencing ifit5 resulted in a significant increase in VHSV replication in RBCs. Moreover, an increase in VHSV replication was observed in RBCs when the IFIT5 RNA-binding pocket cavity was modulated by using a natural compound from the SuperNatural II database. We performed a proximity ligation assay and detected a significant increase in positive cells among VHSV-exposed RBCs compared to unexposed RBCs, indicating protein-protein colocalization between IFIT5 and the glycoprotein G of VHSV. In summary, these results suggest a possible role of IFIT5 in the antiviral response of RBCs against VHSV.
Collapse
Affiliation(s)
- Veronica Chico
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Maria Elizabhet Salvador-Mira
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Ivan Nombela
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Sara Puente-Marin
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - María Carmen Mena
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Luis Perez
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Julio Coll
- Departamento de Biotecnología, Instituto Nacional de Investigaciones y Tecnologías Agrarias y Alimentarias (INIA), Madrid, Spain
| | - Fanny Guzman
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Jose Antonio Encinar
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Maria Del Mar Ortega-Villaizan
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| |
Collapse
|
25
|
Creating Disease Resistant Chickens: A Viable Solution to Avian Influenza? Viruses 2018; 10:v10100561. [PMID: 30326625 PMCID: PMC6213529 DOI: 10.3390/v10100561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 11/16/2022] Open
Abstract
Influenza A virus (IAV) represents an ongoing threat to human and animal health worldwide. The generation of IAV-resistant chickens through genetic modification and/or selective breeding may help prevent viral spread. The feasibility of creating genetically modified birds has already been demonstrated with the insertion of transgenes that target IAV into the genomes of chickens. This approach has been met with some success in minimising the spread of IAV but has limitations in terms of its ability to prevent the emergence of disease. An alternate approach is the use of genetic engineering to improve host resistance by targeting the antiviral immune responses of poultry to IAV. Harnessing such resistance mechanisms in a “genetic restoration” approach may hold the greatest promise yet for generating disease resistant chickens. Continuing to identify genes associated with natural resistance in poultry provides the opportunity to identify new targets for genetic modification and/or selective breeding. However, as with any new technology, economic, societal, and legislative barriers will need to be overcome before we are likely to see commercialisation of genetically modified birds.
Collapse
|