1
|
Vanhove MPM, Koblmüller S, Fernandes JMO, Hahn C, Plusquin M, Kmentová N. Cichlid fishes are promising underutilized models to investigate helminth-host-microbiome interactions. Front Immunol 2025; 16:1527184. [PMID: 40018030 PMCID: PMC11864961 DOI: 10.3389/fimmu.2025.1527184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
The "Old Friends Hypothesis" suggests insufficient exposure to symbionts hinders immune development, contributing to increased immune-related diseases in the Global North. The microbiome is often the focus; helminths, potentially also offering health benefits, lack attention. Infection and effect of helminths are influenced and perhaps determined by micro-organisms. Mechanisms behind parasite-microbiome interactions are poorly understood, despite implications on host health. These interactions are typically studied for single helminth species in laboratory animal models, overlooking helminth diversity. Reviewing research on relationships between helminth and microbial diversity yielded 27 publications; most focused on human or other mammalian hosts, relying on natural exposure rather than experimental helminth inoculation. Only about half investigated host health outcomes. Remaining knowledge gaps warrant considering additional candidate model systems. Given the high helminthiasis burden and species diversity of helminths, we propose seeking models in the Global South, where a considerable proportion of research on diversity aspects of helminth-microbiome interactions took place. Low availability of genomic resources for helminths in the Global South, however, necessitates more integrative helminthological research efforts. Given substantial similarities in immune systems, several fishes are models for human health/disease. More effort could be done to establish this for cichlids, whose representatives in the African Great Lakes provide a well-delineated, closed natural system relevant to human health in view of fish-borne zoonoses and other water-borne parasites. A good baseline exists for these cichlids' genomics, parasitology, and microbiology. We suggest exploring African Great Lake cichlids as model hosts for interactions between microbial diversity, helminth diversity, and host health.
Collapse
Affiliation(s)
- Maarten P. M. Vanhove
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- International Union for Conservation of Nature (IUCN) Species Survival Commission (SSC) Parasite Specialist Group, Diepenbeek, Belgium
| | | | - Jorge M. O. Fernandes
- Renewable Marine Resources Department, Institut de Ciències del Mar, Spanish National Research Council, Barcelona, Spain
| | | | - Michelle Plusquin
- Research Group Environmental Biology, Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nikol Kmentová
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- International Union for Conservation of Nature (IUCN) Species Survival Commission (SSC) Parasite Specialist Group, Diepenbeek, Belgium
- Freshwater Biology, Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| |
Collapse
|
2
|
Pandey H, Tang DWT, Wong SH, Lal D. Helminths in alternative therapeutics of inflammatory bowel disease. Intest Res 2025; 23:8-22. [PMID: 39916482 PMCID: PMC11834367 DOI: 10.5217/ir.2023.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2025] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is a nonspecific chronic inflammation of the gastrointestinal tract. Despite recent advances in therapeutics and newer management strategies, IBD largely remains untreatable. Helminth therapy is a promising alternative therapeutic for IBD that has gained some attention in the last two decades. Helminths have immunomodulatory effects and can alter the gut microbiota. The immunomodulatory effects include a strong Th2 immune response, T-regulatory cell response, and the production of regulatory cytokines. Although concrete evidence regarding the efficacy of helminth therapy in IBD is lacking, clinical studies and studies done in animal models have shown some promise. Most clinical studies have shown that helminth therapy is safe and easily tolerable. Extensive work has been done on the whipworm Trichuris, but other helminths, including Schistosoma, Trichinella, Heligmosomoides, and Ancylostoma, have also been explored for pre-clinical and animal studies. This review article summarizes the potential of helminth therapy as an alternative therapeutic or an adjuvant to the existing therapeutic procedures for IBD treatment.
Collapse
Affiliation(s)
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
3
|
Caracciolo ME, Villela EV, Machado LDS, Barreto ML, Rosa ACDP, Lopes-Torres EJ. Nematode-bacteria interactions in bovine parasitic otitis. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2024; 33:e019024. [PMID: 39774744 PMCID: PMC11756828 DOI: 10.1590/s1984-29612024081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
Bovine parasitic otitis poses challenges in diagnosis, treatment and involves various agents, such as bacteria, fungi, mites, and nematodes. This study focused on the nematodes and bacteria isolated from the auditory canals of dairy cattle. A total of twenty samples were collected from dairy cattle in two states of Brazil. The results showed that Metarhabditis freitasi and M. costai nematodes were identified in 75% of samples. Bacterial species from the ear, identified via mass spectrometry, revealed that different strains were present in 65% of the cattle. Mycoplasma spp. were identified in 45% of samples through molecular techniques. Gram-negative bacteria and Mycoplasma spp. were exclusively found in nematode-infected cattle. Furthermore, the bacteria exhibited resistance to multiple antimicrobial classes, and demonstrating multiresistance. Electron microscopy revealed biofilm aggregates on the cuticle of Metarhabditis spp., suggesting a potential role of these nematodes in bacterial migration and interaction with nervous tissue. Thirteen bacterial strains demonstrated biofilm formation ability, indicating their potential pathogenic role. This research highlights the persistent and complex nature of parasitic otitis, emphasizing the significant role of nematode-bacteria associations in its pathogenicity. The presence of resistant strains and biofilm formation underscores the challenges in managing the diagnosis and treatment of bovine parasitic otitis.
Collapse
Affiliation(s)
- Makoto Enoki Caracciolo
- Laboratório de Helmintologia Romero Lascasas Porto, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro – UERJ, Rio de Janeiro, RJ, Brasil
- Centro Multiusuário para Análise de Fenômenos Biomédicos, Universidade do Estado do Amazonas – UEA, Manaus, AM, Brasil
| | - Erika Verissimo Villela
- Departamento de Microbiologia, Imunologia e Parasitologia. Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro – UERJ, Rio de Janeiro, RJ, Brasil
| | - Leandro dos Santos Machado
- Departamento de Saúde Coletiva Veterinária e Saúde Pública, Universidade Federal Fluminense – UFF, Niterói, RJ, Brasil
| | - Maria Lúcia Barreto
- Núcleo de Animais de Laboratório, Universidade Federal Fluminense – UFF, Niterói, RJ, Brasil
| | - Ana Cláudia de Paula Rosa
- Departamento de Microbiologia, Imunologia e Parasitologia. Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro – UERJ, Rio de Janeiro, RJ, Brasil
| | - Eduardo José Lopes-Torres
- Laboratório de Helmintologia Romero Lascasas Porto, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro – UERJ, Rio de Janeiro, RJ, Brasil
- Laboratório Multiusuário de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro – UERJ, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
4
|
Rooney J, Rivera-de-Torre E, Li R, Mclean K, Price DR, Nisbet AJ, Laustsen AH, Jenkins TP, Hofmann A, Bakshi S, Zarkan A, Cantacessi C. Structural and functional analyses of nematode-derived antimicrobial peptides support the occurrence of direct mechanisms of worm-microbiota interactions. Comput Struct Biotechnol J 2024; 23:1522-1533. [PMID: 38633385 PMCID: PMC11021794 DOI: 10.1016/j.csbj.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
The complex relationships between gastrointestinal (GI) nematodes and the host gut microbiota have been implicated in key aspects of helminth disease and infection outcomes. Nevertheless, the direct and indirect mechanisms governing these interactions are, thus far, largely unknown. In this proof-of-concept study, we demonstrate that the excretory-secretory products (ESPs) and extracellular vesicles (EVs) of key GI nematodes contain peptides that, when recombinantly expressed, exert antimicrobial activity in vitro against Bacillus subtilis. In particular, using time-lapse microfluidics microscopy, we demonstrate that exposure of B. subtilis to a recombinant saposin-domain containing peptide from the 'brown stomach worm', Teladorsagia circumcincta, and a metridin-like ShK toxin from the 'barber's pole worm', Haemonchus contortus, results in cell lysis and significantly reduced growth rates. Data from this study support the hypothesis that GI nematodes may modulate the composition of the vertebrate gut microbiota directly via the secretion of antimicrobial peptides, and pave the way for future investigations aimed at deciphering the impact of such changes on the pathophysiology of GI helminth infection and disease.
Collapse
Affiliation(s)
- James Rooney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Ruizhe Li
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Kevin Mclean
- Moredun Research Institute, Penicuik Midlothian, United Kingdom
| | | | | | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Andreas Hofmann
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kulmbach, Germany
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Somenath Bakshi
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Ashraf Zarkan
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Sabey KA, Castro A, Song SJ, Knight R, Ezenwa VO. Anthelmintic Treatment Reveals Sex-Dependent Worm-Gut Microbiota Interactions. Parasite Immunol 2024; 46:e70000. [PMID: 39707820 DOI: 10.1111/pim.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
Gastrointestinal helminths interact with the gut microbiota in ways that shape microbiota structure and function, but these effects are highly inconsistent across studies. One factor that may help explain variation in parasite-microbiota interactions is host sex since helminths can induce sex-specific changes in feeding behaviour and diet that might cascade to shape gut microbial communities. We tested this idea using an anthelmintic treatment experiment in wild Grant's gazelles (Nanger granti). We found that in males, anthelmintic treatment induced short-term shifts in microbial diversity and structure within ~40-70 days, but in females, treatment had effects on microbiota structure that emerged over a longer period of ~500 days. Long-term effects of treatment on the microbiota of females were potentially due to sex-specific changes in feeding behaviour since deworming nearly doubled the time females spent feeding, but did not affect feeding time in males. In support of this idea, anthelmintic treatment eliminated associations between microbial diversity and diet in females, and treated females maintained a more stable abundance of microbial taxa and predicted functions. Together, these findings suggest that accounting for host traits can help uncover mechanisms, such as changes in diet, by which helminths interact with the microbiota.
Collapse
Affiliation(s)
- Kate A Sabey
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Avina Castro
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, USA
| | - Se Jin Song
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Vanessa O Ezenwa
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Leben R, Rausch S, Elomaa L, Hauser AE, Weinhart M, Fischer SC, Stark H, Hartmann S, Niesner R. Aggregation of adult parasitic nematodes in sex-mixed groups analysed by transient anomalous diffusion formalism. J R Soc Interface 2024; 21:20240327. [PMID: 39379003 PMCID: PMC11461085 DOI: 10.1098/rsif.2024.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
Intestinal parasitic worms are widespread throughout the world, causing chronic infections in humans and animals. However, very little is known about the locomotion of the worms in the host gut. We studied the movement of Heligmosomoides bakeri, naturally infecting mice, and used as an animal model for roundworm infections. We investigated the locomotion of H. bakeri in simplified environments mimicking key physical features of the intestinal lumen, i.e. medium viscosity and intestinal villi topology. We found that the motion sequence of these nematodes is non-periodic, but the migration could be described by transient anomalous diffusion. Aggregation as a result of biased, enhanced-diffusive locomotion of nematodes in sex-mixed groups was detected. This locomotion is probably stimulated by mating and reproduction, while single nematodes move randomly (diffusive). Natural physical obstacles such as high mucus-like viscosity or villi topology slowed down but did not entirely prevent nematode aggregation. Additionally, the mean displacement rate of nematodes in sex-mixed groups of 3.0 × 10-3 mm s-1 in a mucus-like medium is in good agreement with estimates of migration velocities of 10-4 to 10-3 mm s-1 in the gut. Our data indicate H. bakeri motion to be non-periodic and their migration random (diffusive-like), but triggerable by the presence of kin.
Collapse
Affiliation(s)
- Ruth Leben
- Institute for Immunology, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany
| | - Sebastian Rausch
- Institute for Immunology, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anja E. Hauser
- Department of Rheumatology and Clinical Immunology, Immune Dynamics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt University, Berlin, Germany
- Laboratory for Immune Dynamics, Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Sabine C. Fischer
- Center for Computational and Theoretical Biology, Fakultät für Biologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Holger Stark
- Institute of Theoretical Physics, Technische Universität Berlin, Berlin, Germany
| | - Susanne Hartmann
- Institute for Immunology, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Raluca Niesner
- Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany
| |
Collapse
|
7
|
Taye B, Mekonnen Z, Belanger KD, Davenport ER. Gut-microbiome profiles among Soil-transmitted helminths (STHs) infected Ethiopian children enrolled in the school-based mass deworming program. PLoS Negl Trop Dis 2024; 18:e0012485. [PMID: 39405336 PMCID: PMC11478818 DOI: 10.1371/journal.pntd.0012485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Soil-transmitted helminths (STHs) and mutualistic gut microbes coexist in the gastrointestinal tract. However, limited data exist regarding how STH infections are associated with gut microbiome profiles. METHOD We conducted a cross-sectional analysis of baseline data collected in a longitudinal study to identify and explain differences in microbial communities between STH-infected and non-infected Ethiopian school children. We collected 138 stool samples and analyzed them for STH infection using standard direct wet mount and Kato Katz methods. The gut microbiome profiles were characterized using targeted amplicon sequencing of the 16S rRNA gene from the total DNA extracted from the stools. RESULTS Children infected with Trichuris trichiura showed significantly lower microbial diversity than those who were non-infected (p<0.05). We also observed significant difference in microbiome composition based on Trichuris trichiura infection status (PERMANOVA p< 0.01). A comparison of microbial taxa at the genus level among participants infected with different helminth species showed a significant increase in Agathobacter relative abundance among children infected with Trichuris trichiura compared to non-infected subjects (adjusted p = 0.001). CONCLUSIONS Our results indicate that changes in the gut microbiome composition may vary depending on the species of helminth present. Further studies should investigate how Trichuris trichiura selectively alters microbiome composition compared to other STH species.
Collapse
Affiliation(s)
- Bineyam Taye
- Department of Biology, Colgate University, Hamilton, New York, United States of America
| | - Zeleke Mekonnen
- Institute of Health, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Kenneth D. Belanger
- Department of Biology, Colgate University, Hamilton, New York, United States of America
| | - Emily R. Davenport
- Department of Biology, Huck Institutes of the Life Sciences, Institute for Computational and Data Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
8
|
Revault J, Desdevises Y, Magnanou É. Link between bacterial communities and contrasted loads in ectoparasitic monogeneans from the external mucus of two wild sparid species (Teleostei). Anim Microbiome 2024; 6:42. [PMID: 39080784 PMCID: PMC11290237 DOI: 10.1186/s42523-024-00329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND While teleost fishes represent two thirds of marine vertebrates, the role of their external microbiota in relationship with their environment remains poorly studied, especially in wild populations. Hence, the interaction of their microbiota with ectoparasites is largely unknown. Microbiota can act as a protective barrier against pathogens, and/or be involved in host recognition by parasites. Thus, host-parasite associations should now be considered as a tripartite interplay where the microbiota shapes the host phenotype and its relation to parasites. Monogeneans (Platyhelminthes) are direct life cycle ectoparasites commonly found on teleost skin and gills. The role of bacterial communities within skin and gill mucus which either pre-exist monogeneans infestation or follow it remain unclear. This is investigated in this study using the association between Sparidae (Teleostei) and their specific monogenean ectoparasites of the Lamellodiscus genus. We are exploring specificity mechanisms through the characterization of the external mucus microbiota of two wild sparid species using 16s rRNA amplicon sequencing. We investigated how these bacterial communities are related to constrated Lamellodiscus monogeneans parasitic load. RESULTS Our results revealed that the increase in Lamellodiscus load is linked to an increase in bacterial diversity in the skin mucus of D. annularis specimens. The date of capture of D. annularis individuals appears to influence the Lamellodiscus load. Correlations between the abundance of bacterial taxa and Lamellodiscus load were found in gill mucus of both species. Abundance of Flavobacteriaceae family was strongly correlated with the Lamellodiscus load in gill mucus of both species, as well as the potentially pathogenic bacterial genus Tenacibaculum in D. annularis gill mucus. Negative correlations were observed between Lamellodiscus load and the abundance in Vibrionaceae in gill mucus of D. annularis, and the abundance in Fusobacteria in gill mucus of P. acarne specimens, suggesting potential applications of these bacteria in mitigating parasitic infections in fish. CONCLUSIONS Our findings highlight the dynamic nature of fish microbiota, in particular in relation with monogeneans infestations in two wild sparid species. More generally, this study emphasizes the links between hosts, bacterial communities and parasites, spanning from the dynamics of co-infection to the potential protective role of the host's microbiota.
Collapse
Affiliation(s)
- Judith Revault
- Sorbonne Université, CNRS, Biologie Intégrative des organismes marins, BIOM, Observatoire Océanologique, Banyuls/Mer, F-66650, France.
| | - Yves Desdevises
- Sorbonne Université, CNRS, Biologie Intégrative des organismes marins, BIOM, Observatoire Océanologique, Banyuls/Mer, F-66650, France
| | - Élodie Magnanou
- Sorbonne Université, CNRS, Biologie Intégrative des organismes marins, BIOM, Observatoire Océanologique, Banyuls/Mer, F-66650, France
| |
Collapse
|
9
|
Grondin JA, Jamal A, Mowna S, Seto T, Khan WI. Interaction between Intestinal Parasites and the Gut Microbiota: Implications for the Intestinal Immune Response and Host Defence. Pathogens 2024; 13:608. [PMID: 39204209 PMCID: PMC11356857 DOI: 10.3390/pathogens13080608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Intestinal parasites, including helminths and protozoa, account for a significant portion of the global health burden. The gastrointestinal (GI) tract not only serves as the stage for these parasitic infections but also as the residence for millions of microbes. As the intricacies of the GI microbial milieu continue to unfold, it is becoming increasingly apparent that the interactions between host, parasite, and resident microbes help dictate parasite survival and, ultimately, disease outcomes. Across both clinical and experimental models, intestinal parasites have been shown to impact microbial composition and diversity. Reciprocally, microbes can directly influence parasitic survival, colonization and expulsion. The gut microbiota can also indirectly impact parasites through the influence and manipulation of the host. Studying this host-parasite-microbiota axis may help bring about novel therapeutic strategies for intestinal parasitic infection as well as conditions such as inflammatory bowel disease (IBD). In this review, we explore the relationship between intestinal parasites, with a particular focus on common protozoa and helminths, and the gut microbiota, and how these interactions can influence the host defence and intestinal immune response. We will also explore the impact of this tripartite relationship in a clinical setting and its broader implications for human health.
Collapse
Affiliation(s)
- Jensine A. Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Asif Jamal
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sadrina Mowna
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tyler Seto
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Waliul I. Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
10
|
Bogza A, King IL, Maurice CF. Worming into infancy: Exploring helminth-microbiome interactions in early life. Cell Host Microbe 2024; 32:639-650. [PMID: 38723604 DOI: 10.1016/j.chom.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 06/06/2024]
Abstract
There is rapidly growing awareness of microbiome assembly and function in early-life gut health. Although many factors, such as antibiotic use and highly processed diets, impinge on this process, most research has focused on people residing in high-income countries. However, much of the world's population lives in low- and middle-income countries (LMICs), where, in addition to erratic antibiotic use and suboptimal diets, these groups experience unique challenges. Indeed, many children in LMICs are infected with intestinal helminths. Although helminth infections are strongly associated with diverse developmental co-morbidities and induce profound microbiome changes, few studies have directly examined whether intersecting pathways between these components of the holobiont shape health outcomes in early life. Here, we summarize microbial colonization within the first years of human life, how helminth-mediated changes to the gut microbiome may affect postnatal growth, and why more research on this relationship may improve health across the lifespan.
Collapse
Affiliation(s)
- Andrei Bogza
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada; Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, Montreal, QC, Canada
| | - Irah L King
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada; Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Corinne F Maurice
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, Montreal, QC, Canada.
| |
Collapse
|
11
|
Davie T, Serrat X, Imhof L, Snider J, Štagljar I, Keiser J, Hirano H, Watanabe N, Osada H, Fraser AG. Identification of a family of species-selective complex I inhibitors as potential anthelmintics. Nat Commun 2024; 15:3367. [PMID: 38719808 PMCID: PMC11079024 DOI: 10.1038/s41467-024-47331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Soil-transmitted helminths (STHs) are major pathogens infecting over a billion people. There are few classes of anthelmintics and there is an urgent need for new drugs. Many STHs use an unusual form of anaerobic metabolism to survive the hypoxic conditions of the host gut. This requires rhodoquinone (RQ), a quinone electron carrier. RQ is not made or used by vertebrate hosts making it an excellent therapeutic target. Here we screen 480 structural families of natural products to find compounds that kill Caenorhabditis elegans specifically when they require RQ-dependent metabolism. We identify several classes of compounds including a family of species-selective inhibitors of mitochondrial respiratory complex I. These identified complex I inhibitors have a benzimidazole core and we determine key structural requirements for activity by screening 1,280 related compounds. Finally, we show several of these compounds kill adult STHs. We suggest these species-selective complex I inhibitors are potential anthelmintics.
Collapse
Affiliation(s)
- Taylor Davie
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Xènia Serrat
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lea Imhof
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
- University of Basel, CH-4000, Basel, Switzerland
| | - Jamie Snider
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Igor Štagljar
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Mediterranean Institute for Life Sciences, Meštrovićevo Šetalište 45, HR-21000, Split, Croatia
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
- University of Basel, CH-4000, Basel, Switzerland
| | - Hiroyuki Hirano
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako Saitama, 351-0198, Japan
| | - Nobumoto Watanabe
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako Saitama, 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako Saitama, 351-0198, Japan
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Andrew G Fraser
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Wolstenholme AJ, Andersen EC, Choudhary S, Ebner F, Hartmann S, Holden-Dye L, Kashyap SS, Krücken J, Martin RJ, Midha A, Nejsum P, Neveu C, Robertson AP, von Samson-Himmelstjerna G, Walker R, Wang J, Whitehead BJ, Williams PDE. Getting around the roundworms: Identifying knowledge gaps and research priorities for the ascarids. ADVANCES IN PARASITOLOGY 2024; 123:51-123. [PMID: 38448148 PMCID: PMC11143470 DOI: 10.1016/bs.apar.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.
Collapse
Affiliation(s)
- Adrian J Wolstenholme
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France.
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Shivani Choudhary
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Friederike Ebner
- Department of Molecular Life Sciences, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Susanne Hartmann
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Ankur Midha
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cedric Neveu
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | | | - Robert Walker
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jianbin Wang
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | | | - Paul D E Williams
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
13
|
Stevens L, Martínez-Ugalde I, King E, Wagah M, Absolon D, Bancroft R, Gonzalez de la Rosa P, Hall JL, Kieninger M, Kloch A, Pelan S, Robertson E, Pedersen AB, Abreu-Goodger C, Buck AH, Blaxter M. Ancient diversity in host-parasite interaction genes in a model parasitic nematode. Nat Commun 2023; 14:7776. [PMID: 38012132 PMCID: PMC10682056 DOI: 10.1038/s41467-023-43556-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Host-parasite interactions exert strong selection pressures on the genomes of both host and parasite. These interactions can lead to negative frequency-dependent selection, a form of balancing selection that is hypothesised to explain the high levels of polymorphism seen in many host immune and parasite antigen loci. Here, we sequence the genomes of several individuals of Heligmosomoides bakeri, a model parasite of house mice, and Heligmosomoides polygyrus, a closely related parasite of wood mice. Although H. bakeri is commonly referred to as H. polygyrus in the literature, their genomes show levels of divergence that are consistent with at least a million years of independent evolution. The genomes of both species contain hyper-divergent haplotypes that are enriched for proteins that interact with the host immune response. Many of these haplotypes originated prior to the divergence between H. bakeri and H. polygyrus, suggesting that they have been maintained by long-term balancing selection. Together, our results suggest that the selection pressures exerted by the host immune response have played a key role in shaping patterns of genetic diversity in the genomes of parasitic nematodes.
Collapse
Affiliation(s)
- Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK.
| | - Isaac Martínez-Ugalde
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Erna King
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Martin Wagah
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | | | - Rowan Bancroft
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Jessica L Hall
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Sarah Pelan
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Elaine Robertson
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy B Pedersen
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy H Buck
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
14
|
Oladosu OJ, Correia BSB, Grafl B, Liebhart D, Metges CC, Bertram HC, Daş G. 1H-NMR based-metabolomics reveals alterations in the metabolite profiles of chickens infected with ascarids and concurrent histomonosis infection. Gut Pathog 2023; 15:56. [PMID: 37978563 PMCID: PMC10655416 DOI: 10.1186/s13099-023-00584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Gut infections of chickens caused by Ascaridia galli and Heterakis gallinarum are associated with impaired host performance, particularly in high-performing genotypes. Heterakis gallinarum is also a vector of Histomonas meleagridis that is often co-involved with ascarid infections. Here, we provide a first insight into the alteration of the chicken plasma and liver metabolome as a result of gastrointestinal nematode infections with concomitant histomonosis. 1H nuclear magnetic resonance (1H-NMR) based-metabolomics coupled with a bioinformatics analysis was applied to explore the variation in the metabolite profiles of the liver (N = 105) and plasma samples from chickens (N = 108) experimentally infected with A. galli and H. gallinarum (+H. meleagridis). This was compared with uninfected chickens at different weeks post-infection (wpi 2, 4, 6, 10, 14, 18) representing different developmental stages of the worms. RESULTS A total of 31 and 54 metabolites were quantified in plasma and aqueous liver extracts, respectively. Statistical analysis showed no significant differences (P > 0.05) in any of the 54 identified liver metabolites between infected and uninfected hens. In contrast, 20 plasma metabolites including, amino acids, sugars, and organic acids showed significantly elevated concentrations in the infected hens (P < 0.05). Alterations of plasma metabolites occurred particularly in wpi 2, 6 and 10, covering the pre-patent period of worm infections. Plasma metabolites with the highest variation at these time points included glutamate, succinate, trimethylamine-N-oxide, myo-inositol, and acetate. Differential pathway analysis suggested that infection induced changes in (1) phenylalanine, tyrosine, and tryptophan metabolism, (2) alanine, aspartate and glutamate metabolism; and 3) arginine and proline metabolism (Pathway impact > 0.1 with FDR adjusted P-value < 0.05). CONCLUSION In conclusion, 1H-NMR based-metabolomics revealed significant alterations in the plasma metabolome of high performing chickens infected with gut pathogens-A. galli and H. gallinarum. The alterations suggested upregulation of key metabolic pathways mainly during the patency of infections. This approach extends our understanding of host interactions with gastrointestinal nematodes at the metabolic level.
Collapse
Affiliation(s)
- Oyekunle John Oladosu
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | | | - Beatrice Grafl
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Dieter Liebhart
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | | | - Gürbüz Daş
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
15
|
Solomon G, Love AC, Vaziri GJ, Harvey J, Verrett T, Chernicky K, Simons S, Albert L, Chaves JA, Knutie SA. Effect of urbanization and parasitism on the gut microbiota of Darwin's finch nestlings. Mol Ecol 2023; 32:6059-6069. [PMID: 37837269 DOI: 10.1111/mec.17164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Host-associated microbiota can be affected by factors related to environmental change, such as urbanization and invasive species. For example, urban areas often affect food availability for animals, which can change their gut microbiota. Invasive parasites can also influence microbiota through competition or indirectly through a change in the host immune response. These interacting factors can have complex effects on host fitness, but few studies have disentangled the relationship between urbanization and parasitism on an organism's gut microbiota. To address this gap in knowledge, we investigated the effects of urbanization and parasitism by the invasive avian vampire fly (Philornis downsi) on the gut microbiota of nestling small ground finches (Geospiza fuliginosa) on San Cristóbal Island, Galápagos. We conducted a factorial study in which we experimentally manipulated parasite presence in an urban and nonurban area. Faeces were then collected from nestlings to characterize the gut microbiota (i.e. bacterial diversity and community composition). Although we did not find an interactive effect of urbanization and parasitism on the microbiota, we did find main effects of each variable. We found that urban nestlings had lower bacterial diversity and different relative abundances of taxa compared to nonurban nestlings, which could be mediated by introduction of the microbiota of the food items or changes in host physiology. Additionally, parasitized nestlings had lower bacterial richness than nonparasitized nestlings, which could be mediated by a change in the immune system. Overall, this study advances our understanding of the complex effects of anthropogenic stressors on the gut microbiota of birds.
Collapse
Affiliation(s)
- Gabrielle Solomon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Ashley C Love
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Grace J Vaziri
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Johanna Harvey
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Taylor Verrett
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Kiley Chernicky
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Shelby Simons
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Lauren Albert
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Jaime A Chaves
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Galapagos Science Center, Puerto Baquerizo Moreno, Galapagos, Ecuador
- Department of Biology, San Francisco State University, California, San Francisco, USA
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Institute for Systems Genomics, University of Connecticut, Connecticut, Storrs, USA
| |
Collapse
|
16
|
Pillay R, Mkhize-Kwitshana ZL, Horsnell WGC, Icke C, Henderson I, Selkirk ME, Berkachy R, Naidoo P, Niehaus AJ, Singh R, Cunningham AF, O'Shea MK. Excretory-secretory products from adult helminth Nippostrongylus brasiliensis have in vitro bactericidal activity. J Med Microbiol 2023; 72. [PMID: 37929930 DOI: 10.1099/jmm.0.001762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Introduction. Intestinal helminths and microbiota share the same anatomical niche during infection and are likely to interact either directly or indirectly. Whether intestinal helminths employ bactericidal strategies that influence their microbial environment is not completely understood.Hypothesis. In the present study, the hypothesis that the adult hookworm Nippostrongylus brasiliensis produces molecules that impair bacterial growth in vitro, is tested.Aim. To investigate the in vitro bactericidal activity of Nippostrongylus brasiliensis against commensal and pathogenic bacteria.Methodology. The bactericidal effect of somatic extract and excretory-secretory products of adult Nippostrongylus brasiliensis on Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella pneumoniae) bacteria was assessed using growth assays. Minimum inhibitory concentration and minimum bactericidal concentration assays were performed using excretory-secretory products released from the pathogen.Results. Broad-spectrum in vitro bactericidal activity in excretory-secretory products, but not somatic extract of adult Nippostrongylus brasiliensis was detected. The bactericidal activity of excretory-secretory products was concentration-dependent, maintained after heat treatment, and preserved after repeated freezing and thawing.Conclusion. The results of this study demonstrate that helminths such as Nippostrongylus brasiliensis release molecules via their excretory-secretory pathway that have broad-spectrum bactericidal activity. The mechanisms responsible for this bactericidal activity remain to be determined and further studies aimed at isolating and identifying active bactericidal molecules are needed.
Collapse
Affiliation(s)
- Roxanne Pillay
- Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, South Africa
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, South Africa
| | - Zilungile L Mkhize-Kwitshana
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, South Africa
| | - William G C Horsnell
- Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Christopher Icke
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ian Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Murray E Selkirk
- Department of Life Sciences, Imperial College London, London, UK
| | - Rita Berkachy
- Department of Life Sciences, Imperial College London, London, UK
| | - Pragalathan Naidoo
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, South Africa
| | - Abraham J Niehaus
- Department of Microbiology, Ampath Laboratories, Cape Town, South Africa
| | - Ravesh Singh
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Matthew K O'Shea
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Maruszewska-Cheruiyot M, Szewczak L, Krawczak-Wójcik K, Kierasińska M, Stear M, Donskow-Łysoniewska K. The Impact of Intestinal Inflammation on Nematode's Excretory-Secretory Proteome. Int J Mol Sci 2023; 24:14127. [PMID: 37762428 PMCID: PMC10531923 DOI: 10.3390/ijms241814127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Parasitic nematodes and their products are promising candidates for therapeutics against inflammatory bowel diseases (IBD). Two species of nematodes, the hookworm Necator americanus and the whipworm Trichuis suis, are being used in clinical treatment trials of IBD referred to as "helminth therapy". Heligmosomoides polygyrus is a well-known model for human hookworm infections. Excretory-secretory (ES) products of H. polygyrus L4 stage that developed during colitis show a different immunomodulatory effect compared to the ES of H. polgyrus from healthy mice. The aim of the study was to evaluate excretory-secretory proteins produced by H. polygyrus L4 stage males and females that developed in the colitic milieu. Mass spectrometry was used to identify proteins. Blast2GO was used to investigate the functions of the discovered proteins. A total of 387 proteins were identified in the ES of H. polygyrus L4 males (HpC males), and 330 proteins were identified in the ES of L4 females that developed in the colitic milieu (HpC females). In contrast, only 200 proteins were identified in the ES of L4 males (Hp males) and 218 in the ES of L4 females (Hp females) that developed in control conditions. Most of the proteins (123) were detected in all groups. Unique proteins identified in the ES of HpC females included annexin, lysozyme-2, apyrase, and galectin. Venom allergen/Ancylostoma-secreted protein-like, transthyretin-like family proteins, and galectins were found in the secretome of HpC males but not in the secretome of control males. These molecules may be responsible for the therapeutic effects of nematodes in DSS-induced colitis.
Collapse
Affiliation(s)
- Marta Maruszewska-Cheruiyot
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, Świeradowska 43, 02-662 Warsaw, Poland;
| | - Ludmiła Szewczak
- Department of Parasitology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 00-096 Warsaw, Poland;
| | - Katarzyna Krawczak-Wójcik
- Department of Biomedical Sciences, Faculty of Physical Education, Józef Piłsudski University of Physical Education in Warsaw, Marymoncka 34, 00-968 Warsaw, Poland;
| | - Magdalena Kierasińska
- Department of Histology and Embryology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland;
| | - Michael Stear
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Katarzyna Donskow-Łysoniewska
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, Świeradowska 43, 02-662 Warsaw, Poland;
| |
Collapse
|
18
|
Garcia-Bonete MJ, Rajan A, Suriano F, Layunta E. The Underrated Gut Microbiota Helminths, Bacteriophages, Fungi, and Archaea. Life (Basel) 2023; 13:1765. [PMID: 37629622 PMCID: PMC10455619 DOI: 10.3390/life13081765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The microbiota inhabits the gastrointestinal tract, providing essential capacities to the host. The microbiota is a crucial factor in intestinal health and regulates intestinal physiology. However, microbiota disturbances, named dysbiosis, can disrupt intestinal homeostasis, leading to the development of diseases. Classically, the microbiota has been referred to as bacteria, though other organisms form this complex group, including viruses, archaea, and eukaryotes such as fungi and protozoa. This review aims to clarify the role of helminths, bacteriophages, fungi, and archaea in intestinal homeostasis and diseases, their interaction with bacteria, and their use as therapeutic targets in intestinal maladies.
Collapse
Affiliation(s)
- Maria Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anandi Rajan
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Elena Layunta
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
19
|
Beyhan YE, Yıldız MR. Microbiota and parasite relationship. Diagn Microbiol Infect Dis 2023; 106:115954. [PMID: 37267741 DOI: 10.1016/j.diagmicrobio.2023.115954] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 06/04/2023]
Abstract
The diversity of microbiota is different in each person. Many health problems such as autoimmune diseases, diabetes, cardiovascular diseases, and depression can be caused by microbiota imbalance. Since the parasite needs a host to survive, it interacts closely with the microbiota elements. Blastocystis acts on the inflammatory state of the intestine and may cause various gastrointestinal symptoms, on the contrary, it is more important for gut health because it causes bacterial diversity and richness. Blastocystis is associated with changes in gut microbiota composition, the ultimate indicator of which is the Firmicutes/Bacteroidetes ratio. The Bifidobacterium genus was significantly reduced in IBS patients and Blastocystis, and there is a significant decrease in Faecalibacterium prausnitzii, which has anti-inflammatory properties in Blastocystis infection without IBS. Lactobacillus species reduce the presence of Giardia, and the produced bacteriocins prevent parasite adhesion. The presence of helminths has been strongly associated with the transition from Bacteroidetes to Firmicutes and Clostridia. Contrary to Ascaris, alpha diversity in the intestinal microbiota decreases in chronic Trichuris muris infection, and growth and nutrient metabolism efficiency can be suppressed. Helminth infections indirectly affect mood and behavior in children through their effects on microbiota change. The main and focus of this review is to address the relationship of parasites with microbiota elements and to review the data about what changes they cause. Microbiota studies have gained importance recently and it is thought that it will contribute to the treatment of many diseases as well as in the fight against parasitic diseases in the future.
Collapse
Affiliation(s)
- Yunus E Beyhan
- Department of Parasitology, Van Yüzüncü Yil University Faculty of Medicine, Van, Turkey.
| | - Muhammed R Yıldız
- Department of Parasitology, Van Yüzüncü Yil University Faculty of Medicine, Van, Turkey
| |
Collapse
|
20
|
Abstract
In 1978, the theory behind helminth parasites having the potential to regulate the abundance of their host populations was formalized based on the understanding that those helminth macroparasites that reduce survival or fecundity of the infected host population would be among the forces limiting unregulated host population growth. Now, 45 years later, a phenomenal breadth of factors that directly or indirectly affect the host-helminth interaction has emerged. Based largely on publications from the past 5 years, this review explores the host-helminth interaction from three lenses: the perspective of the helminth, the host, and the environment. What biotic and abiotic as well as social and intrinsic host factors affect helminths? What are the negative, and positive, implications for host populations and communities? What are the larger-scale implications of the host-helminth dynamic on the environment, and what evidence do we have that human-induced environmental change will modify this dynamic? The overwhelming message is that context is everything. Our understanding of second-, third-, and fourth-level interactions is extremely limited, and we are far from drawing generalizations about the myriad of microbe-helminth-host interactions.Yet the intricate, co-evolved balance and complexity of these interactions may provide a level of resilience in the face of global environmental change. Hopefully, this albeit limited compilation of recent research will spark new interdisciplinary studies, and application of the One Health approach to all helminth systems will generate new and testable conceptual frameworks that encompass our understanding of the host-helminth-environment triad.
Collapse
Affiliation(s)
- M E Scott
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Ste-Anne de Bellevue, QuebecH9X 3V9, Canada
| |
Collapse
|
21
|
Irvine A, McKenzie D, McCoy CJ, Graham RLJ, Graham C, Huws SA, Atkinson LE, Mousley A. Novel integrated computational AMP discovery approaches highlight diversity in the helminth AMP repertoire. PLoS Pathog 2023; 19:e1011508. [PMID: 37523405 PMCID: PMC10414684 DOI: 10.1371/journal.ppat.1011508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/10/2023] [Accepted: 06/23/2023] [Indexed: 08/02/2023] Open
Abstract
Antimicrobial Peptides (AMPs) are immune effectors that are key components of the invertebrate innate immune system providing protection against pathogenic microbes. Parasitic helminths (phylum Nematoda and phylum Platyhelminthes) share complex interactions with their hosts and closely associated microbiota that are likely regulated by a diverse portfolio of antimicrobial immune effectors including AMPs. Knowledge of helminth AMPs has largely been derived from nematodes, whereas the flatworm AMP repertoire has not been described. This study highlights limitations in the homology-based approaches, used to identify putative nematode AMPs, for the characterisation of flatworm AMPs, and reveals that innovative algorithmic AMP prediction approaches provide an alternative strategy for novel helminth AMP discovery. The data presented here: (i) reveal that flatworms do not encode traditional lophotrochozoan AMP groups (Big Defensin, CSαβ peptides and Myticalin); (ii) describe a unique integrated computational pipeline for the discovery of novel helminth AMPs; (iii) reveal >16,000 putative AMP-like peptides across 127 helminth species; (iv) highlight that cysteine-rich peptides dominate helminth AMP-like peptide profiles; (v) uncover eight novel helminth AMP-like peptides with diverse antibacterial activities, and (vi) demonstrate the detection of AMP-like peptides from Ascaris suum biofluid. These data represent a significant advance in our understanding of the putative helminth AMP repertoire and underscore a potential untapped source of antimicrobial diversity which may provide opportunities for the discovery of novel antimicrobials. Further, unravelling the role of endogenous worm-derived antimicrobials and their potential to influence host-worm-microbiome interactions may be exploited for the development of unique helminth control approaches.
Collapse
Affiliation(s)
- Allister Irvine
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Darrin McKenzie
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ciaran J. McCoy
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Robert L. J. Graham
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ciaren Graham
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Sharon A. Huws
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Louise E. Atkinson
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Angela Mousley
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
22
|
Feng X, Yin Z, Ou S, Chu Z, Feng J, Luo Y, Hu Y, Liu Y, Jiang W, Wang X, Wang H. The anti-tumor effects of Celastrus orbiculatus Thunb. and its monomer composition: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116363. [PMID: 36948266 DOI: 10.1016/j.jep.2023.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/04/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Celastrus orbiculatus Thunb. has been included in "The Plant List" (http://www. theplantlist.org) and is the most widely researched species in its genus. It is called Nanshe Teng in China. Celastrus orbiculatus Thunb. is a plant of Euonymus and it's medicinal part is the vine and stem. It is also called Alias Dragon grass, Yellow Yine, etc. It has good anti-tumor, anti-inflammatory and other effects. More and more studies have shown that Celastrus orbiculatus Thunb. has a significant therapeutic effect on a variety of malignant tumors. The research on Celastrus orbiculatus Thunb. has a good application prospect for the development of anti-tumor drugs. However, no systematic reports on Celastrus orbiculatus Thunb. have been published before. AIM OF THE REVIEW This paper summarizes the metabolic products for anti-tumor and the mechanism for anti-tumor of Celastrus orbiculatus Thunb. to provide reference for further development and research. MATERIALS AND METHODS The relevant information on Celastrus orbiculatus Thunb. was collected from the scientific databases including PubMed, CNKI, ScienceDirect, Wiley, Springer, Web of Science, Google Scholar, Baidu Scholar, Pharmacopoeia of the People's Republic of China and Flora Republicae Popularis Sinicae, etc. RESULTS: At present, more than 200 compounds have been identified from Celastrus orbiculatus Thunb., including terpenoids, flavonoids, phenylpropanoids, polyketides and benzene derivatives, etc. Pharmacological studies have shown that Celastrus orbiculatus Thunb. has a variety effects of inhibiting tumor cell proliferation, inducing tumor cell apoptosis, inhibiting tumor cells invasion, metastasis and angiogenesis, reversing multi-drug resistance, and also collaborativing Micro RNA to inhibit tumor growth, etc. It has a significant effect on gastric cancer, liver cancer, lung cancer, etc. The extracts of Celastrus orbiculatus Thunb. have been widely used in experiments, and the toxic and side effects are small. CONCLUSIONS Celastrus orbiculatus Thunb. is rich in chemical constituents, diverse in pharmacological activities and abundant in resources, which is widely used in clinics from traditional to modern. However, there is no systematic report on the chemical compounds and anti-tumor effects of Celastrus orbiculatus Thunb. We organize and summarize it to provide reference for further development and research.
Collapse
Affiliation(s)
- Xinyi Feng
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China.
| | - Zixin Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China.
| | - Shiya Ou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China.
| | - Zewen Chu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China.
| | - Jun Feng
- Department of Oncology, Gaoyou Hospital of Traditional Chinese Medicine, Yangzhou, 225600, PR China.
| | - Yuanyuan Luo
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China.
| | - Yaqi Hu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China.
| | - Yanqing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China.
| | - Wei Jiang
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China; College of Environmental Science & Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China.
| | - Xiaoqing Wang
- Department of Oncology, Gaoyou Hospital of Traditional Chinese Medicine, Yangzhou, 225600, PR China.
| | - Haibo Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China.
| |
Collapse
|
23
|
Valente AH, Jensen KMR, Myhill LJ, Zhu L, Mentzel CMJ, Krych L, Simonsen HT, Castro-Mejía JL, Gobbi A, Bach Knudsen KE, Nielsen DS, Thamsborg SM, Williams AR. Dietary non-starch polysaccharides impair immunity to enteric nematode infection. BMC Biol 2023; 21:138. [PMID: 37316905 DOI: 10.1186/s12915-023-01640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND The influence of diet on immune function and resistance to enteric infection and disease is becoming ever more established. Highly processed, refined diets can lead to inflammation and gut microbiome dysbiosis, whilst health-promoting dietary components such as phytonutrients and fermentable fibres are thought to promote a healthy microbiome and balanced mucosal immunity. Chicory (Cichorium intybus) is a leafy green vegetable rich in fibres and bioactive compounds that may promote gut health. RESULTS Unexpectedly, we here show that incorporation of chicory into semisynthetic AIN93G diets renders mice susceptible to infection with enteric helminths. Mice fed a high level of chicory leaves (10% dry matter) had a more diverse gut microbiota, but a diminished type-2 immune response to infection with the intestinal roundworm Heligmosomoides polygyrus. Furthermore, the chicory-supplemented diet significantly increased burdens of the caecum-dwelling whipworm Trichuris muris, concomitant with a highly skewed type-1 immune environment in caecal tissue. The chicory-supplemented diet was rich in non-starch polysaccharides, particularly uronic acids (the monomeric constituents of pectin). In accordance, mice fed pectin-supplemented AIN93G diets had higher T. muris burdens and reduced IgE production and expression of genes involved in type-2 immunity. Importantly, treatment of pectin-fed mice with exogenous IL-25 restored type-2 responses and was sufficient to allow T. muris expulsion. CONCLUSIONS Collectively, our data suggest that increasing levels of fermentable, non-starch polysaccharides in refined diets compromises immunity to helminth infection in mice. This diet-infection interaction may inform new strategies for manipulating the gut environment to promote resistance to enteric parasites.
Collapse
Affiliation(s)
- Angela H Valente
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Karen M R Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Laura J Myhill
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ling Zhu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Caroline M J Mentzel
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lukasz Krych
- Departmet of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik T Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Alex Gobbi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Dennis S Nielsen
- Departmet of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
24
|
Pollo SMJ, Leon-Coria A, Liu H, Cruces-Gonzalez D, Finney CAM, Wasmuth JD. Transcriptional patterns of sexual dimorphism and in host developmental programs in the model parasitic nematode Heligmosomoides bakeri. Parasit Vectors 2023; 16:171. [PMID: 37246221 DOI: 10.1186/s13071-023-05785-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/24/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Heligmosomoides bakeri (often mistaken for Heligmosomoides polygyrus) is a promising model for parasitic nematodes with the key advantage of being amenable to study and manipulation within a controlled laboratory environment. While draft genome sequences are available for this worm, which allow for comparative genomic analyses between nematodes, there is a notable lack of information on its gene expression. METHODS We generated biologically replicated RNA-seq datasets from samples taken throughout the parasitic life of H. bakeri. RNA from tissue-dwelling and lumen-dwelling worms, collected under a dissection microscope, was sequenced on an Illumina platform. RESULTS We find extensive transcriptional sexual dimorphism throughout the fourth larval and adult stages of this parasite and identify alternative splicing, glycosylation, and ubiquitination as particularly important processes for establishing and/or maintaining sex-specific gene expression in this species. We find sex-linked differences in transcription related to aging and oxidative and osmotic stress responses. We observe a starvation-like signature among transcripts whose expression is consistently upregulated in males, which may reflect a higher energy expenditure by male worms. We detect evidence of increased importance for anaerobic respiration among the adult worms, which coincides with the parasite's migration into the physiologically hypoxic environment of the intestinal lumen. Furthermore, we hypothesize that oxygen concentration may be an important driver of the worms encysting in the intestinal mucosa as larvae, which not only fully exposes the worms to their host's immune system but also shapes many of the interactions between the host and parasite. We find stage- and sex-specific variation in the expression of immunomodulatory genes and in anthelmintic targets. CONCLUSIONS We examine how different the male and female worms are at the molecular level and describe major developmental events that occur in the worm, which extend our understanding of the interactions between this parasite and its host. In addition to generating new hypotheses for follow-up experiments into the worm's behavior, physiology, and metabolism, our datasets enable future more in-depth comparisons between nematodes to better define the utility of H. bakeri as a model for parasitic nematodes in general.
Collapse
Affiliation(s)
- Stephen M J Pollo
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
| | - Aralia Leon-Coria
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Hongrui Liu
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - David Cruces-Gonzalez
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Constance A M Finney
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - James D Wasmuth
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
25
|
Myhill LJ, Williams AR. Diet-microbiota crosstalk and immunity to helminth infection. Parasite Immunol 2023; 45:e12965. [PMID: 36571323 DOI: 10.1111/pim.12965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/27/2022]
Abstract
Helminths are large multicellular parasites responsible for widespread chronic disease in humans and animals. Intestinal helminths live in close proximity with the host gut microbiota and mucosal immune network, resulting in reciprocal interactions that closely influence the course of infections. Diet composition may strongly regulate gut microbiota composition and intestinal immune function and therefore may play a key role in modulating anti-helminth immune responses. Characterizing the multitude of interactions that exist between different dietary components (e.g., dietary fibres), immune cells, and the microbiota, may shed new light on regulation of helminth-specific immunity. This review focuses on the current knowledge of how metabolism of dietary components shapes immune response during helminth infection, and how this information may be potentially harnessed to design new therapeutics to manage parasitic infections and associated diseases.
Collapse
Affiliation(s)
- Laura J Myhill
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
26
|
Elizalde-Velázquez LE, Yordanova IA, Liublin W, Adjah J, Leben R, Rausch S, Niesner R, Hartmann S. Th2 and metabolic responses to nematodes are independent of prolonged host microbiota abrogation. Parasite Immunol 2023; 45:e12957. [PMID: 36396405 DOI: 10.1111/pim.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Antibiotic treatment can lead to elimination of both pathogenic bacteria and beneficial commensals, as well as to altered host immune responses. Here, we investigated the influence of prolonged antibiotic treatment (Abx) on effector, memory and recall Th2 immune responses during the primary infection, memory phase and secondary infection with the small intestinal nematode Heligmosomoides polygyrus. Abx treatment significantly reduced gut bacterial loads, but neither worm burdens, nor worm fecundity in primary infection were affected, only worm burdens in secondary infection were elevated in Abx treated mice. Abx mice displayed trends for elevated effector and memory Th2 responses during primary infection, but overall frequencies of Th2 cells in the siLP, PEC, mLN and in the spleen were similar between Abx treated and untreated groups. Gata3+ effector and memory Th2 cytokine responses also remained unimpaired by prolonged Abx treatment. Similarly, the energy production and defence mechanisms of the host tissue and the parasite depicted by NAD(P)H fluorescence lifetime imaging (FLIM) did not change by the prolonged use of antibiotics. We show evidence that the host Th2 response to intestinal nematodes, as well as host and parasite metabolic pathways are robust and remain unimpaired by host microbiota abrogation.
Collapse
Affiliation(s)
| | - Ivet A Yordanova
- Institute of Immunology, Center for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Wjatscheslaw Liublin
- Biophysical Analytics, German Rheumatism Research Center, Leibniz Institute and Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Joshua Adjah
- Institute of Immunology, Center for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Ruth Leben
- Institute of Immunology, Center for Infection Medicine, Freie Universität Berlin, Berlin, Germany
- Biophysical Analytics, German Rheumatism Research Center, Leibniz Institute and Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Rausch
- Institute of Immunology, Center for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Raluca Niesner
- Biophysical Analytics, German Rheumatism Research Center, Leibniz Institute and Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, Center for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
27
|
Mladineo I, Rončević T, Gerdol M, Tossi A. Helminthic host defense peptides: using the parasite to defend the host. Trends Parasitol 2023; 39:345-357. [PMID: 36890022 DOI: 10.1016/j.pt.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Abstract
Parasitic helminths are destined to share niches with a variety of microbiota that inevitably influence their interaction with the host. To modulate the microbiome for their benefit and defend against pathogenic isolates, helminths have developed host defense peptides (HDPs) and proteins as integral elements of their immunity. These often exert a relatively nonspecific membranolytic activity toward bacteria, sometimes with limited or no toxicity toward host cells. With a few exceptions, such as nematode cecropin-like peptides and antibacterial factors (ABFs), helminthic HDPs are largely underexplored. This review scrutinizes current knowledge on the repertoire of such peptides in helminths and promotes their research as potential leads for an anti-infective solution to the burgeoning problem of antibiotic resistance.
Collapse
Affiliation(s)
- Ivona Mladineo
- Laboratory of Functional Helminthology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology BC CAS, Branišovska 31, Česke Budejovice 37005, Czech Republic.
| | - Tomislav Rončević
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, Split 21000, Croatia
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
28
|
Boisseau M, Dhorne-Pollet S, Bars-Cortina D, Courtot É, Serreau D, Annonay G, Lluch J, Gesbert A, Reigner F, Sallé G, Mach N. Species interactions, stability, and resilience of the gut microbiota - Helminth assemblage in horses. iScience 2023; 26:106044. [PMID: 36818309 PMCID: PMC9929684 DOI: 10.1016/j.isci.2023.106044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The nature and strength of interactions entertained among helminths and their host gut microbiota remain largely unexplored. Using 40 naturally infected Welsh ponies, we tracked the gut microbiota-cyathostomin temporal dynamics and stability before and following anthelmintic treatment and the associated host blood transcriptomic response. High shedders harbored 14 species of cyathostomins, dominated by Cylicocyclus nassatus. They exhibited a highly diverse and temporal dynamic gut microbiota, with butyrate-producing Clostridia likely driving the ecosystem steadiness and host tolerance toward cyathostomins infection. However, anthelmintic administration sharply bent the microbial community. It disrupted the ecosystem stability and the time-dependent network of interactions, affecting longer term microbial resilience. These observations highlight how anthelmintic treatments alter the triangular relationship of parasite, host, and gut microbiota and open new perspectives for adding nutritional intervention to current parasite management strategies.
Collapse
Affiliation(s)
- Michel Boisseau
- , Université de Tours, INRAE, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France,IHAP, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France
| | - Sophie Dhorne-Pollet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - David Bars-Cortina
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Élise Courtot
- , Université de Tours, INRAE, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France
| | - Delphine Serreau
- , Université de Tours, INRAE, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France
| | - Gwenolah Annonay
- INRAE, US UMR 1426, Genomic platform, 31326 Castanet-Tolosan, France
| | - Jérôme Lluch
- INRAE, US UMR 1426, Genomic platform, 31326 Castanet-Tolosan, France
| | - Amandine Gesbert
- INRAE, UE Physiologie Animale de l’Orfrasière, 37380 Nouzilly, France
| | - Fabrice Reigner
- INRAE, UE Physiologie Animale de l’Orfrasière, 37380 Nouzilly, France
| | - Guillaume Sallé
- , Université de Tours, INRAE, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France,Corresponding author
| | - Núria Mach
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France,IHAP, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France,Corresponding author
| |
Collapse
|
29
|
Midha A, Jarquín-Díaz VH, Ebner F, Löber U, Hayani R, Kundik A, Cardilli A, Heitlinger E, Forslund SK, Hartmann S. Guts within guts: the microbiome of the intestinal helminth parasite Ascaris suum is derived but distinct from its host. MICROBIOME 2022; 10:229. [PMID: 36527132 PMCID: PMC9756626 DOI: 10.1186/s40168-022-01399-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Intestinal helminths are extremely prevalent among humans and animals. In particular, intestinal roundworms affect more than 1 billion people around the globe and are a major issue in animal husbandry. These pathogens live in intimate contact with the host gut microbiota and harbor bacteria within their own intestines. Knowledge of the bacterial host microbiome at the site of infection is limited, and data on the parasite microbiome is, to the best of our knowledge, non-existent. RESULTS The intestinal microbiome of the natural parasite and zoonotic macropathogen, Ascaris suum was analyzed in contrast to the diversity and composition of the infected host gut. 16S sequencing of the parasite intestine and host intestinal compartments showed that the parasite gut has a significantly less diverse microbiome than its host, and the host gut exhibits a reduced microbiome diversity at the site of parasite infection in the jejunum. While the host's microbiome composition at the site of infection significantly determines the microbiome composition of its parasite, microbial signatures differentiate the nematodes from their hosts as the Ascaris intestine supports the growth of microbes that are otherwise under-represented in the host gut. CONCLUSION Our data clearly indicate that a nematode infection reduces the microbiome diversity of the host gut, and that the nematode gut represents a selective bacterial niche harboring bacteria that are derived but distinct from the host gut. Video Abstract.
Collapse
Affiliation(s)
- Ankur Midha
- Department of Veterinary Medicine, Center for Infection Medicine, Institute of Immunology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany
| | - Víctor Hugo Jarquín-Díaz
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité — Universitätsmedizin Berlin, Berlin, Germany
- Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Molecular Parasitology, Institute for Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
- Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Friederike Ebner
- Department of Veterinary Medicine, Center for Infection Medicine, Institute of Immunology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité — Universitätsmedizin Berlin, Berlin, Germany
- Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Rima Hayani
- Department of Veterinary Medicine, Center for Infection Medicine, Institute of Immunology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany
| | - Arkadi Kundik
- Department of Veterinary Medicine, Center for Infection Medicine, Institute of Immunology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany
| | - Alessio Cardilli
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité — Universitätsmedizin Berlin, Berlin, Germany
- Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Emanuel Heitlinger
- Department of Molecular Parasitology, Institute for Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
- Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Sofia Kirke Forslund
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité — Universitätsmedizin Berlin, Berlin, Germany
- Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
- Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Center for Infection Medicine, Institute of Immunology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany
| |
Collapse
|
30
|
Excretory-secretory products from the brown stomach worm, Teladorsagia circumcincta, exert antimicrobial activity in in vitro growth assays. Parasit Vectors 2022; 15:354. [PMID: 36184586 PMCID: PMC9528173 DOI: 10.1186/s13071-022-05443-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the past decade, evidence has emerged of the ability of gastrointestinal (GI) helminth parasites to alter the composition of the host gut microbiome; however, the mechanism(s) underpinning such interactions remain unclear. In the current study, we (i) undertake proteomic analyses of the excretory-secretory products (ESPs), including secreted extracellular vesicles (EVs), of the 'brown stomach worm' Teladorsagia circumcincta, one of the major agents causing parasite gastroenteritis in temperate areas worldwide; (ii) conduct bioinformatic analyses to identify and characterise antimicrobial peptides (AMPs) with putative antimicrobial activity; and (iii) assess the bactericidal and/or bacteriostatic properties of T. circumcincta EVs, and whole and EV-depleted ESPs, using bacterial growth inhibition assays. METHODS Size-exclusion chromatography was applied to the isolation of EVs from whole T. circumcincta ESPs, followed by EV characterisation via nanoparticle tracking analysis and transmission electron microscopy. Proteomic analysis of EVs and EV-depleted ESPs was conducted using liquid chromatography-tandem mass spectrometry, and prediction of putative AMPs was performed using available online tools. The antimicrobial activities of T. circumcincta EVs and of whole and EV-depleted ESPs against Escherichia coli were evaluated using bacterial growth inhibition assays. RESULTS Several molecules with putative antimicrobial activity were identified in both EVs and EV-depleted ESPs from adult T. circumcincta. Whilst exposure of E. coli to whole ESPs resulted in a significant reduction of colony-forming units over 3 h, bacterial growth was not reduced following exposure to worm EVs or EV-depleted ESPs. CONCLUSIONS Our data points towards a bactericidal and/or bacteriostatic function of T. circumcincta ESPs, likely mediated by molecules with antimicrobial activity.
Collapse
|
31
|
Izvekova GI. Parasitic Infections and Intestinal Microbiota: A Review. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022040070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Jin X, Liu Y, Vallee I, Karadjian G, Liu M, Liu X. Lentinan -triggered butyrate-producing bacteria drive the expulsion of the intestinal helminth Trichinella spiralis in mice. Front Immunol 2022; 13:926765. [PMID: 35967395 PMCID: PMC9371446 DOI: 10.3389/fimmu.2022.926765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Trichinellosis caused by Trichinella spiralis is a serious zoonosis with a worldwide distribution. Lentinan (LNT) is known to modulate the intestinal environment with noted health benefits, yet the effect of LNT against intestinal helminth is unknown. In our study, we first observed that LNT could trigger worm expulsion by promoting mucus layer functions through alteration of gut microbiota. LNT restored the abundance of Bacteroidetes and Proteobacteria altered by T. spiralis infection to the control group level. Interestingly, LNT triggered the production of butyrate. Then, we determined the deworming capacity of probiotics (butyrate-producing bacteria) in mice. Collectively, these findings indicated that LNT could modulate intestinal dysbiosis by T. spiralis, drive the expulsion of intestinal helminth and provided an easily implementable strategy to improve the host defence against T. spiralis infection.
Collapse
Affiliation(s)
- Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yi Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Isabelle Vallee
- UMR BIPAR, Anses, Ecole Nationale Vétérinaire d’Alfort, INRA, University Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - Gregory Karadjian
- UMR BIPAR, Anses, Ecole Nationale Vétérinaire d’Alfort, INRA, University Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - Mingyuan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiaolei Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- *Correspondence: Xiaolei Liu,
| |
Collapse
|
33
|
Rooney J, Northcote HM, Williams TL, Cortés A, Cantacessi C, Morphew RM. Parasitic helminths and the host microbiome - a missing 'extracellular vesicle-sized' link? Trends Parasitol 2022; 38:737-747. [PMID: 35820945 DOI: 10.1016/j.pt.2022.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/12/2022]
Abstract
Infections by gastrointestinal (GI) helminths have been associated with significant alterations of the structure of microbial communities inhabiting the host gut. However, current understanding of the biological mechanisms that regulate these relationships is still lacking. We propose that helminth-derived extracellular vesicles (EVs) likely represent key players in helminth-microbiota crosstalk. Here, we explore knowledge of helminth EVs with an emphasis on their putative antimicrobial properties, and we argue that (i) an enhanced understanding of the mechanisms governing such interactions might assist the discovery and development of novel strategies of parasite control, and that (ii) the identification and characterisation of helminth molecules with antimicrobial properties might pave the way towards the discovery of novel antibiotics, thus aiding the global fight against antimicrobial resistance.
Collapse
Affiliation(s)
- James Rooney
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Holly M Northcote
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 2DA, UK
| | - Tim L Williams
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Alba Cortés
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot 46100, Spain
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| | - Russell M Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 2DA, UK.
| |
Collapse
|
34
|
Sen T, Thummer RP. The Impact of Human Microbiotas in Hematopoietic Stem Cell and Organ Transplantation. Front Immunol 2022; 13:932228. [PMID: 35874759 PMCID: PMC9300833 DOI: 10.3389/fimmu.2022.932228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
The human microbiota heavily influences most vital aspects of human physiology including organ transplantation outcomes and transplant rejection risk. A variety of organ transplantation scenarios such as lung and heart transplantation as well as hematopoietic stem cell transplantation is heavily influenced by the human microbiotas. The human microbiota refers to a rich, diverse, and complex ecosystem of bacteria, fungi, archaea, helminths, protozoans, parasites, and viruses. Research accumulating over the past decade has established the existence of complex cross-species, cross-kingdom interactions between the residents of the various human microbiotas and the human body. Since the gut microbiota is the densest, most popular, and most studied human microbiota, the impact of other human microbiotas such as the oral, lung, urinary, and genital microbiotas is often overshadowed. However, these microbiotas also provide critical and unique insights pertaining to transplantation success, rejection risk, and overall host health, across multiple different transplantation scenarios. Organ transplantation as well as the pre-, peri-, and post-transplant pharmacological regimens patients undergo is known to adversely impact the microbiotas, thereby increasing the risk of adverse patient outcomes. Over the past decade, holistic approaches to post-transplant patient care such as the administration of clinical and dietary interventions aiming at restoring deranged microbiota community structures have been gaining momentum. Examples of these include prebiotic and probiotic administration, fecal microbial transplantation, and bacteriophage-mediated multidrug-resistant bacterial decolonization. This review will discuss these perspectives and explore the role of different human microbiotas in the context of various transplantation scenarios.
Collapse
Affiliation(s)
| | - Rajkumar P. Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
35
|
Venzon M, Das R, Luciano DJ, Burnett J, Park HS, Devlin JC, Kool ET, Belasco JG, Hubbard EJA, Cadwell K. Microbial byproducts determine reproductive fitness of free-living and parasitic nematodes. Cell Host Microbe 2022; 30:786-797.e8. [PMID: 35413267 PMCID: PMC9187612 DOI: 10.1016/j.chom.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/09/2022] [Accepted: 03/10/2022] [Indexed: 11/03/2022]
Abstract
Trichuris nematodes reproduce within the microbiota-rich mammalian intestine and lay thousands of eggs daily, facilitating their sustained presence in the environment and hampering eradication efforts. Here, we show that bacterial byproducts facilitate the reproductive development of nematodes. First, we employed a pipeline using the well-characterized, free-living nematode C. elegans to identify microbial factors with conserved roles in nematode reproduction. A screen for E. coli mutants that impair C. elegans fertility identified genes in fatty acid biosynthesis and ethanolamine utilization pathways, including fabH and eutN. Additionally, Trichuris muris eggs displayed defective hatching in the presence of fabH- or eutN-deficient E. coli due to reduced arginine or elevated aldehydes, respectively. T. muris reared in gnotobiotic mice colonized with these E. coli mutants displayed morphological defects and failed to lay viable eggs. These findings indicate that microbial byproducts mediate evolutionarily conserved transkingdom interactions that impact the reproductive fitness of distantly related nematodes.
Collapse
Affiliation(s)
- Mericien Venzon
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ritika Das
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel J Luciano
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Burnett
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hyun Shin Park
- Seegene Inc., Ogeum-ro, Songpa-Gu, Seoul 05548, Republic of Korea
| | - Joseph Cooper Devlin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Eric T Kool
- Department of Chemistry, Stanford Cancer Institute, and ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Joel G Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - E Jane Albert Hubbard
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Division of Gastroenterology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
36
|
Wu D, Li H, Liu M, Qin J, Sun Y. The Ube2m-Rbx1 neddylation-Cullin-RING-Ligase proteins are essential for the maintenance of Regulatory T cell fitness. Nat Commun 2022; 13:3021. [PMID: 35641500 PMCID: PMC9156764 DOI: 10.1038/s41467-022-30707-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/12/2022] [Indexed: 12/16/2022] Open
Abstract
Neddylation-mediated activation of Cullin-RING E3 Ligases (CRLs) are necessary for the degradation of specific immune regulatory proteins. However, little is known about how these processes govern the function of regulatory T (Treg) cells. Here we show that mice with Treg cell-specific deletion of Rbx1, a dual E3 for both neddylation and ubiquitylation by CRLs, develop an early-onset fatal inflammatory disorder, characterized by disrupted Treg cell homeostasis and suppressive functions. Specifically, Rbx1 is essential for the maintenance of an effector Treg cell subpopulation, and regulates several inflammatory pathways. Similar but less severe phenotypes are observed in mice having Ube2m, a neddylation E2 conjugation enzyme, deleted in their Treg cells. Interestingly, Treg-specific deletion of Rbx2/Sag or Ube2f, components of a similar but distinct neddylation-CRL complex, yields no obvious phenotype. Thus, our work demonstrates that the Ube2m-Rbx1 axis is specifically required for intrinsic regulatory processes in Treg cells; and that Rbx1 might also play Ube2m-independent roles in maintaining the fitness of Treg cells, suggesting a layer of complexity in neddylation-dependent activation of CRLs.
Collapse
Affiliation(s)
- Di Wu
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, 310053, China
| | - Haomin Li
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing) and Institute of Lifeomics, Beijing, 102206, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing) and Institute of Lifeomics, Beijing, 102206, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
37
|
NAD(P)H fluorescence lifetime imaging of live intestinal nematodes reveals metabolic crosstalk between parasite and host. Sci Rep 2022; 12:7264. [PMID: 35508502 PMCID: PMC9068778 DOI: 10.1038/s41598-022-10705-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Infections with intestinal nematodes have an equivocal impact: they represent a burden for human health and animal husbandry, but, at the same time, may ameliorate auto-immune diseases due to the immunomodulatory effect of the parasites. Thus, it is key to understand how intestinal nematodes arrive and persist in their luminal niche and interact with the host over long periods of time. One basic mechanism governing parasite and host cellular and tissue functions, metabolism, has largely been neglected in the study of intestinal nematode infections. Here we use NADH (nicotinamide adenine dinucleotide) and NADPH (nicotinamide adenine dinucleotide phosphate) fluorescence lifetime imaging of explanted murine duodenum infected with the natural nematode Heligmosomoides polygyrus and define the link between general metabolic activity and possible metabolic pathways in parasite and host tissue, during acute infection. In both healthy and infected host intestine, energy is effectively produced, mainly via metabolic pathways resembling oxidative phosphorylation/aerobic glycolysis features. In contrast, the nematodes shift their energy production from balanced fast anaerobic glycolysis-like and effective oxidative phosphorylation-like metabolic pathways, towards mainly anaerobic glycolysis-like pathways, back to oxidative phosphorylation/aerobic glycolysis-like pathways during their different life cycle phases in the submucosa versus the intestinal lumen. Additionally, we found an increased NADPH oxidase (NOX) enzymes-dependent oxidative burst in infected intestinal host tissue as compared to healthy tissue, which was mirrored by a similar defense reaction in the parasites. We expect that, the here presented application of NAD(P)H-FLIM in live tissues constitutes a unique tool to study possible shifts between metabolic pathways in host-parasite crosstalk, in various parasitic intestinal infections.
Collapse
|
38
|
Sajnaga E, Skowronek M, Kalwasińska A, Kazimierczak W, Lis M, Jach ME, Wiater A. Comparative Nanopore Sequencing-Based Evaluation of the Midgut Microbiota of the Summer Chafer ( Amphimallon solstitiale L.) Associated with Possible Resistance to Entomopathogenic Nematodes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063480. [PMID: 35329164 PMCID: PMC8950650 DOI: 10.3390/ijerph19063480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023]
Abstract
Root-feeding Amphimallon solstitiale larvae and certain other scarab beetles are the main soil-dwelling pests found in Europe, while entomopathogenic nematodes (EPN) have been used as a biocontrol agent against these species. Our study provides the first detailed characterization of the bacterial community of the midgut in wild A. solstitiale larvae, based on the nanopore sequencing of the 16S rRNA gene. In the whole dataset, we detected 2586 different genera and 11,641 species, with only 83 diverse bacterial genera shared by all studied individuals, which may represent members of the core midgut microbiota of A. solstitiale larvae. Subsequently, we compared the midgut microbiota of EPN-resistant and T0 (prior to EPN exposure) individuals, hypothesizing that resistance to this parasitic infection may be linked to the altered gut community. Compared to the control, the resistant insect microbiota demonstrated lower Shannon and Evenness indices and significant differences in the community structure. Our studies confirmed that the gut microbiota alternation is associated with resistant insects; however, there are many processes involved that can affect the bacterial community. Further research on the role of gut microbiota in insect-parasitic nematode interaction may ultimately lead to the improvement of biological control strategies in insect pest management.
Collapse
Affiliation(s)
- Ewa Sajnaga
- Laboratory of Biocontrol, Production, and Application of EPN, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland; (M.S.); (W.K.); (M.L.)
- Correspondence:
| | - Marcin Skowronek
- Laboratory of Biocontrol, Production, and Application of EPN, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland; (M.S.); (W.K.); (M.L.)
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Waldemar Kazimierczak
- Laboratory of Biocontrol, Production, and Application of EPN, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland; (M.S.); (W.K.); (M.L.)
| | - Magdalena Lis
- Laboratory of Biocontrol, Production, and Application of EPN, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland; (M.S.); (W.K.); (M.L.)
| | - Monika Elżbieta Jach
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| |
Collapse
|
39
|
Moyat M, Lebon L, Perdijk O, Wickramasinghe LC, Zaiss MM, Mosconi I, Volpe B, Guenat N, Shah K, Coakley G, Bouchery T, Harris NL. Microbial regulation of intestinal motility provides resistance against helminth infection. Mucosal Immunol 2022; 15:1283-1295. [PMID: 35288644 PMCID: PMC9705251 DOI: 10.1038/s41385-022-00498-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 11/18/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Soil-transmitted helminths cause widespread disease, infecting ~1.5 billion people living within poverty-stricken regions of tropical and subtropical countries. As adult worms inhabit the intestine alongside bacterial communities, we determined whether the bacterial microbiota impacted on host resistance against intestinal helminth infection. We infected germ-free, antibiotic-treated and specific pathogen-free mice, with the intestinal helminth Heligmosomoides polygyrus bakeri. Mice harboured increased parasite numbers in the absence of a bacterial microbiota, despite mounting a robust helminth-induced type 2 immune response. Alterations to parasite behaviour could already be observed at early time points following infection, including more proximal distribution of infective larvae along the intestinal tract and increased migration in a Baermann assay. Mice lacking a complex bacterial microbiota exhibited reduced levels of intestinal acetylcholine, a major excitatory intestinal neurotransmitter that promotes intestinal transit by activating muscarinic receptors. Both intestinal motility and host resistance against larval infection were restored by treatment with the muscarinic agonist bethanechol. These data provide evidence that a complex bacterial microbiota provides the host with resistance against intestinal helminths via its ability to regulate intestinal motility.
Collapse
Affiliation(s)
- Mati Moyat
- grid.5333.60000000121839049Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015 Lausanne, Switzerland ,grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC Australia
| | - Luc Lebon
- grid.5333.60000000121839049Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015 Lausanne, Switzerland
| | - Olaf Perdijk
- grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC Australia
| | - Lakshanie C. Wickramasinghe
- grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC Australia
| | - Mario M. Zaiss
- grid.5333.60000000121839049Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015 Lausanne, Switzerland ,grid.5330.50000 0001 2107 3311Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ilaria Mosconi
- grid.5333.60000000121839049Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015 Lausanne, Switzerland
| | - Beatrice Volpe
- grid.5333.60000000121839049Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015 Lausanne, Switzerland
| | - Nadine Guenat
- grid.5333.60000000121839049Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015 Lausanne, Switzerland
| | - Kathleen Shah
- grid.5333.60000000121839049Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015 Lausanne, Switzerland
| | - Gillian Coakley
- grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC Australia
| | - Tiffany Bouchery
- grid.5333.60000000121839049Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015 Lausanne, Switzerland ,grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC Australia
| | - Nicola L. Harris
- grid.5333.60000000121839049Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, 1015 Lausanne, Switzerland ,grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC Australia
| |
Collapse
|
40
|
β-Glucan-triggered Akkermansia muciniphila expansion facilitates the expulsion of intestinal helminth via TLR2 in mice. Carbohydr Polym 2022; 275:118719. [PMID: 34742442 DOI: 10.1016/j.carbpol.2021.118719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022]
Abstract
Trichinellosis caused by Trichinella spiralis is a serious zoonosis with a worldwide. β-Glucans (BG) are readily used across the world with noted health benefits, yet the effect and mechanism of BG on host defense against helminth infection remain poorly understood. We observed that BG could trigger worm expulsion via mucus layer independently of type 2 immunity, but was dependent on the gut microbiota in mice. BG restored the abundance of Bacteroidetes and Proteobacteria changed by T. spiralis infection to the control group level and markedly increased the relative abundance of Verrucomicrobia. Akkermansia (belonging to Verrucomicrobia) were significantly expanded in the BG + T. spiralis group. Notably, daily oral supplementation of pasteurized A. muciniphila has a stronger deworming effect than live bacteria and interacted with TLR2. These findings of this study is an easily implementable strategy to facilitate expulsion of gastrointestinal helminth.
Collapse
|
41
|
Russell GA, Peng G, Faubert C, Verdu EF, Hapfelmeier S, King IL. A protocol for generating germ-free Heligmosomoides polygyrus bakeri larvae for gnotobiotic helminth infection studies. STAR Protoc 2021; 2:100946. [PMID: 34825215 PMCID: PMC8603306 DOI: 10.1016/j.xpro.2021.100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The microbes indigenous to helminth species are a major obstacle to deciphering host-parasite interactions. Repurposing a system of reversible bacterial colonization, we have generated germ-free Heligomosomoides polygyrus bakeri (Hpb) larvae that maintain the sterility of axenic mice upon infection. This protocol provides a valuable tool for controlled studies of helminth-microbiota-immune interactions.
Protocol for rearing viable germ-free Hpb larvae Larvae maintain infectivity and immunogenicity in specific pathogen-free mice Larvae do not contaminate germ-free mice upon infection Experimental tool to parse helminth-immune-microbiota interactions
Collapse
Affiliation(s)
- Gabriel A. Russell
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Corresponding author
| | - Garrie Peng
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Cynthia Faubert
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, QC H4A 3J1, Canada
| | - Elena F. Verdu
- Farncombe Institute, Division of Gastroenterology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | | | - Irah L. King
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, QC H4A 3J1, Canada
- Corresponding author
| |
Collapse
|
42
|
Risch F, Ritter M, Hoerauf A, Hübner MP. Human filariasis-contributions of the Litomosoides sigmodontis and Acanthocheilonema viteae animal model. Parasitol Res 2021; 120:4125-4143. [PMID: 33547508 PMCID: PMC8599372 DOI: 10.1007/s00436-020-07026-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022]
Abstract
Filariae are vector-borne parasitic nematodes that are endemic worldwide, in tropical and subtropical regions. Important human filariae spp. include Onchocerca volvulus, Wuchereria bancrofti and Brugia spp., and Loa loa and Mansonella spp. causing onchocerciasis (river blindness), lymphatic filariasis (lymphedema and hydrocele), loiasis (eye worm), and mansonelliasis, respectively. It is estimated that over 1 billion individuals live in endemic regions where filarial diseases are a public health concern contributing to significant disability adjusted life years (DALYs). Thus, efforts to control and eliminate filarial diseases were already launched by the WHO in the 1970s, especially against lymphatic filariasis and onchocerciasis, and are mainly based on mass drug administration (MDA) of microfilaricidal drugs (ivermectin, diethylcarbamazine, albendazole) to filarial endemic areas accompanied with vector control strategies with the goal to reduce the transmission. With the United Nations Sustainable Development Goals (SDGs), it was decided to eliminate transmission of onchocerciasis and stop lymphatic filariasis as a public health problem by 2030. It was also requested that novel drugs and treatment strategies be developed. Mouse models provide an important platform for anti-filarial drug research in a preclinical setting. This review presents an overview about the Litomosoides sigmodontis and Acanthocheilonema viteae filarial mouse models and their role in immunological research as well as preclinical studies about novel anti-filarial drugs and treatment strategies.
Collapse
Affiliation(s)
- Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
43
|
Midha A, Goyette-Desjardins G, Goerdeler F, Moscovitz O, Seeberger PH, Tedin K, Bertzbach LD, Lepenies B, Hartmann S. Lectin-Mediated Bacterial Modulation by the Intestinal Nematode Ascaris suum. Int J Mol Sci 2021; 22:ijms22168739. [PMID: 34445445 PMCID: PMC8395819 DOI: 10.3390/ijms22168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Ascariasis is a global health problem for humans and animals. Adult Ascaris nematodes are long-lived in the host intestine where they interact with host cells as well as members of the microbiota resulting in chronic infections. Nematode interactions with host cells and the microbial environment are prominently mediated by parasite-secreted proteins and peptides possessing immunomodulatory and antimicrobial activities. Previously, we discovered the C-type lectin protein AsCTL-42 in the secreted products of adult Ascaris worms. Here we tested recombinant AsCTL-42 for its ability to interact with bacterial and host cells. We found that AsCTL-42 lacks bactericidal activity but neutralized bacterial cells without killing them. Treatment of bacterial cells with AsCTL-42 reduced invasion of intestinal epithelial cells by Salmonella. Furthermore, AsCTL-42 interacted with host myeloid C-type lectin receptors. Thus, AsCTL-42 is a parasite protein involved in the triad relationship between Ascaris, host cells, and the microbiota.
Collapse
Affiliation(s)
- Ankur Midha
- Institute of Immunology, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Guillaume Goyette-Desjardins
- Institute for Immunology & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (G.G.-D.); (B.L.)
| | - Felix Goerdeler
- Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; (F.G.); (O.M.); (P.H.S.)
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Oren Moscovitz
- Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; (F.G.); (O.M.); (P.H.S.)
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; (F.G.); (O.M.); (P.H.S.)
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Karsten Tedin
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Luca D. Bertzbach
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany;
- Department of Viral Transformation, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany
| | - Bernd Lepenies
- Institute for Immunology & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (G.G.-D.); (B.L.)
| | - Susanne Hartmann
- Institute of Immunology, Freie Universität Berlin, 14163 Berlin, Germany;
- Correspondence:
| |
Collapse
|
44
|
Trumbić Ž, Hrabar J, Palevich N, Carbone V, Mladineo I. Molecular and evolutionary basis for survival, its failure, and virulence factors of the zoonotic nematode Anisakis pegreffii. Genomics 2021; 113:2891-2905. [PMID: 34186188 DOI: 10.1016/j.ygeno.2021.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022]
Abstract
Parasitism is a highly successful life strategy and a driving force in genetic diversity that has evolved many times over. Accidental infections of non-targeted hosts represent an opportunity for lateral host switches and parasite niche expansion. However, if directed toward organisms that are phylogenetically distant from parasite's natural host, such as humans, it may present a dead-end environment where the parasite fails to mature or is even killed by host immunity. One example are nematodes of Anisakidae family, genus Anisakis, that through evolution have lost the ability to propagate in terrestrial hosts, but can survive for a limited time in humans causing anisakiasis. To scrutinize versatility of Anisakis to infect an evolutionary-distant host, we performed transcriptomic profiling of larvae successfully migrating through the rat, a representative model of accidental human infection and compared it to that of larvae infecting an evolutionary-familiar, paratenic host (fish). In a homeothermic accidental host Anisakis upregulated ribosome-related genes, cell division, cuticle constituents, oxidative phosphorylation, in an unsuccessful attempt to molt to the next stage. In contrast, in the paratenic poikilothermic host where metabolic pathways were moderately upregulated or silenced, larvae prepared for dormancy by triggering autophagy and longevity pathways. Identified differences and the modelling of handful of shared transcripts, provide the first insights into evolution of larval nematode virulence, warranting their further investigation as potential drug therapy targets.
Collapse
Affiliation(s)
- Željka Trumbić
- University Department of Marine Studies, University of Split, 21000 Split, Croatia
| | - Jerko Hrabar
- Laboratory of Aquaculture, Institute of Oceanography & Fisheries, 21000 Split, Croatia
| | - Nikola Palevich
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4410, New Zealand
| | - Vincenzo Carbone
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4410, New Zealand
| | - Ivona Mladineo
- Laboratory of Functional Helminthology, Institute of Parasitology, Biology Centre of Czech Academy of Science, 37005 Ceske Budejovice, Czech Republic.
| |
Collapse
|
45
|
Topalović O, Vestergård M. Can microorganisms assist the survival and parasitism of plant-parasitic nematodes? Trends Parasitol 2021; 37:947-958. [PMID: 34162521 DOI: 10.1016/j.pt.2021.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Plant-parasitic nematodes (PPNs) remain a hardly treatable problem in many crops worldwide. Low efficacy of many biocontrol agents may be due to negligence of the native microbiota that is naturally associated with nematodes in soil, and which may protect nematodes against microbial antagonists. This phenomenon is more extensively studied for other nematode parasites, so we compiled these studies and drew parallels to the existing knowledge on PPN. We describe how microbial-mediated modulation of host immune responses facilitate nematode parasitism and discuss the role of Caenorhabditis elegans-protective microbiota to get an insight into the microbial protection of PPNs in soil. Molecular mechanisms of PPN-microbial interactions are also discussed. An understanding of microbial-aided PPN performance is thus pivotal for efficient management of PPNs.
Collapse
Affiliation(s)
- Olivera Topalović
- Aarhus University, Institute for Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
| | - Mette Vestergård
- Aarhus University, Institute for Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
| |
Collapse
|
46
|
Lawson MAE, Roberts IS, Grencis RK. The interplay between Trichuris and the microbiota. Parasitology 2021; 148:1-8. [PMID: 34075861 PMCID: PMC8660641 DOI: 10.1017/s0031182021000834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022]
Abstract
Parasitic worms are amongst the most common pathogens to infect humans and have a long-established history of inflicting disease in their hosts. There is a large body of evidence that states intestine-dwelling helminths ensure their survival by influencing the host immune response against them. In recent years, it has become apparent that the large and diverse microbial communities that exist in the gastrointestinal (GI) tract of the host and within the parasite itself have a pivotal role in worm survival and persistence. Using a variety of mouse models (including laboratory, germ-free and rewilded mice), there have been new insights into how bacteria and worms interact with each other; this includes the discovery that Trichuris is unable to hatch and/or infect their host in the absence of bacteria, and that these worms contain a Trichuris-specific gut microbiota. These interactions are determined in part by the capacity of the host, gut microbiota and worms to communicate via metabolites such as butyrate, which are microbially derived and have known immunoregulatory properties. By exploring the contribution of gut bacteria to worm infections and the intricate relationship that exists between them, an exciting and emerging field in whipworm parasitology is established.
Collapse
Affiliation(s)
- Melissa A. E. Lawson
- Lydia Becker Institute for Immunology and Inflammation, Manchester, M13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, Manchester, M13 9PT, UK
- Division of Infection, Immunity and Respiratory Medicine, Manchester, M13 9PT, UK
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Ian S. Roberts
- Lydia Becker Institute for Immunology and Inflammation, Manchester, M13 9PT, UK
- Division of Infection, Immunity and Respiratory Medicine, Manchester, M13 9PT, UK
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Richard K. Grencis
- Lydia Becker Institute for Immunology and Inflammation, Manchester, M13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, Manchester, M13 9PT, UK
- Division of Infection, Immunity and Respiratory Medicine, Manchester, M13 9PT, UK
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
47
|
Haque M, Koski KG, Scott ME. A gastrointestinal nematode in pregnant and lactating mice alters maternal and neonatal microbiomes. Int J Parasitol 2021; 51:945-957. [PMID: 34081970 DOI: 10.1016/j.ijpara.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/29/2022]
Abstract
The maternal microbiome is understood to be the principal source of the neonatal microbiome but the consequences of intestinal nematodes on pregnant and lactating mothers and implications for the neonatal microbiome are unknown. Using pregnant CD1 mice infected with Heligmosomoides bakeri, we investigated the microbiomes in maternal tissues (intestine, vagina, and milk) and in the neonatal stomach using MiSeq sequencing of bacterial 16S rRNA genes. Our first hypothesis was that maternal nematode infection altered the maternal intestinal, vaginal, and milk microbiomes and associated metabolic pathways. Maternal nematode infection was associated with increased beta-diversity and abundance of fermenting bacteria as well as Lactobacillus in the maternal caecum 2 days after parturition, together with down-regulated carbohydrate, amino acid and vitamin biosynthesis pathways. Maternal nematode infection did not alter the vaginal or milk microbiomes. Our second hypothesis was that maternal infection would shape colonization of the neonatal microbiome. Although the pup stomach microbiome was similar to that of the maternal vaginal microbiome, pups of infected dams had higher beta-diversity at day 2, and a dramatic expansion in the abundance of Lactobacillus between days 2 and 7 compared with pups nursing uninfected dams. Our third hypothesis that maternal nematode infection altered the composition of neonatal microbiomes was confirmed as we observed up-regulation of several putatively beneficial microbial pathways associated with synthesis of essential and branched-chain amino acids, vitamins, and short-chain fatty acids. We believe this is the first study to show that a nematode living in the maternal intestine is associated with altered composition and function of the neonatal microbiome.
Collapse
Affiliation(s)
- Manjurul Haque
- Institute of Parasitology, McGill University (Macdonald Campus), 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Kristine G Koski
- School of Human Nutrition, McGill University (Macdonald Campus), 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Marilyn E Scott
- Institute of Parasitology, McGill University (Macdonald Campus), 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada.
| |
Collapse
|
48
|
Zaini A, Good-Jacobson KL, Zaph C. Context-dependent roles of B cells during intestinal helminth infection. PLoS Negl Trop Dis 2021; 15:e0009340. [PMID: 33983946 PMCID: PMC8118336 DOI: 10.1371/journal.pntd.0009340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The current approaches to reduce the burden of chronic helminth infections in endemic areas are adequate sanitation and periodic administration of deworming drugs. Yet, resistance against some deworming drugs and reinfection can still rapidly occur even after treatment. A vaccine against helminths would be an effective solution at preventing reinfection. However, vaccines against helminth parasites have yet to be successfully developed. While T helper cells and innate lymphoid cells have been established as important components of the protective type 2 response, the roles of B cells and antibodies remain the most controversial. Here, we review the roles of B cells during intestinal helminth infection. We discuss the potential factors that contribute to the context-specific roles for B cells in protection against diverse intestinal helminth parasite species, using evidence from well-defined murine model systems. Understanding the precise roles of B cells during resistance and susceptibility to helminth infection may offer a new perspective of type 2 protective immunity.
Collapse
Affiliation(s)
- Aidil Zaini
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Kim L. Good-Jacobson
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Colby Zaph
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
49
|
Midha A, Ebner F, Schlosser-Brandenburg J, Rausch S, Hartmann S. Trilateral Relationship: Ascaris, Microbiota, and Host Cells. Trends Parasitol 2020; 37:251-262. [PMID: 33008723 DOI: 10.1016/j.pt.2020.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Ascariasis is a globally spread intestinal nematode infection of humans and a considerable concern in pig husbandry. Ascaris accomplishes a complex body migration from the intestine via the liver and lung before returning to the intestine. Tissue migration and the habitat shared with a complex microbial community pose the question of how the nematode interacts with microbes and host cells from various tissues. This review addresses the current knowledge of the trilateral relationship between Ascaris, its microbial environment, and host cells, and discusses novel approaches targeting these interactions to combat this widespread infection of livestock and man.
Collapse
Affiliation(s)
- Ankur Midha
- Institute of Immunology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, D-14163 Berlin, Germany
| | - Friederike Ebner
- Institute of Immunology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, D-14163 Berlin, Germany
| | | | - Sebastian Rausch
- Institute of Immunology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, D-14163 Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, D-14163 Berlin, Germany.
| |
Collapse
|
50
|
Coakley G, Harris NL. The Intestinal Epithelium at the Forefront of Host-Helminth Interactions. Trends Parasitol 2020; 36:761-772. [PMID: 32713764 DOI: 10.1016/j.pt.2020.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Gastrointestinal helminth infection still constitutes a major public health issue, particularly in the developing world. As these parasites can undergo a large part of their lifecycle within the intestinal tract the host has developed various structural and cellular specializations at the epithelial barrier to contend with infection. Detailed characterization of these cells will provide important insights about their contributions to the protective responses mediated against helminths. Here, we discuss how key components of the intestinal epithelium may function to limit the initial establishment of helminths, and how these cells are altered during an active response to infection.
Collapse
Affiliation(s)
- Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, Victoria, Australia.
| | - Nicola L Harris
- Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, Victoria, Australia
| |
Collapse
|