1
|
Xia Z, Jin Q, Long Z, He Y, Liu F, Sun C, Liao J, Wang C, Wang C, Zheng J, Zhao W, Zhang T, Rich JN, Zhang Y, Cao L, Xie Q. Targeting overexpressed antigens in glioblastoma via CAR T cells with computationally designed high-affinity protein binders. Nat Biomed Eng 2024:10.1038/s41551-024-01258-8. [PMID: 39420062 DOI: 10.1038/s41551-024-01258-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
Chimeric antigen receptor (CAR) T cells targeting receptors on tumour cells have had limited success in patients with glioblastoma. Here we report the development and therapeutic performance of CAR constructs leveraging protein binders computationally designed de novo to have high affinity for the epidermal growth factor receptor (EGFR) or the tumour-associated antigen CD276, which are overexpressed in glioblastoma. With respect to T cells with a CAR using an antibody-derived single-chain variable fragment as antigen-binding domain, the designed binders on CAR T cells promoted the proliferation of the cells, the secretion of cytotoxic cytokines and their resistance to cell exhaustion, and improved antitumour performance in vitro and in vivo. Moreover, CARs with the binders exhibited higher surface expression and greater resistance to degradation, as indicated by bulk and single-cell transcriptional profiling of the cells. The de novo design of binding domains for specific tumour antigens may potentiate the antitumour efficacy of CAR T cell therapies for other solid cancers.
Collapse
Affiliation(s)
- Zhen Xia
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Qihan Jin
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Artificial Intelligence Drug Design Core Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Zhilin Long
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yexuan He
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chengfang Sun
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinyang Liao
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Artificial Intelligence Drug Design Core Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Chun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chentong Wang
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Artificial Intelligence Drug Design Core Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jian Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weixi Zhao
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Tianxin Zhang
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Artificial Intelligence Drug Design Core Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yongdeng Zhang
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Longxing Cao
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, China.
- School of Life Sciences, Westlake University, Hangzhou, China.
- Artificial Intelligence Drug Design Core Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| | - Qi Xie
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
- School of Life Sciences, Westlake University, Hangzhou, China.
| |
Collapse
|
2
|
Mikolič V, Pantović-Žalig J, Malenšek Š, Sever M, Lainšček D, Jerala R. Toll-like receptor 4 signaling activation domains promote CAR T cell function against solid tumors. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200815. [PMID: 38840781 PMCID: PMC11152746 DOI: 10.1016/j.omton.2024.200815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a powerful therapeutic approach against a range of hematologic malignancies. While the incorporation of CD28 or 4-1BB costimulatory signaling domains into CARs revolutionized immune responses, there is an exciting prospect of further enhancing CAR functionality. Here, we investigated the design of CD19 CARs enriched with distinct Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), or Toll/IL-1 domain-containing adaptor-inducing interferon (IFN)-β (TRIF) costimulatory domains. Screening of various designs identified several candidates with no tonic activity but with increased CD19 target cell-dependent interleukin (IL)-2 production. Human T cells transduced with the selected CAR construct exhibited augmented hIL-2 and hIFN-γ induction and cytotoxicity when cocultured with CD19-positive lymphoma and solid-tumor cell lines. RNA sequencing (RNA-seq) analysis demonstrated the upregulation of some genes involved in the innate immune response and T cell activation and proliferation. In experiments on a xenogeneic solid-tumor mice model, MyD88 and TLR4 CAR T cells exhibited prolonged remission. This study demonstrates that the integration of a truncated TLR4 signaling costimulatory domain could provide immunotherapeutic potential against both hematologic malignancies and solid tumors.
Collapse
Affiliation(s)
- Veronika Mikolič
- Department of Hematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Jelica Pantović-Žalig
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Špela Malenšek
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Matjaž Sever
- Department of Hematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- Centre for Technologies of Gene and Cell Therapy, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- Centre for Technologies of Gene and Cell Therapy, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Secondino S, Canino C, Alaimo D, Muzzana M, Galli G, Borgetto S, Basso S, Bagnarino J, Pulvirenti C, Comoli P, Pedrazzoli P. Clinical Trials of Cellular Therapies in Solid Tumors. Cancers (Basel) 2023; 15:3667. [PMID: 37509328 PMCID: PMC10377409 DOI: 10.3390/cancers15143667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In the past years cancer treatments have drastically changed, mainly due to the development of immune checkpoint inhibitors capable of immune modulation in vivo, thus providing major clinical benefit in a number of malignancies. Simultaneously, considerable technical refinements have opened new prospects for the development of immune cell-based medicinal products and unprecedented success with chimeric antigen receptor (CAR)-T cells targeting B-cell hematologic malignancies has been obtained. However, T cell therapies introduced and performed in the field of solid tumors have produced so far only limited responses in selected patient populations. This standstill is attributable to the difficulty in identifying target antigens which are homogeneously expressed by all tumor cells while absent from normal tissues, and the limited T cell persistence and proliferation in a hostile tumor microenvironment that favors immune escape. Replicating the results observed in hematology is a major scientific challenge in solid tumors, and ongoing translational and clinical research is focused on obtaining insight into the mechanisms of tumor recognition and evasion, and how to improve the efficacy of cellular therapies, also combining them with immune checkpoint inhibitors or other agents targeting either the cancer cell or the tumor environment. This paper provides an overview of current adaptive T cell therapy approaches in solid tumors, the research performed to increase their efficacy and safety, and results from ongoing clinical trials.
Collapse
Affiliation(s)
- Simona Secondino
- Oncology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Costanza Canino
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| | - Domiziana Alaimo
- Oncology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| | - Marta Muzzana
- Oncology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| | - Giulia Galli
- Oncology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Sabrina Borgetto
- Oncology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| | - Sabrina Basso
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Pediatric Oncoematology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Jessica Bagnarino
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chiara Pulvirenti
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Pediatric Oncoematology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Patrizia Comoli
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Pediatric Oncoematology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Oncology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
4
|
Li J, Zhou W, Li D, Huang Y, Yang X, Jiang L, Hu X, Yang J, Fu M, Zhang M, Wang F, Li J, Zhang Y, Yang Y, Yan F, Gao H, Wang W. Co-infusion of CAR T cells with aAPCs expressing chemokines and costimulatory ligands enhances the anti-tumor efficacy in mice. Cancer Lett 2023:216287. [PMID: 37392990 DOI: 10.1016/j.canlet.2023.216287] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Chimeric antigen receptor-modified T (CAR-T) cell therapy has shown curable efficacy for treating hematological malignancies, while in solid tumors, the immunosuppressive microenvironment causes poor activation, expansion and survival of CAR-T cells, accounting mainly for the unsatisfactory efficacy. The artificial antigen-presenting cells (aAPCs) have been used for ex vivo expansion and manufacturing of CAR-T cells. Here, we constructed a K562 cell-based aAPCs expressing human epithelial cell adhesion molecule (EpCAM), chemokines (CCL19 and CCL21) and co-stimulatory molecular ligands (CD80 and 4-1BBL). Our data demonstrated that the novel aAPCs enhanced the expansion, and increased the immune memory phenotype and cytotoxicity of CAR-T cells recognizing EpCAM, in vitro. Of note, co-infusion CAR-T and aAPC enhances the infiltration of CAR-T cells in solid tumors, which has certain potential for the treatment of solid tumors Moreover, IL-2-9-21, a cytokine cocktail, prevents CAR-T cells from entering the state of exhaustion prematurely following continuous antigen engagement and boosts the anti-tumor activity of CAR-T cells co-infused with aAPCs. These data provide a new strategy to enhance the therapeutic potential of CAR-T cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Jing Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Dan Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xiao Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Lin Jiang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xiaoyi Hu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China; Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Jinrong Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China; Department of Hematology, Hematology Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Maorong Fu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Mengxi Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiaqian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yalan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yuening Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Feiyang Yan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Haozhan Gao
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
5
|
CAR-T cells for cancer immunotherapy. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
6
|
Wang Z, Chen C, Wang L, Jia Y, Qin Y. Chimeric antigen receptor T-cell therapy for multiple myeloma. Front Immunol 2022; 13:1050522. [PMID: 36618390 PMCID: PMC9814974 DOI: 10.3389/fimmu.2022.1050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma (MM) is a malignant plasma cell disorder that remains incurable for most patients, as persistent clonal evolution drives new mutations which confer MM high-risk signatures and resistance to standard care. The past two decades have significantly refashioned the therapeutic options for MM, especially adoptive T cell therapy contributing to impressive response rate and clinical efficacy. Despite great promises achieved from chimeric antigen receptor T-cell (CAR-T) therapy, the poor durability and severe toxicity (cytokine release syndrome and neurotoxicity) are still huge challenges. Therefore, relapsed/refractory multiple myeloma (RRMM), characterized by the nature of clinicopathologic and molecular heterogeneity, is frequently associated with poor prognosis. B Cell Maturation Antigen (BCMA) is the most successful target for CAR-T therapy, and other potential targets either for single-target or dual-target CAR-T are actively being studied in numerous clinical trials. Moreover, mechanisms driving resistance or relapse after CAR-T therapy remain uncharacterized, which might refer to T-cell clearance, antigen escape, and immunosuppressive tumor microenvironment. Engineering CAR T-cell to improve both efficacy and safety continues to be a promising area for investigation. In this review, we aim to describe novel tumor-associated neoantigens for MM, summarize the data from current MM CAR-T clinical trials, introduce the mechanism of disease resistance/relapse after CAR-T infusion, highlight innovations capable of enhanced efficacy and reduced toxicity, and provide potential directions to optimize manufacturing processes.
Collapse
Affiliation(s)
| | | | | | - Yongxu Jia
- *Correspondence: Yongxu Jia, ; Yanru Qin,
| | - Yanru Qin
- *Correspondence: Yongxu Jia, ; Yanru Qin,
| |
Collapse
|
7
|
Qin Y, Xu G. Enhancing CAR T-cell therapies against solid tumors: Mechanisms and reversion of resistance. Front Immunol 2022; 13:1053120. [PMID: 36569859 PMCID: PMC9773088 DOI: 10.3389/fimmu.2022.1053120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy, belonging to adoptive immune cells therapy, utilizes engineered immunoreceptors to enhance tumor-specific killing. By now new generations of CAR T-cell therapies dramatically promote the effectiveness and robustness in leukemia cases. However, only a few CAR T-cell therapies gain FDA approval till now, which are applied to hematologic cancers. Targeting solid tumors through CAR T-cell therapies still faces many problems, such as tumor heterogeneity, antigen loss, infiltration inability and immunosuppressive micro-environment. Recent advances provide new insights about the mechanisms of CAR T-cell therapy resistance and give rise to potential reversal therapies. In this review, we mainly introduce existing barriers when treating solid tumors with CAR T-cells and discuss the methods to overcome these challenges.
Collapse
Affiliation(s)
- Yue Qin
- National Institute of Biological Sciences, Beijing, China,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Guotai Xu
- National Institute of Biological Sciences, Beijing, China,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China,*Correspondence: Guotai Xu,
| |
Collapse
|
8
|
Wei C, Xia K, Xie Y, Ye S, Ding Y, Liu Z, Zheng R, Long J, Wei Q, Li Y, Yang D, Xu X, Zhao A, Gao J. Combination of 4-1BB and DAP10 promotes proliferation and persistence of NKG2D(bbz) CAR-T cells. Front Oncol 2022; 12:893124. [PMID: 35965586 PMCID: PMC9372572 DOI: 10.3389/fonc.2022.893124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has been shown to have considerable therapeutic effects in hematological malignancies, and NKG2D(z) CAR-T cell therapy has been verified to be safe based on clinical trials. However, due to the poor persistence of NKG2D(z) CAR-T cells, their therapeutic effect is not obvious. Here, we constructed NKG2D(bbz) CAR-T cells that can simultaneously activate 4-1BB and DAP10 costimulatory signaling. They were found to be cytotoxic to the target cells in vitro and in vivo. They exhibited low differentiation, low exhaustion, and good proliferation. Importantly, the proportions of central memory T (Tcm) and stem cell-like memory T (Tscm) cell subsets were strikingly increased. After long-term incubation with the target cells, they displayed reduced exhaustion compared to NKG2D(z) CAR-T cells. Further, in the presence of the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, they exhibited reduced exhaustion and apoptosis, upregulated Bcl2 expression, and an increased proportion of Tcm cell subsets. Finally, NKG2D(bbz) CAR-T cells had better antitumor effects in vivo. In summary, the results showed that NKG2D(bbz) CAR-T cells may be valuable for cellular immunotherapy of cancer.
Collapse
Affiliation(s)
- Cheng Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kangfu Xia
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yucheng Xie
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sishi Ye
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanghui Ding
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zairu Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rong Zheng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jing Long
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qinchuan Wei
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yumei Li
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | | | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Ai Zhao
- Department of Geriatric, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Qixin Biotech, Wenzhou, China
| | - Jimin Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Zhejiang Qixin Biotech, Wenzhou, China
| |
Collapse
|
9
|
Schroeder BA, Jess J, Sankaran H, Shah NN. Clinical trials for chimeric antigen receptor T-cell therapy: lessons learned and future directions. Curr Opin Hematol 2022; 29:225-232. [PMID: 35787551 PMCID: PMC9354650 DOI: 10.1097/moh.0000000000000723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the status and utilization of chimeric antigen receptor T-cell (CAR-T) therapy based on the most recent clinical trials in patients with leukemia and lymphoma. Additionally, this review will highlight limitations in current strategies, discuss efforts in toxicity mitigation, and outline future directions for investigation. RECENT FINDINGS CD19 targeted CAR-T-cell therapy (CD19-CAR) is highly effective in patients with relapsed/refractory (r/r) B-cell hematologic malignancies. However, multiple challenges have arisen, particularly life-threatening adverse events, such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Despite these challenges, recent CD19-CAR trials, including two randomized studies, have demonstrated both impressive initial results along with durable responses. Combined with results emerging from 'real-world' experience, the efficacy of CAR-T-cells is high, propelling CAR-T-cells studies targeting alternate B-cell antigens [e.g. CD20, CD22 and CD269 (BCMA)] and other targets for hematologic malignancies, along with solid and CNS tumors. SUMMARY Given the benefit for CD19-CAR, determining the appropriate place in utilization for both an individual patient's treatment course and more broadly in the generalized treatment paradigm is critically needed. We discuss the most recent trials exploring this topic and future directions in the field.
Collapse
Affiliation(s)
- Brett A Schroeder
- National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jennifer Jess
- Pediatric Oncology Branch, Center for Cancer Research (CCR)
| | - Hari Sankaran
- Biometric Research Program, Division of Cancer Treatment and Diagnosis
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research (CCR)
| |
Collapse
|
10
|
Sakemura R, Hefazi M, Siegler EL, Cox MJ, Larson DP, Hansen MJ, Manriquez Roman C, Schick KJ, Can I, Tapper EE, Horvei P, Adada MM, Bezerra ED, Kankeu Fonkoua LA, Ruff MW, Nevala WK, Walters DK, Parikh SA, Lin Y, Jelinek DF, Kay NE, Bergsagel PL, Kenderian SS. Targeting cancer-associated fibroblasts in the bone marrow prevents resistance to CART-cell therapy in multiple myeloma. Blood 2022; 139:3708-3721. [PMID: 35090171 PMCID: PMC11290597 DOI: 10.1182/blood.2021012811] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Abstract
Pivotal clinical trials of B-cell maturation antigen-targeted chimeric antigen receptor T (CART)-cell therapy in patients with relapsed/refractory multiple myeloma (MM) resulted in remarkable initial responses, which led to a recent US Food and Drug Administration approval. Despite the success of this therapy, durable remissions continue to be low, and the predominant mechanism of resistance is loss of CART cells and inhibition by the tumor microenvironment (TME). MM is characterized by an immunosuppressive TME with an abundance of cancer-associated fibroblasts (CAFs). Using MM models, we studied the impact of CAFs on CART-cell efficacy and developed strategies to overcome CART-cell inhibition. We showed that CAFs inhibit CART-cell antitumor activity and promote MM progression. CAFs express molecules such as fibroblast activation protein and signaling lymphocyte activation molecule family-7, which are attractive immunotherapy targets. To overcome CAF-induced CART-cell inhibition, CART cells were generated targeting both MM cells and CAFs. This dual-targeting CART-cell strategy significantly improved the effector functions of CART cells. We show for the first time that dual targeting of both malignant plasma cells and the CAFs within the TME is a novel strategy to overcome resistance to CART-cell therapy in MM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claudia Manriquez Roman
- T Cell Engineering
- Division of Hematology
- Mayo Clinic Graduate School of Biomedical Sciences
- Department of Molecular Medicine
| | - Kendall J. Schick
- T Cell Engineering
- Division of Hematology
- Mayo Clinic Graduate School of Biomedical Sciences
- Department of Molecular Pharmacology and Experimental Therapeutics
| | - Ismail Can
- T Cell Engineering
- Division of Hematology
- Mayo Clinic Graduate School of Biomedical Sciences
| | | | | | | | | | | | - Michael W. Ruff
- T Cell Engineering
- Department of Neurology, Mayo Clinic, Rochester, MN
| | | | | | | | | | | | | | | | - Saad S. Kenderian
- T Cell Engineering
- Division of Hematology
- Department of Immunology
- Department of Molecular Medicine
| |
Collapse
|
11
|
Hussain A. Therapeutic applications of engineered chimeric antigen receptors-T cell for cancer therapy. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Findings of new targeted treatments with adequate safety evaluations are essential for better cancer cures and mortality rates. Immunotherapy holds promise for patients with relapsed disease, with the ability to elicit long-term remissions. Emerging promising clinical results in B-cell malignancy using gene-altered T-lymphocytes uttering chimeric antigen receptors have sparked a lot of interest. This treatment could open the path for a major difference in the way we treat tumors that are resistant or recurring.
Main body
Genetically altered T cells used to produce tumor-specific chimeric antigen receptors are resurrected fields of adoptive cell therapy by demonstrating remarkable success in the treatment of malignant tumors. Because of the molecular complexity of chimeric antigen receptors-T cells, a variety of engineering approaches to improve safety and effectiveness are necessary to realize larger therapeutic uses. In this study, we investigate new strategies for enhancing chimeric antigen receptors-T cell therapy by altering chimeric antigen receptors proteins, T lymphocytes, and their relations with another solid tumor microenvironment (TME) aspects. Furthermore, examine the potential region of chimeric antigen receptors-T cells therapy to become a most effective treatment modality, taking into account the basic and clinical and practical aspect.
Short conclusions
Chimeric antigen receptors-T cells have shown promise in the therapy of hematological cancers. Recent advancements in protein and cell editing, as well as genome-editing technologies, have paved the way for multilayered T cell therapy techniques that can address numerous important demands. At around the same time, there is crosstalk between various intended aspects within the chimeric antigen receptors-T cell diverse biological complexity and possibilities. These breakthroughs substantially improve the ability to comprehend these complex interactions in future solid tumor chimeric antigen receptor-T cell treatment and open up new treatment options for patients that are currently incurable.
Collapse
|
12
|
Marofi F, Achmad H, Bokov D, Abdelbasset WK, Alsadoon Z, Chupradit S, Suksatan W, Shariatzadeh S, Hasanpoor Z, Yazdanifar M, Shomali N, Khiavi FM. Hurdles to breakthrough in CAR T cell therapy of solid tumors. Stem Cell Res Ther 2022; 13:140. [PMID: 35365241 PMCID: PMC8974159 DOI: 10.1186/s13287-022-02819-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Autologous T cells genetically engineered to express chimeric antigen receptor (CAR) have shown promising outcomes and emerged as a new curative option for hematological malignancy, especially malignant neoplasm of B cells. Notably, when T cells are transduced with CAR constructs, composed of the antigen recognition domain of monoclonal antibodies, they retain their cytotoxic properties in a major histocompatibility complex (MHC)-independent manner. Despite its beneficial effect, the current CAR T cell therapy approach faces myriad challenges in solid tumors, including immunosuppressive tumor microenvironment (TME), tumor antigen heterogeneity, stromal impediment, and tumor accessibility, as well as tribulations such as on-target/off-tumor toxicity and cytokine release syndrome (CRS). Herein, we highlight the complications that hamper the effectiveness of CAR T cells in solid tumors and the strategies that have been recommended to overcome these hurdles and improve infused T cell performance.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Zeid Alsadoon
- Dentistry Department, College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hasanpoor
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
13
|
Lamture G, Baer A, Fischer JW, Colon-Moran W, Bhattarai N. TCR-independent Activation in Presence of a Src-family Kinase Inhibitor Improves CAR-T Cell Product Attributes. J Immunother 2022; 45:139-149. [PMID: 34802014 PMCID: PMC8906249 DOI: 10.1097/cji.0000000000000402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
Chimeric antigen receptor expressing T cells (CAR-T cells) have shown remarkable efficacy against some blood cancers and have potential to treat many other human diseases. During CAR-T cell manufacturing, T cells are activated via engagement of the T-cell receptor (TCR); however, persistent TCR engagement can induce unchecked activation, differentiation, and exhaustion, which can negatively affect CAR-T cell product quality and in vivo potency. In addition, T cells may not uniformly respond to TCR-dependent activation (TCRD) contributing to lot-to-lot variability, poor expansion, and manufacturing failures. TCRD also presents challenges during manufacturing of allogeneic CAR-T cells when endogenous TCR is deleted to prevent graft-versus-host disease. Thus, novel strategies to activate T cells may help improve CAR-T cell product attributes and reduce manufacturing failures. In this study, we compared the effect of TCRD and TCR-independent activation (TCRI) on CAR-T cell product attributes. We found that TCRI in presence of a Src-kinase inhibitor significantly improved CAR-T cell expansion and yield without affecting viability and CD4/CD8 ratio. Markers of T-cell activation, exhaustion and differentiation were also reduced in these CAR-T cells compared with CAR-T cells manufactured by TCRD. TCRI did not affect CAR-T cell in vitro potency; however, following co-culture with target cells, CAR-T cells manufactured by TCRI released significantly less inflammatory cytokines compared with CAR-T cells manufactured by TCRD. Together, these data suggest that manufacturing CAR-T cells by TCRI activation in the presence of a Src-kinase inhibitor improves product quality attributes and may help reduce manufacturing failures and improve CAR-T cell safety and efficacy in vivo.
Collapse
|
14
|
Zhai BT, Tian H, Sun J, Zou JB, Zhang XF, Cheng JX, Shi YJ, Fan Y, Guo DY. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. J Transl Med 2022; 20:135. [PMID: 35303878 PMCID: PMC8932206 DOI: 10.1186/s12967-022-03329-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is an attractive target for the treatment of cancer, because it is expressed at low levels in healthy tissues but at high levels in malignant tumours. uPAR is closely related to the invasion and metastasis of malignant tumours, plays important roles in the degradation of extracellular matrix (ECM), tumour angiogenesis, cell proliferation and apoptosis, and is associated with the multidrug resistance (MDR) of tumour cells, which has important guiding significance for the judgement of tumor malignancy and prognosis. Several uPAR-targeted antitumour therapeutic agents have been developed to suppress tumour growth, metastatic processes and drug resistance. Here, we review the recent advances in the development of uPAR-targeted antitumor therapeutic strategies, including nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy, to promote the translation of these therapeutic agents to clinical applications.
Collapse
Affiliation(s)
- Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Ya-Jun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
15
|
Wang Z, McWilliams-Koeppen HP, Reza H, Ostberg JR, Chen W, Wang X, Huynh C, Vyas V, Chang WC, Starr R, Wagner JR, Aguilar B, Yang X, Wu X, Wang J, Chen W, Koelker-Wolfe E, Seet CS, Montel-Hagen A, Crooks GM, Forman SJ, Brown CE. 3D-organoid culture supports differentiation of human CAR+ iPSCs into highly functional CAR T cells. Cell Stem Cell 2022; 29:515-527.e8. [PMID: 35278370 PMCID: PMC9119152 DOI: 10.1016/j.stem.2022.02.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 09/10/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Unlimited generation of chimeric antigen receptor (CAR) T cells from human-induced pluripotent stem cells (iPSCs) is an attractive approach for "off-the-shelf" CAR T cell immunotherapy. Approaches to efficiently differentiate iPSCs into canonical αβ T cell lineages, while maintaining CAR expression and functionality, however, have been challenging. We report that iPSCs reprogramed from CD62L+ naive and memory T cells followed by CD19-CAR engineering and 3D-organoid system differentiation confers products with conventional CD8αβ-positive CAR T cell characteristics. Expanded iPSC CD19-CAR T cells showed comparable antigen-specific activation, degranulation, cytotoxicity, and cytokine secretion compared with conventional CD19-CAR T cells and maintained homogeneous expression of the TCR derived from the initial clone. iPSC CD19-CAR T cells also mediated potent antitumor activity in vivo, prolonging survival of mice with CD19+ human tumor xenografts. Our study establishes feasible methodologies to generate highly functional CAR T cells from iPSCs to support the development of "off-the-shelf" manufacturing strategies.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA.
| | - Helen P McWilliams-Koeppen
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Hernan Reza
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Julie R Ostberg
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Wuyang Chen
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Xiuli Wang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Christian Huynh
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Vibhuti Vyas
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Wen-Chung Chang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Renate Starr
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Jamie R Wagner
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Brenda Aguilar
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Xin Yang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Xiwei Wu
- Integrative Genomics Core, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Jinhui Wang
- Integrative Genomics Core, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Wei Chen
- Integrative Genomics Core, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Ellery Koelker-Wolfe
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Christopher S Seet
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Broad Stem Cell Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Amélie Montel-Hagen
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Gay M Crooks
- Broad Stem Cell Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Division of Pediatric Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Stephen J Forman
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA.
| |
Collapse
|
16
|
Mirzaee Godarzee M, Mahmud Hussen B, Razmara E, Hakak‐Zargar B, Mohajerani F, Dabiri H, Fatih Rasul M, Ghazimoradi MH, Babashah S, Sadeghizadeh M. Strategies to overcome the side effects of chimeric antigen receptor T cell therapy. Ann N Y Acad Sci 2022; 1510:18-35. [DOI: 10.1111/nyas.14724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022]
Affiliation(s)
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy Hawler Medical University Erbil Iraq
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute Monash University, Clayton, Victoria, Australia, 3800
| | | | - Fatemeh Mohajerani
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Hamed Dabiri
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Sciences Tishk International University Erbil Iraq
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| |
Collapse
|
17
|
Sheykhhasan M, Manoochehri H, Dama P. Use of CAR T-cell for acute lymphoblastic leukemia (ALL) treatment: a review study. Cancer Gene Ther 2022; 29:1080-1096. [PMID: 34987176 PMCID: PMC9395272 DOI: 10.1038/s41417-021-00418-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 11/18/2021] [Accepted: 12/13/2021] [Indexed: 02/08/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a cancer-specific lymphoid cell. Induction and consolidation chemotherapy alone or in combination with different therapeutic approaches remain the main treatment. Although complete or partial remission of the disease can be achieved, the risk of relapse or refractory leukemia is still high. More effective and safe therapy options are yet unmet needs. In recent years' new therapeutic approaches have been widely used. Hematopoietic Stem Cell Transplantation (HSCT) presents significant limitations and the outcome of the consolidation treatment is patient dependent. Side effects such as Graft versus Host Disease (GvHD) in allogeneic hematopoietic stem cell transplantation are extremely common, therefore, using alternative methods to address these challenges for treatment seems crucial. In the last decade, T cells genetically engineered with Chimeric Antigen Receptor (CAR) treatment for the ALL are largely studied and represent the new era of strategy. According to the Phase I/II clinical trials, this technology results seem very promising and can be used in the next future as an effective and safe treatment for ALL treatment. In this review different generations, challenges, and clinical studies related to chimeric antigen receptor (CAR) T-cells for ALL treatment are discussed.
Collapse
Affiliation(s)
- Mohsen Sheykhhasan
- grid.411950.80000 0004 0611 9280Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran ,Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | - Hamed Manoochehri
- grid.411950.80000 0004 0611 9280Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Paola Dama
- Research Fellow School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
18
|
Genebrier S, Tarte K. [Perspectives for the evolution and use of CAR-T cells]. Bull Cancer 2021; 108:S18-S27. [PMID: 34920801 DOI: 10.1016/j.bulcan.2021.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 04/17/2021] [Indexed: 11/20/2022]
Abstract
CAR-T cells have recently made a stunning entry on the arena of immunotherapy of B-cell lymphomas. This new treatment approach represents the culmination of 30 years of efforts to understand the role of T cells in the antitumor response. However, this technology is still in its infancy and suffers from a number of limitations. Many areas for improvement, based in particular on the possibilities of additional genetic manipulations of CAR-T cells, aim at reducing their toxicity, increasing their persistence in vivo, preventing the risk of tumor escape, recruiting other immune effectors, or extending their application to other cancers. Further studies of the dynamic interaction between the patient and these live drugs will allow elucidating the mechanisms determining the antitumor response in this context and thus developing more efficiently the future CAR-T cells.
Collapse
Affiliation(s)
- Steve Genebrier
- Université Rennes 1, UMR U1236, inserm, EFS Bretagne, rue Pierre Jean Gineste, 35000 Rennes, France; CHU de Rennes ; Pôle Biologie, 2, rue Henri Le Guilloux, 35033 Rennes cedex 9, France
| | - Karin Tarte
- Université Rennes 1, UMR U1236, inserm, EFS Bretagne, rue Pierre Jean Gineste, 35000 Rennes, France; CHU de Rennes ; Pôle Biologie, 2, rue Henri Le Guilloux, 35033 Rennes cedex 9, France.
| |
Collapse
|
19
|
Nalawade SA, Shafer P, Bajgain P, McKenna MK, Ali A, Kelly L, Joubert J, Gottschalk S, Watanabe N, Leen A, Parihar R, Vera Valdes JF, Hoyos V. Selectively targeting myeloid-derived suppressor cells through TRAIL receptor 2 to enhance the efficacy of CAR T cell therapy for treatment of breast cancer. J Immunother Cancer 2021; 9:jitc-2021-003237. [PMID: 34815355 PMCID: PMC8611441 DOI: 10.1136/jitc-2021-003237] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Successful targeting of solid tumors such as breast cancer (BC) using chimeric antigen receptor (CAR) T cells has proven challenging, largely attributed to the immunosuppressive tumor microenvironment (TME). Myeloid-derived suppressor cells (MDSCs) inhibit CAR T cell function and persistence within the breast TME. To overcome this challenge, we have developed CAR T cells targeting tumor-associated mucin 1 (MUC1) with a novel chimeric costimulatory receptor that targets tumor necrosis factor-related apoptosis-inducing ligand receptor 2 (TR2) expressed on MDSCs. METHODS The function of the TR2.41BB costimulatory receptor was assessed by exposing non-transduced (NT) and TR2.41BB transduced T cells to recombinant TR2, after which nuclear translocation of NFκB was measured by ELISA and western blot. The cytolytic activity of CAR.MUC1/TR2.41BB T cells was measured in a 5-hour cytotoxicity assay using MUC1+ tumor cells as targets in the presence or absence of MDSCs. In vivo antitumor activity was assessed using MDSC-enriched tumor-bearing mice treated with CAR T cells with or without TR2.41BB. RESULTS Nuclear translocation of NFκB in response to recombinant TR2 was detected only in TR2.41BB T cells. The presence of MDSCs diminished the cytotoxic potential of CAR.MUC1 T cells against MUC1+ BC cell lines by 25%. However, TR2.41BB expression on CAR.MUC1 T cells induced MDSC apoptosis, thereby restoring the cytotoxic activity of CAR.MUC1 T cells against MUC1+ BC lines. The presence of MDSCs resulted in an approximately twofold increase in tumor growth due to enhanced angiogenesis and fibroblast accumulation compared with mice with tumor alone. Treatment of these MDSC-enriched tumors with CAR.MUC1.TR2.41BB T cells led to superior tumor cell killing and significant reduction in tumor growth (24.54±8.55 mm3) compared with CAR.MUC1 (469.79±81.46 mm3) or TR2.41BB (434.86±64.25 mm3) T cells alone. CAR.MUC1.TR2.41BB T cells also demonstrated improved T cell proliferation and persistence at the tumor site, thereby preventing metastases. We observed similar results using CAR.HER2.TR2.41BB T cells in a HER2+ BC model. CONCLUSIONS Our findings demonstrate that CAR T cells that coexpress the TR2.4-1BB receptor exhibit superior antitumor potential against breast tumors containing immunosuppressive and tumor promoting MDSCs, resulting in TME remodeling and improved T cell proliferation at the tumor site.
Collapse
Affiliation(s)
- Saisha A Nalawade
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Paul Shafer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Pradip Bajgain
- Mouse Cancer Genetics Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Mary K McKenna
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Arushana Ali
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Lauren Kelly
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Jarrett Joubert
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen Gottschalk
- Bone Marrow Transplant Department, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Ann Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Robin Parihar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | | | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
20
|
Rudek LS, Zimmermann K, Galla M, Meyer J, Kuehle J, Stamopoulou A, Brand D, Sandalcioglu IE, Neyazi B, Moritz T, Rossig C, Altvater B, Falk CS, Abken H, Morgan MA, Schambach A. Generation of an NFκB-Driven Alpharetroviral "All-in-One" Vector Construct as a Potent Tool for CAR NK Cell Therapy. Front Immunol 2021; 12:751138. [PMID: 34804035 PMCID: PMC8595471 DOI: 10.3389/fimmu.2021.751138] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Immune cell therapeutics are increasingly applied in oncology. Especially chimeric antigen receptor (CAR) T cells are successfully used to treat several B cell malignancies. Efforts to engineer CAR T cells for improved activity against solid tumors include co-delivery of pro-inflammatory cytokines in addition to CARs, via either constitutive cytokine expression or inducible cytokine expression triggered by CAR recognition of its target antigen-so-called "T cells redirected for universal cytokine-mediated killing" (TRUCKs) or fourth-generation CARs. Here, we tested the hypothesis that TRUCK principles could be expanded to improve anticancer functions of NK cells. A comparison of the functionality of inducible promoters responsive to NFAT or NFκB in NK cells showed that, in contrast to T cells, the inclusion of NFκB-responsive elements within the inducible promoter construct was essential for CAR-inducible expression of the transgene. We demonstrated that GD2CAR-specific activation induced a tight NFκB-promoter-driven cytokine release in NK-92 and primary NK cells together with an enhanced cytotoxic capacity against GD2+ target cells, also shown by increased secretion of cytolytic cytokines. The data demonstrate biologically relevant differences between T and NK cells that are important when clinically translating the TRUCK concept to NK cells for the treatment of solid malignancies.
Collapse
Affiliation(s)
- Loreen Sophie Rudek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Katharina Zimmermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Johannes Kuehle
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Andriana Stamopoulou
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Daniel Brand
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - I Erol Sandalcioglu
- Department of Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Belal Neyazi
- Department of Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany
| | - Hinrich Abken
- Regensburg Centre for Interventional Immunology, Department of Genetic Immunotherapy, University Hospital Regensburg, Regensburg, Germany
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Li G, Zhang Q, Han Z, Zhu Y, Shen H, Liu Z, Zhou Z, Ding W, Han S, He J, Yin Z, Zhou J, Ou R, Luo M, Liu S. IL-7 and CCR2b Co-Expression-Mediated Enhanced CAR-T Survival and Infiltration in Solid Tumors. Front Oncol 2021; 11:734593. [PMID: 34778046 PMCID: PMC8579717 DOI: 10.3389/fonc.2021.734593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/06/2021] [Indexed: 01/06/2023] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells are not effective in solid tumor treatment due to reduced invasion and expansion, and short survival time. This study aimed to explore whether interleukin (IL)-7 and CCR2b expression could improve GD2-CAR-T cell survival and infiltration in neuroblastoma and melanoma treatment. IL-7 and CCR2b were inserted into the classical second-generation CAR structure to construct 7×2b CAR. The 7×2b CAR-T cell phenotypes were evaluated by flow cytometry and the chemokine levels by ELISA. The 7×2b CAR-T cell migration and anti-tumor abilities were detected by Transwell assay and animal experiments in vivo. We report that compared with that of CAR-T cells, 7×2b CAR-T cell IL-7 secretion and CCR2b expression did not affect the T cell surface expression of CAR or CAR-T specificity and efficacy against tumor cells. The 7×2b CAR-T cells could induce IFN-γ secretion in GD2-positive tumor cells, killing them as well as conventional CAR-T cells. Moreover, IL-7 and CCR2b co-expression enhanced the 7×2b CAR-T cell survival and migration. Similar to conventional CAR-T, 7×2b CAR-T cells could also inhibit tumor growth and increase IFN-γ, Gzms-B, and IL-2 expression. Finally, unlike in mice injected with CAR-T cells, CD3 expression was the most abundant in the spleen and tumor tissues in mice injected with 7×2b CAR-T cells. Our study demonstrates that IL-7 and CCR2b co-expression in GD2-CAR-T cells exhibit stronger anti-tumor activity than classical second-generation CAR-T cells, shedding light on the potential novel GD2-positive neuroblastoma and melanoma treatment approach.
Collapse
Affiliation(s)
- Guangchao Li
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China.,Department of Research and Development, Guangzhou Bio-gene Technology Co., Ltd, Guangzhou, China
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zeping Han
- Department of Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Yangmin Zhu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huijuan Shen
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhi Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhao Zhou
- Department of Research and Development, Guangzhou Bio-gene Technology Co., Ltd, Guangzhou, China
| | - Wen Ding
- Department of Research and Development, Guangzhou Bio-gene Technology Co., Ltd, Guangzhou, China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, China
| | - Jinhua He
- Department of Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Zhao Yin
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jie Zhou
- Department of Hematology, People's Hospital of Deyang City, Deyang, China
| | - Ruiming Ou
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Min Luo
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China.,Department of Research and Development, Guangzhou Bio-gene Technology Co., Ltd, Guangzhou, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
22
|
Mansour MA, Caputo VS, Aleem E. Highlights on selected growth factors and their receptors as promising anticancer drug targets. Int J Biochem Cell Biol 2021; 140:106087. [PMID: 34563698 DOI: 10.1016/j.biocel.2021.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Growth factor receptors (GFRs) and receptor tyrosine kinases (RTK) are groups of proteins mediating a plethora of physiological processes, including cell growth, proliferation, survival, differentiation and migration. Under certain circumstances, expression of GFRs and subsequently their downstream kinase signaling are deregulated by genetic, epigenetic, and somatic changes leading to uncontrolled cell division in many human diseases, most notably cancer. Cancer cells rely on growth factors to sustain the increasing need to cell division and metabolic reprogramming through cancer-associated activating mutations of their receptors (i.e., GFRs). In this review, we highlight the recent advances of selected GFRs and their ligands (growth factors) in cancer with emphasis on structural and functional differences. We also interrogate how overexpression and/or hyperactivation of GFRs contribute to cancer initiation, development, progression, and resistance to conventional chemo- and radiotherapies. Novel approaches are being developed as anticancer agents to target growth factor receptors and their signaling pathways in different cancers. Here, we illustrate how the current knowledge of GFRs biology, and their ligands lead to development of targeted therapies to inhibit and/or block the activity of growth factors, GFRs and downstream kinases to treat diseases such as cancer.
Collapse
Affiliation(s)
- Mohammed A Mansour
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK; Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Valentina S Caputo
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK
| | - Eiman Aleem
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK.
| |
Collapse
|
23
|
Haydar D, Ibañez-Vega J, Krenciute G. T-Cell Immunotherapy for Pediatric High-Grade Gliomas: New Insights to Overcoming Therapeutic Challenges. Front Oncol 2021; 11:718030. [PMID: 34760690 PMCID: PMC8573171 DOI: 10.3389/fonc.2021.718030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/08/2021] [Indexed: 01/06/2023] Open
Abstract
Despite decades of research, pediatric central nervous system (CNS) tumors remain the most debilitating, difficult to treat, and deadliest cancers. Current therapies, including radiation, chemotherapy, and/or surgery, are unable to cure these diseases and are associated with serious adverse effects and long-term impairments. Immunotherapy using chimeric antigen receptor (CAR) T cells has the potential to elucidate therapeutic antitumor immune responses that improve survival without the devastating adverse effects associated with other therapies. Yet, despite the outstanding performance of CAR T cells against hematologic malignancies, they have shown little success targeting brain tumors. This lack of efficacy is due to a scarcity of targetable antigens, interactions with the immune microenvironment, and physical and biological barriers limiting the homing and trafficking of CAR T cells to brain tumors. In this review, we summarize experiences with CAR T-cell therapy for pediatric CNS tumors in preclinical and clinical settings and focus on the current roadblocks and novel strategies to potentially overcome those therapeutic challenges.
Collapse
Affiliation(s)
| | | | - Giedre Krenciute
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
24
|
PI3K/Akt Pathway: The Indestructible Role of a Vintage Target as a Support to the Most Recent Immunotherapeutic Approaches. Cancers (Basel) 2021; 13:cancers13164040. [PMID: 34439194 PMCID: PMC8392360 DOI: 10.3390/cancers13164040] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary PI3K/Akt pathway has an impressive story as tumor marker. PI3K-dependent solid tumors have been studied for several years in order to inhibit the pathway at different levels along the signaling. Despite the highly satisfactory results obtained in vitro and in xenograft mouse tumor models, the use of PI3K/Akt inhibitors in clinical trials resulted in being not as efficient as expected. With the emerging role of the tumor microenvironment in the response to therapy and the awareness, increasing in recent years, of the necessity to army the immune system against the tumor, new opportunities have emerged for PI3K/Akt inhibitors. Here, we show that PI3K/Akt, in addition to its function as tumor marker, exerts a pivotal role as an immunomodulator. Recent studies demonstrate that PI3K/Akt pathway is crucial for the regulation of the immune system and that its inhibition in combination with immunomodulatory agents may provide a new therapeutic approach for cancer. Abstract Pathologic activation of PI3Ks and the subsequent deregulation of its downstream signaling pathway is among the most frequent events associated with cellular transformation, cancer, and metastasis. PI3Ks are also emerging as critical factors in regulating anti-tumor immunity by either promoting an immunosuppressive tumor microenvironment or by controlling the activity and the tumor infiltration of cells involved in the immune response. For these reasons, significant pharmaceutical efforts are dedicated to inhibiting the PI3K pathway, with the main goal to target the tumor and, at the same time, to enhance the anti-tumor immunity. Recent immunotherapeutic approaches involving the use of adoptive cell transfer of autologous genetically modified T cells or immune check-point inhibitors showed high efficacy. However, mechanisms of resistance to these kinds of therapy are emerging, due in part to the inhibition of effector T cell functions exerted by the immunosuppressive tumor microenvironment. Here, we first describe how inhibition of PI3K/Akt pathway contribute to enhance anti-tumor immunity and further discuss how inhibitors of the pathway are used in combination with different immunomodulatory and immunotherapeutic agents to improve anti-tumor efficacy.
Collapse
|
25
|
Zhang H, Li F, Cao J, Wang X, Cheng H, Qi K, Wang G, Xu K, Zheng J, Fu YX, Yang X. A chimeric antigen receptor with antigen-independent OX40 signaling mediates potent antitumor activity. Sci Transl Med 2021; 13:13/578/eaba7308. [PMID: 33504651 DOI: 10.1126/scitranslmed.aba7308] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 08/24/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Although chimeric antigen receptor (CAR)-modified T cells have shown great success in the treatment of B cell malignancies, this approach has limited efficacy in patients with solid tumors. Various modifications in CAR structure have been explored to improve this efficacy, including the incorporation of two costimulatory domains. Because costimulatory signals are transduced together with T cell receptor signals during T cell activation, we engineered a type of CAR-T cells with a costimulatory signal that was activated independently from the tumor antigen to recapitulate physiological stimulation. We screened 12 costimulatory receptors to identify OX40 as the most effective CAR-T function enhancer. Our data indicated that these new CAR-T cells showed superior proliferation capability compared to current second-generation CAR-T cells. OX40 signaling reduced CAR-T cell apoptosis through up-regulation of genes encoding Bcl-2 family members and enhanced proliferation through increased activation of the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase), and PI3K-AKT (phosphoinositide 3-kinase to the kinase AKT) pathways. OX40 signaling not only enhanced the cytotoxicity of CAR-T cells but also reduced exhaustion markers, thereby maintaining their function in immunosuppressive tumor microenvironments. In mouse tumor models and in patients with metastatic lymphoma, these CAR-T cells exhibited robust amplification and antitumor activity. Our findings provide an alternative option for CAR-T optimization with the potential to overcome the challenge of treating solid tumors.
Collapse
Affiliation(s)
- Huihui Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fanlin Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Cao
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xin Wang
- Shanghai Longyao Biotechnology Limited, Shanghai 201203, China
| | - Hai Cheng
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Kunming Qi
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Kailin Xu
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuanming Yang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China. .,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Hauth F, Ho AY, Ferrone S, Duda DG. Radiotherapy to Enhance Chimeric Antigen Receptor T-Cell Therapeutic Efficacy in Solid Tumors: A Narrative Review. JAMA Oncol 2021; 7:1051-1059. [PMID: 33885725 DOI: 10.1001/jamaoncol.2021.0168] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Immunotherapy has emerged as a new pillar of cancer therapy over the past decade. Adoptive immunotherapy in particular has become a major area of research interest, with advances seen in the development of T-cell engineering. As a result, chimeric antigen receptor (CAR) T-cell therapy has become a new and highly effective treatment option, especially for patients with refractory or resistant blood cell cancers. However, CAR T-cell therapy has shown limited efficacy for the treatment of solid tumors thus far. Observations Combinatorial treatment approaches, such as addition of radiotherapy to CAR T cells, may provide a strategy to prevent resistance to CAR T-cell therapy of solid tumors. These approaches need to overcome obstacles that include abnormal vessels and adhesion molecule expression on tumor vasculature, leading to reduced transmigration of effector immune cells, including CAR T cells, and immunosuppressive cues in the tumor microenvironment, including regional hypoxia. Conclusions and Relevance This review provides an overview of the current developments in CAR T-cell therapy and highlights the unique opportunities and challenges in combining CAR T-cell therapy with radiotherapy.
Collapse
Affiliation(s)
- Franziska Hauth
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Radiation Oncology, University Clinic Tuebingen, Tuebingen, Germany
| | - Alice Y Ho
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dan G Duda
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Tahmasebi S, Elahi R, Khosh E, Esmaeilzadeh A. Programmable and multi-targeted CARs: a new breakthrough in cancer CAR-T cell therapy. Clin Transl Oncol 2021; 23:1003-1019. [PMID: 32997278 DOI: 10.1007/s12094-020-02490-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
CAR-T cell therapy, as a novel immunotherapy approach, has indicated successful results in the treatment of hematological malignancies; however, distinct results have been achieved regarding solid tumors. Tumor immunosuppressive microenvironment has been identified as the most critical barrier in CAR-T cell therapy of solid tumors. Developing novel strategies to augment the safety and efficacy of CAR-T cells could be useful to overcome the solid tumor hurdles. Similar to other cancer treatments, CAR-T cell therapy can cause some side effects, which can disturb the healthy tissues. In the current review, we will discuss the practical breakthroughs in CAR-T cell therapy using the multi-targeted and programmable CARs instead of conventional types. These superior types of CAR-T cells have been developed to increase the function and safety of T cells in a controllable manner, which would diminish the incidence of relevant side effects. Moreover, we will describe the capability of these powerful CARs in targeting multiple tumor antigens, redirecting the CAR-T cells to specific target cells, incrementing the safety of CARs, and other advantages that lead to promising outcomes in cancer CAR-T cell therapy.
Collapse
Affiliation(s)
- S Tahmasebi
- Department of Immunology, Health Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - R Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - E Khosh
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - A Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Science, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Science, Zanjan, Iran.
- Immunotherapy Research and Technology Group, Zanjan University of Medical Science, Zanjan, Iran.
| |
Collapse
|
28
|
Shao F, Long Y, Ji H, Jiang D, Lei P, Lan X. Radionuclide-based molecular imaging allows CAR-T cellular visualization and therapeutic monitoring. Am J Cancer Res 2021; 11:6800-6817. [PMID: 34093854 PMCID: PMC8171102 DOI: 10.7150/thno.56989] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy is a new and effective form of adoptive cell therapy that is rapidly entering the mainstream for the treatment of CD19-positive hematological cancers because of its impressive effect and durable responses. Huge challenges remain in achieving similar success in patients with solid tumors. The current methods of monitoring CAR-T, including morphological imaging (CT and MRI), blood tests, and biopsy, have limitations to assess whether CAR-T cells are homing to tumor sites and infiltrating into tumor bed, or to assess the survival, proliferation, and persistence of CAR-T cells in solid tumors associated with an immunosuppressive microenvironment. Radionuclide-based molecular imaging affords improved CAR-T cellular visualization and therapeutic monitoring through either a direct cellular radiolabeling approach or a reporter gene imaging strategy, and endogenous cell imaging is beneficial to reflect functional information and immune status of T cells. Focusing on the dynamic monitoring and precise assessment of CAR-T therapy, this review summarizes the current applications of radionuclide-based noninvasive imaging in CAR-T cells visualization and monitoring and presents current challenges and strategic choices.
Collapse
|
29
|
Singh A, Beechinor RJ, Huynh JC, Li D, Dayyani F, Valerin JB, Hendifar A, Gong J, Cho M. Immunotherapy Updates in Advanced Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13092164. [PMID: 33946408 PMCID: PMC8125389 DOI: 10.3390/cancers13092164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Advanced hepatocellular carcinoma (HCC) carries a grim prognosis, which has historically been compounded by a lack of available systemic therapies. Sorafenib monotherapy was the standard of care for front-line treatment of advanced HCC for many years, despite both poor tolerability and lack of durable responses. In the past few years, there have been several clinical trials evaluating the efficacy of immune checkpoint inhibitors for advanced HCC. Use of immune checkpoint inhibitors alone, and in combination with targeted therapies, has led to improved outcomes in both treatment-naïve and subsequent line treatment of advanced HCC. Here we review the role of immunotherapy in the treatment of HCC, describe the mechanistic basis for combination with targeted therapy, and summarize the recent published data as well as ongoing clinical trials for the use of immunotherapy in the treatment of advanced HCC. Abstract Hepatocellular carcinoma (HCC) is the second most common cause of cancer death worldwide. HCC tumor development and treatment resistance are impacted by changes in the microenvironment of the hepatic immune system. Immunotherapy has the potential to improve response rates by overcoming immune tolerance mechanisms and strengthening anti-tumor activity in the tumor microenvironment. In this review, we characterize the impact of immunotherapy on outcomes of advanced HCC, as well as the active clinical trials evaluating novel combination immunotherapy strategies. In particular, we discuss the efficacy of atezolizumab and bevacizumab as demonstrated in the IMbrave150 study, which created a new standard of care for the front-line treatment of advanced HCC. However, there are multiple ongoing trials that may present additional front-line treatment options depending on their efficacy/toxicity results. Furthermore, the preliminary data on the application of chimeric antigen receptor (CAR-T) cell therapy for treatment of HCC suggests this may be a promising option for the future of advanced HCC treatment.
Collapse
Affiliation(s)
- Amisha Singh
- Internal Medicine, University of California, Davis, Sacramento, CA 95817, USA;
| | | | - Jasmine C. Huynh
- Hematology Oncology, University of California, Davis, Sacramento, CA 95817, USA;
| | - Daneng Li
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA 91010, USA;
| | - Farshid Dayyani
- Hematology Oncology, University of California, Irvine, Irvine, CA 92868, USA; (F.D.); (J.B.V.)
| | - Jennifer B. Valerin
- Hematology Oncology, University of California, Irvine, Irvine, CA 92868, USA; (F.D.); (J.B.V.)
| | - Andrew Hendifar
- Hematology Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.H.); (J.G.)
| | - Jun Gong
- Hematology Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.H.); (J.G.)
| | - May Cho
- Hematology Oncology, University of California, Irvine, Irvine, CA 92868, USA; (F.D.); (J.B.V.)
- Correspondence:
| |
Collapse
|
30
|
Chimeric Antigen Receptor Design and Efficacy in Ovarian Cancer Treatment. Int J Mol Sci 2021; 22:ijms22073495. [PMID: 33800608 PMCID: PMC8037934 DOI: 10.3390/ijms22073495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023] Open
Abstract
Our increased understanding of tumour biology gained over the last few years has led to the development of targeted molecular therapies, e.g., vascular endothelial growth factor A (VEGF-A) antagonists, poly[ADP-ribose] polymerase 1 (PARP1) inhibitors in hereditary breast and ovarian cancer syndrome (BRCA1 and BRCA2 mutants), increasing survival and improving the quality of life. However, the majority of ovarian cancer (OC) patients still do not have access to targeted molecular therapies that would be capable of controlling their disease, especially resistant or relapsed. Chimeric antigen receptors (CARs) are recombinant receptor constructs located on T lymphocytes or other immune cells that change its specificity and functions. Therefore, in a search for a successful solid tumour therapy using CARs the specific cell surface antigens identification is crucial. Numerous in vitro and in vivo studies, as well as studies on humans, prove that targeting overexpressed molecules, such as mucin 16 (MUC16), annexin 2 (ANXA2), receptor tyrosine-protein kinase erbB-2 (HER2/neu) causes high tumour cells toxicity and decreased tumour burden. CARs are well tolerated, side effects are minimal and they inhibit disease progression. However, as OC is heterogenic in its nature with high mutation diversity and overexpression of different receptors, there is a need to consider an individual approach to treat this type of cancer. In this publication, we would like to present the history and status of therapies involving the CAR T cells in treatment of OC tumours, suggest potential T cell-intrinsic determinants of response and resistance as well as present extrinsic factors impacting the success of this approach.
Collapse
|
31
|
Luo Y, Song G, Liang S, Li F, Liu K. Research advances in chimeric antigen receptor-modified T-cell therapy (Review). Exp Ther Med 2021; 21:484. [PMID: 33790993 PMCID: PMC8005741 DOI: 10.3892/etm.2021.9915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T-cells are T-cells that have been genetically engineered to express CAR molecules to target specific surface antigens on tumor cells. CAR T-cell therapy, a novel cancer immunotherapy, has been attracting increasing attention, since it exhibited notable efficacy in the treatment of hematological tumors in clinical trials. However, for this type of therapy, challenges must be overcome in the treatment of solid tumors. Furthermore, certain side effects associated with CAR T-cell therapy, including cytokine release syndrome, immune effector cell-related neurotoxicity syndrome, tumor lysis syndrome and on-target off-tumor toxicity, must be taken into consideration. The present study provides a systematic review of the principle, clinical application, current challenges, possible solutions and future perspectives for CAR T-cell therapy.
Collapse
Affiliation(s)
- Yuxi Luo
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,The First Clinic of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Guiqin Song
- Department of Biology, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Shichu Liang
- The First Clinic of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Feifei Li
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
32
|
Raue R, Frank AC, Syed SN, Brüne B. Therapeutic Targeting of MicroRNAs in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22042210. [PMID: 33672261 PMCID: PMC7926641 DOI: 10.3390/ijms22042210] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor-microenvironment (TME) is an amalgamation of various factors derived from malignant cells and infiltrating host cells, including cells of the immune system. One of the important factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in the TME and provide an overview of how these miRs are involved in current cancer-therapeutic approaches from bench to bedside.
Collapse
Affiliation(s)
- Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| |
Collapse
|
33
|
Pinte L, Cunningham A, Trébéden-Negre H, Nikiforow S, Ritz J. Global Perspective on the Development of Genetically Modified Immune Cells for Cancer Therapy. Front Immunol 2021; 11:608485. [PMID: 33658994 PMCID: PMC7917113 DOI: 10.3389/fimmu.2020.608485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Since the first genetically-engineered clinical trial was posted to clinicaltrials.gov in 2003 (NCT00019136), chimeric antigen receptor (CAR) and T-cell receptor (TCR) therapies have exhibited unprecedented growth. USA, China, and Europe have emerged as major sites of investigation as many new biotechnology and established pharmaceutical companies invest in this rapidly evolving field. Although initial studies focused primarily on CD19 as a target antigen, many novel targets are now being evaluated. Next-generation genetic constructs, starting materials, and manufacturing strategies are also being applied to enhance efficacy and safety and to treat solid tumors as well as hematologic malignancies. Fueled by dramatic clinical efficacy and recent regulatory approvals of CD19-targeted CAR cell therapies, the field of engineered cell therapeutics continues to expand. Here, we review all 745 genetically modified CAR and TCR clinical trials with anticipated accrual of over 28,000 patients posted to clinicaltrials.gov until 31st of December 2019. We analyze projected patient enrollment, geographic distribution and phase of studies, target antigens and diseases, current strategies for optimizing efficacy and safety, and trials expected to yield important clinical data in the coming 6-12 months.
Collapse
Affiliation(s)
| | | | | | | | - Jerome Ritz
- Connell and O’Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
34
|
Wang H, Han P, Qi X, Li F, Li M, Fan L, Zhang H, Zhang X, Yang X. Bcl-2 Enhances Chimeric Antigen Receptor T Cell Persistence by Reducing Activation-Induced Apoptosis. Cancers (Basel) 2021; 13:cancers13020197. [PMID: 33429845 PMCID: PMC7827522 DOI: 10.3390/cancers13020197] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Chimeric antigen receptor-modified T cells (CAR-T) have shown great success in the treatment of B-cell leukemia. However, their efficacy is compromised in B-cell-derived lymphoma and solid tumors. Optimization of CAR design to improve in vivo persistence is a focus of current CAR-T cell research. The aim of our study is to access the potential added value of integration of anti-apoptotic molecules for enhancing anti-tumor activity of CAR-T cells. We confirmed that integrating B cell lymphoma-2 (Bcl-2) into CAR-T cells improved the proliferation ability of CAR-T cells in vitro and in vivo, which led to enhanced anti-tumor activity and prolonged survival in a mouse xenograft lymphoma model. This work provides proof of concept evidence for a new strategy to optimize the function of CAR-T cells against lymphoma. Abstract Purpose: To evaluate the potential added value of integrating anti-apoptotic molecules for improving the anti-tumor activity of CAR-T cells. Methods: Four small molecules inhibiting apoptosis were tested for their ability to prevent activated induced CAR-T cell death. Five CD20-targeting, CD137 (4-1BB) and CD3ζ integrated CAR-T cells (20BBZ) with constitutively expressed anti-apoptotic genes were established, and we screened out the strongest proliferation enhancer: Bcl-2. The memory subtype and the exhaustion markers of CAR-T cells were analyzed. The anti-tumor activities of Bcl-2 integrating CAR-T cells (20BBZ-Bcl-2) were evaluated in vitro and in a mouse xenograft lymphoma model. Conclusion: The 20BBZ-Bcl-2 CAR-T cells showed improved proliferation ability compared to 20BBZ CAR-T cells in vitro. In addition, activation-induced apoptosis was reduced in the 20BBZ-Bcl-2 CAR-T cells. Consistent with the enhanced proliferation in vitro, 20BBZ-Bcl-2 CAR-T cells exhibited improved anti-tumor activity in a mouse xenograft lymphoma model.
Collapse
Affiliation(s)
- Haiyong Wang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.); (P.H.); (X.Q.); (F.L.); (M.L.); (L.F.); (H.Z.); (X.Z.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Han
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.); (P.H.); (X.Q.); (F.L.); (M.L.); (L.F.); (H.Z.); (X.Z.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyue Qi
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.); (P.H.); (X.Q.); (F.L.); (M.L.); (L.F.); (H.Z.); (X.Z.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fanlin Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.); (P.H.); (X.Q.); (F.L.); (M.L.); (L.F.); (H.Z.); (X.Z.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.); (P.H.); (X.Q.); (F.L.); (M.L.); (L.F.); (H.Z.); (X.Z.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lilv Fan
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.); (P.H.); (X.Q.); (F.L.); (M.L.); (L.F.); (H.Z.); (X.Z.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huihui Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.); (P.H.); (X.Q.); (F.L.); (M.L.); (L.F.); (H.Z.); (X.Z.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoqing Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.); (P.H.); (X.Q.); (F.L.); (M.L.); (L.F.); (H.Z.); (X.Z.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuanming Yang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.); (P.H.); (X.Q.); (F.L.); (M.L.); (L.F.); (H.Z.); (X.Z.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel.: +86-21-34204065
| |
Collapse
|
35
|
IFN-γ surmounts PD-L1/PD1 inhibition to CAR-T cell therapy by upregulating ICAM-1 on tumor cells. Signal Transduct Target Ther 2021; 6:20. [PMID: 33454722 PMCID: PMC7811529 DOI: 10.1038/s41392-020-00357-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/19/2020] [Indexed: 02/05/2023] Open
|
36
|
Preclinical development of CD126 CAR-T cells with broad antitumor activity. Blood Cancer J 2021; 11:3. [PMID: 33414408 PMCID: PMC7791061 DOI: 10.1038/s41408-020-00405-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy is a transformative approach to cancer eradication. CAR-T is expensive partly due to the restricted use of each CAR construct for specific tumors. Thus, a CAR construct with broad antitumor activity can be advantageous. We identified that CD126 is expressed by many hematologic and solid tumors, including multiple myeloma, lymphoma, acute myeloid leukemia, pancreatic and prostate adenocarcinoma, non-small cell lung cancer, and malignant melanoma among others. CAR-T cells targeting CD126 were generated and shown to kill many tumor cells in an antigen-specific manner and with efficiency directly proportional to CD126 expression. Soluble CD126 did not interfere with CAR-T cell killing. The CAR-T constructs bind murine CD126 but caused no weight loss or hepatotoxicity in mice. In multiple myeloma and prostate adenocarcinoma xenograft models, intravenously injected CD126 CAR-T cells infiltrated within, expanded, and killed tumor cells without toxicity. Binding of soluble interleukin-6 receptor (sIL-6R) by CAR-T cells could mitigate cytokine release syndrome. Murine SAA-3 levels were lower in mice injected with CD126 CAR-T compared to controls, suggesting that binding of sIL-6R by CAR-T cells could mitigate cytokine release syndrome. CD126 provides a novel therapeutic target for CAR-T cells for many tumors with a low risk of toxicity.
Collapse
|
37
|
Acharya UH, Walter RB. Chimeric Antigen Receptor (CAR)-Modified Immune Effector Cell Therapy for Acute Myeloid Leukemia (AML). Cancers (Basel) 2020; 12:E3617. [PMID: 33287224 PMCID: PMC7761730 DOI: 10.3390/cancers12123617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the availability of an increasing number of targeted therapeutics and wider use of allogeneic hematopoietic stem cell transplantation, many patients with acute myeloid leukemia (AML) ultimately succumb to this disease. Given their remarkable efficacy in B-acute lymphoblastic leukemia and other CD19-expressing B cell malignancies, there is hope adoptive cellular transfer, particularly chimeric antigen receptor (CAR)-modified immune effector cell (IEC) therapies, may afford a novel, potent immune-based approach for the treatment of AML that complements or replaces existing ones and improves cure rates. However, it is unclear how best to translate the success of these therapies from B cell malignancies, where use of highly potent immunotherapies is facilitated by identified target antigens with near ubiquitous expression on malignant cells and non-fatal consequences from "on-target, off-tumor cell" toxicities. Herein, we review the current status of CAR-modified IEC therapies for AML, with considerations regarding suitable, relatively leukemia-restricted target antigens, expected toxicities, and interactions of the engineered cells with a profoundly immunosuppressive tumor microenvironment that restricts their therapeutic efficacy. With these challenges in mind, we will discuss possible strategies to improve the cells' potency as well as their therapeutic window for optimal clinical use in AML.
Collapse
Affiliation(s)
- Utkarsh H. Acharya
- Divisions of Hematologic Malignancies & Immune Effector Cell Therapy, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Roland B. Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
38
|
Hong M, Clubb JD, Chen YY. Engineering CAR-T Cells for Next-Generation Cancer Therapy. Cancer Cell 2020; 38:473-488. [PMID: 32735779 DOI: 10.1016/j.ccell.2020.07.005] [Citation(s) in RCA: 353] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023]
Abstract
T cells engineered to express chimeric antigen receptors (CARs) with tumor specificity have shown remarkable success in treating patients with hematologic malignancies and revitalized the field of adoptive cell therapy. However, realizing broader therapeutic applications of CAR-T cells necessitates engineering approaches on multiple levels to enhance efficacy and safety. Particularly, solid tumors present unique challenges due to the biological complexity of the solid-tumor microenvironment (TME). In this review, we highlight recent strategies to improve CAR-T cell therapy by engineering (1) the CAR protein, (2) T cells, and (3) the interaction between T cells and other components in the TME.
Collapse
Affiliation(s)
- Mihe Hong
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Justin D Clubb
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
39
|
Antoine P, Maher J. Developing a safe and effective CAR T-cell immunotherapy for breast cancer: progress and pitfalls. BREAST CANCER MANAGEMENT 2020. [DOI: 10.2217/bmt-2020-0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Current targeted therapies for breast cancer include hormone inhibitors, monoclonal antibodies and tyrosine kinase inhibitors. However, a significant unmet therapeutic need remains for refractory disease and in particular for the triple negative subtype, which lacks hormone receptors and HER2. Chimeric antigen receptors T cells are genetically engineered to deploy selective cytolytic activity against cells that express cognate native target. Durable remissions have been achieved in refractory hematological malignancies but similar success against solid tumors remains elusive. Several hurdles hinder progress, including the need to identify safe antigens, promote T-cell homing to tumor sites and to ensure the persistence of functional chimeric antigen receptors T cells within the immunosuppressive tumor microenvironment. Perspectives to enable the attainment of this goal are presented in this review.
Collapse
Affiliation(s)
- Pierre Antoine
- King's College London, School of Cancer & Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London, SE1 9RT, UK
| | - John Maher
- King's College London, School of Cancer & Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London, SE1 9RT, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London, SE1 9RT, UK
- Department of Clinical Immunology & Allergy, King’s College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne, East Sussex, BN21 2UD, UK
| |
Collapse
|
40
|
Liu D, Badeti S, Dotti G, Jiang JG, Wang H, Dermody J, Soteropoulos P, Streck D, Birge RB, Liu C. The Role of Immunological Synapse in Predicting the Efficacy of Chimeric Antigen Receptor (CAR) Immunotherapy. Cell Commun Signal 2020; 18:134. [PMID: 32843053 PMCID: PMC7446110 DOI: 10.1186/s12964-020-00617-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract Chimeric Antigen Receptor (CAR) immunotherapy utilizes genetically-engineered immune cells that express a unique cell surface receptor that combines tumor antigen specificity with immune cell activation. In recent clinical trials, the adoptive transfer of CAR-modified immune cells (including CAR-T and CAR-NK cells) into patients has been remarkably successful in treating multiple refractory blood cancers. To improve safety and efficacy, and expand potential applicability to other cancer types, CARs with different target specificities and sequence modifications are being developed and tested by many laboratories. Despite the overall progress in CAR immunotherapy, conventional tools to design and evaluate the efficacy and safety of CAR immunotherapies can be inaccurate, time-consuming, costly, and labor-intensive. Furthermore, existing tools cannot always determine how responsive individual patients will be to a particular CAR immunotherapy. Recent work in our laboratory suggests that the quality of the immunological synapse (IS) can accurately predict CAR-modified cell efficacy (and toxicity) that can correlate with clinical outcomes. Here we review current efforts to develop a Synapse Predicts Efficacy (SPE) system for easy, rapid and cost-effective evaluation of CAR-modified immune cell immunotherapy. Ultimately, we hypothesize the conceptual basis and clinical application of SPE will serve as an important parameter in evaluating CAR immunotherapy and significantly advance precision cancer immunotherapy. Video abstract
Graphical abstract Graphic abstract for manuscript CCAS-D-20-00136 by Liu, D., et al., ‘The Role of Immunological Synapse in Predicting the Efficacy of Chimeric Antigen Receptor (CAR) Immunotherapy”. The various branches of evaluating cancer immunotherapy metaphorically represented as a Rubik’s cube. The development of a novel approach to predict the effectiveness of Chimeric Antigen Receptor (CAR)-modified cells by quantifying the quality of CAR IS will introduce a new parameter to the rapidly expanding field of cancer immunotherapy. Currently, no single parameter can predict the clinical outcome or efficacy of a specific type of CAR-modified cell. IS quality will serve as a quantifiable measure to evaluate CAR products and can be used in conjunction with other conventional parameters to form a composite clinical predictor. Much like a Rubik’s cube has countless configurations, several methods and combinations of clinical metrics have arisen for evaluating the ability of a given immunotherapeutic strategy to treat cancer. The quality of IS depicting cancer immunotherapy is metaphorically expressed as a Rubik’s cube. Each face/color represents one aspect of cancer therapy. Each grid in one face indicates one factor within that aspect of cancer therapy. For example, the green color represents the tumor microenvironment, and one out of the nine grids in the green color indicates suppressor cells (suppressors in green). Changes in one factor may completely alter the entire strategy of cancer therapy. However, the quality of IS (illuminated center red grid) makes the effectiveness of CAR immunotherapy predictable.
![]()
Collapse
Affiliation(s)
- Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA. .,Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07101, USA.
| | - Saiaditya Badeti
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jie-Gen Jiang
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - He Wang
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - James Dermody
- Institute of Genomic Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07103, USA
| | - Patricia Soteropoulos
- Institute of Genomic Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07103, USA
| | - Deanna Streck
- Institute of Genomic Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07103, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07103, USA
| | - Chen Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA.,Department of Pathology, Yale School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06510, USA
| |
Collapse
|
41
|
Jayaraman J, Mellody MP, Hou AJ, Desai RP, Fung AW, Pham AHT, Chen YY, Zhao W. CAR-T design: Elements and their synergistic function. EBioMedicine 2020; 58:102931. [PMID: 32739874 PMCID: PMC7393540 DOI: 10.1016/j.ebiom.2020.102931] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells use re-engineered cell surface receptors to specifically bind to and lyse oncogenic cells. Two clinically approved CAR-T–cell therapies have significant clinical efficacy in treating CD19-positive B cell cancers. With widespread interest to deploy this immunotherapy to other cancers, there has been great research activity to design new CAR structures to increase the range of targeted cancers and anti-tumor efficacy. However, several obstacles must be addressed before CAR-T–cell therapies can be more widely deployed. These include limiting the frequency of lethal cytokine storms, enhancing T-cell persistence and signaling, and improving target antigen specificity. We provide a comprehensive review of recent research on CAR design and systematically evaluate design aspects of the four major modules of CAR structure: the ligand-binding, spacer, transmembrane, and cytoplasmic domains, elucidating design strategies and principles to guide future immunotherapeutic discovery.
Collapse
Affiliation(s)
- Jayapriya Jayaraman
- Department of Biomedical Engineering, University of California, Irvine, Irvine,CA,92697, United States
| | - Michael P Mellody
- Department of Biomedical Engineering, University of California, Irvine, Irvine,CA,92697, United States
| | - Andrew J Hou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095
| | - Ruchi P Desai
- School of Medicine, University of California, Irvine, Irvine, CA, 92697
| | - Audrey W Fung
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697
| | - An Huynh Thuy Pham
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, 90095; Parker Institute for Cancer Immunotherapy Center, University of California, Los Angeles, Los Angeles, Los Angeles, 90095
| | - Weian Zhao
- Department of Biomedical Engineering, University of California, Irvine, Irvine,CA,92697, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, United States; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, United States; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, United States; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, United States; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
42
|
Zhang PF, Xie D, Li Q. Chimeric antigen receptor T-cell therapy beyond cancer: current practice and future prospects. Immunotherapy 2020; 12:1021-1034. [PMID: 32727249 DOI: 10.2217/imt-2020-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor T (CAR-T) cells has achieved remarkable efficacy in the treatment of hematological malignancies, which has inspired researchers to expand the application of CAR-T-cell therapy to other medical conditions. Here, we review the current understanding and development of CAR-T-cell therapy for infectious diseases, autoimmune diseases and allotransplantation. The limitations and challenges of CAR-T-cell therapy in the treatment of these diseases and potential solutions to overcome these shortcomings are also discussed. With the development of novel designs of CARs and preclinical/clinical investigations, CAR-T-cell therapy is expected to be a potential cure option in a wide array of disease settings in the future.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China, 610041
| | - Dan Xie
- Prenatal Diagnosis Center, Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China, 610041.,Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, Chengdu, China, 610041
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China, 610041
| |
Collapse
|
43
|
Jo Y, Ali LA, Shim JA, Lee BH, Hong C. Innovative CAR-T Cell Therapy for Solid Tumor; Current Duel between CAR-T Spear and Tumor Shield. Cancers (Basel) 2020; 12:cancers12082087. [PMID: 32731404 PMCID: PMC7464778 DOI: 10.3390/cancers12082087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Novel engineered T cells containing chimeric antigen receptors (CAR-T cells) that combine the benefits of antigen recognition and T cell response have been developed, and their effect in the anti-tumor immunotherapy of patients with relapsed/refractory leukemia has been dramatic. Thus, CAR-T cell immunotherapy is rapidly emerging as a new therapy. However, it has limitations that prevent consistency in therapeutic effects in solid tumors, which accounts for over 90% of all cancer patients. Here, we review the literature regarding various obstacles to CAR-T cell immunotherapy for solid tumors, including those that cause CAR-T cell dysfunction in the immunosuppressive tumor microenvironment, such as reactive oxygen species, pH, O2, immunosuppressive cells, cytokines, and metabolites, as well as those that impair cell trafficking into the tumor microenvironment. Next-generation CAR-T cell therapy is currently undergoing clinical trials to overcome these challenges. Therefore, novel approaches to address the challenges faced by CAR-T cell immunotherapy in solid tumors are also discussed here.
Collapse
Affiliation(s)
- Yuna Jo
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea; (Y.J.); (L.A.A.); (J.A.S.)
| | - Laraib Amir Ali
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea; (Y.J.); (L.A.A.); (J.A.S.)
| | - Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea; (Y.J.); (L.A.A.); (J.A.S.)
| | - Byung Ha Lee
- NeoImmuneTech, Inc., 2400 Research Blvd., Suite 250, Rockville, MD 20850, USA;
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea; (Y.J.); (L.A.A.); (J.A.S.)
- Correspondence: ; Tel.: +82-51-510-8041
| |
Collapse
|
44
|
Obajdin J, Davies DM, Maher J. Engineering of chimeric natural killer cell receptors to develop precision adoptive immunotherapies for cancer. Clin Exp Immunol 2020; 202:11-27. [PMID: 32544282 PMCID: PMC7488126 DOI: 10.1111/cei.13478] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are innate immune effectors which play a crucial role in recognizing and eliminating virally infected and cancerous cells. They effectively distinguish between healthy and distressed self through the integration of signals delivered by germline‐encoded activating and inhibitory cell surface receptors. The frequent up‐regulation of stress markers on genetically unstable cancer cells has prompted the development of novel immunotherapies that exploit such innate receptors. One prominent example entails the development of chimeric antigen receptors (CAR) that detect cell surface ligands bound by NK receptors, coupling this engagement to the delivery of tailored immune activating signals. Here, we review strategies to engineer CARs in which specificity is conferred by natural killer group 2D (NKG2D) or other NK receptor types. Multiple preclinical studies have demonstrated the remarkable ability of chimeric NK receptor‐targeted T cells and NK cells to effectively and specifically eliminate cancer cells and to reject established tumour burdens. Importantly, such systems act not only acutely but, in some cases, they also incite immunological memory. Moreover, CARs targeted with the NKG2D ligand binding domain have also been shown to disrupt the tumour microenvironment, through the targeting of suppressive T regulatory cells, myeloid‐derived suppressor cells and tumour vasculature. Collectively, these findings have led to the initiation of early‐phase clinical trials evaluating both autologous and allogeneic NKG2D‐targeted CAR T cells in the haematological and solid tumour settings.
Collapse
Affiliation(s)
- J Obajdin
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK
| | - D M Davies
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK
| | - J Maher
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK.,Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, UK.,Department of Immunology, Eastbourne Hospital, Eastbourne, UK.,Leucid Bio Ltd, Guy's Hospital, London, UK
| |
Collapse
|
45
|
Nawaz W, Xu S, Li Y, Huang B, Wu X, Wu Z. Nanotechnology and immunoengineering: How nanotechnology can boost CAR-T therapy. Acta Biomater 2020; 109:21-36. [PMID: 32294554 DOI: 10.1016/j.actbio.2020.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/29/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR) therapy has achieved remarkable clinical efficacy against hematological cancers and has been approved by FDA for treatment of B-cell tumors. However, the complex manufacturing process and limited success in solid tumors hamper its widespread applications, thus prompting the development of new strategies for overcoming the abovementioned hurdles. In the last decade, nanotechnology has provided sustainable strategies for improving cancer immunotherapy through vaccine development and delivery of immunomodulatory drugs. Nanotechnology can boost CAR-T therapy and may overcome the existing challenges by emerging as a carrier for CAR-T therapy or in combination with CAR-T, it may inhibit solid tumors more effectively than conventional approaches. The revealing of cellular mechanisms, barriers and potential strategies that could be used to manipulate and/or modify cells would enable unprecedented advances in nanotechnology for biologics delivery. This review outlines the journey and barriers of nanoparticles (NPs) across the cell. Subsequently, the approaches to tackle the barriers and strategies to modulate NPs as a carrier for CAR-T therapy are discussed. Finally, the role of NPs in CAR-T therapy and the potential challenges are summarized. This review aims to provide the readers with a detailed overview of NP-based CAR-T therapy research and distil this information into an accessible form conducive to design desired CAR-T therapy using NP approach. STATEMENT OF SIGNIFICANCE: Chimeric antigen receptor (CAR) T-cell therapy is the most vibrant field in immuno-oncology today, with enormous benefits to patients with B-cell malignancies. However, a rapid and straightforward procedure for CAR-T generation is an exigent need to broaden its therapeutic avenue. Nanotechnology has emerged as a novel alternative approach for CAR-T generation. To the best of our knowledge, this is the first in-depth review that briefly highlights the various aspects of nanotechnology in CAR-T therapy, including the strategies to brand NPs as an effective carrier for CAR cargo, its potential advantages, challenges, and future roadmap. It provides readers with a detailed overview of NP-based CAR-T therapy research, and researchers would be able to distill this information into an accessible form conducive to design the desired CAR therapy using the nanotechnology approach.
Collapse
|
46
|
Leippe P, Broichhagen J, Cailliau K, Mougel A, Morel M, Dissous C, Trauner D, Vicogne J. Transformation of Receptor Tyrosine Kinases into Glutamate Receptors and Photoreceptors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Philipp Leippe
- Department of ChemistryLudwig-Maximilians-Universität München and Munich Center for Integrated Protein Science Butenandtstrasse 5–13 81377 München Germany
- Present address: Department of Chemical BiologyMax Planck Institute for Medical Research Jahnstr. 29 69120 Heidelberg Germany
| | - Johannes Broichhagen
- Department of ChemistryLudwig-Maximilians-Universität München and Munich Center for Integrated Protein Science Butenandtstrasse 5–13 81377 München Germany
- Present address: Department of Chemical BiologyForschungsinstitut für Molekulare Pharmakologie Robert-Rössle Str. 10 13125 Berlin Germany
| | - Katia Cailliau
- CNRS UMR 8576University of Lille Villeneuve d'Asq France
| | - Alexandra Mougel
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019—UMR 8204, Center for Infection and Immunity of Lille (CIIL) 59000 Lille France
| | - Marion Morel
- Department of Biochemistry and Molecular BiologyBoonshoft School of MedicineWright State University Dayton OH 45435 USA
| | - Colette Dissous
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019—UMR 8204, Center for Infection and Immunity of Lille (CIIL) 59000 Lille France
| | - Dirk Trauner
- Department of ChemistryLudwig-Maximilians-Universität München and Munich Center for Integrated Protein Science Butenandtstrasse 5–13 81377 München Germany
- Department of ChemistrySilver Center for Arts and ScienceNew York University 100 Washington Square East New York NY 10003 USA
| | - Jérôme Vicogne
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019—UMR 8204, Center for Infection and Immunity of Lille (CIIL) 59000 Lille France
| |
Collapse
|
47
|
Parriott G, Deal K, Crean S, Richardson E, Nylen E, Barber A. T-cells expressing a chimeric-PD1-Dap10-CD3zeta receptor reduce tumour burden in multiple murine syngeneic models of solid cancer. Immunology 2020; 160:280-294. [PMID: 32144940 DOI: 10.1111/imm.13187] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
Adoptive transfer of T-cells is a promising therapy for many cancers. To enhance tumour recognition by T-cells, chimeric antigen receptors (CARs) consisting of signalling domains fused to receptors that recognize tumour-associated antigens can be expressed in T-cells. While CAR T-cells have shown clinical success for treating haematopoietic malignancies, using CAR T-cells to treat solid tumours remains a challenge. We developed a chimeric PD1 (chPD1) receptor that recognizes the ligands for the PD1 receptor that are expressed on many types of solid cancer. To determine if this novel CAR could target a wide variety of tumour types, the anti-tumour efficacy of chPD1 T-cells against syngeneic murine models of melanoma, renal, pancreatic, liver, colon, breast, prostate and bladder cancer was measured. Of the 14 cell lines tested, all expressed PD1 ligands on their cell surface, making them potential targets for chPD1 T-cells. ChPD1 T-cells lysed the tumour cells and secreted pro-inflammatory cytokines [interferon (IFN)γ, tumour necrosis factor (TNF)α, interleukin (IL)-2, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-17 and IL-21], but did not secrete the anti-inflammatory cytokine IL-10. Furthermore, T-cells expressing chPD1 receptors reduced an established tumour burden and led to long-term tumour-free survival in all types of solid tumours tested. ChPD1 T-cells did not survive longer than 14 days in vivo; however, treatment with chPD1 T-cells induced protective host anti-tumour memory responses in tumour-bearing mice. Therefore, adoptive transfer of chPD1 T-cells could be a novel therapeutic strategy to treat multiple types of solid cancer.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Kelsey Deal
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Shane Crean
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Elle Richardson
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Emily Nylen
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Amorette Barber
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| |
Collapse
|
48
|
Pancreatic Cancer UK Grand Challenge: Developments and challenges for effective CAR T cell therapy for pancreatic ductal adenocarcinoma. Pancreatology 2020; 20:394-408. [PMID: 32173257 DOI: 10.1016/j.pan.2020.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Death from pancreatic ductal adenocarcinoma (PDAC) is rising across the world and PDAC is predicted to be the second most common cause of cancer death in the USA by 2030. Development of effective biotherapies for PDAC are hampered by late presentation, a low number of differentially expressed molecular targets and a tumor-promoting microenvironment that forms both a physical, collagen-rich barrier and is also immunosuppressive. In 2017 Pancreatic Cancer UK awarded its first Grand Challenge Programme award to tackle this problem. The team plan to combine the use of novel CAR T cells with strategies to overcome the barriers presented by the tumor microenvironment. In advance of publication of those data this review seeks to highlight the key problems in effective CAR T cell therapy of PDAC and to describe pre-clinical and clinical progress in CAR T bio-therapeutics.
Collapse
|
49
|
Leippe P, Broichhagen J, Cailliau K, Mougel A, Morel M, Dissous C, Trauner D, Vicogne J. Transformation of Receptor Tyrosine Kinases into Glutamate Receptors and Photoreceptors. Angew Chem Int Ed Engl 2020; 59:6720-6723. [DOI: 10.1002/anie.201915352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Philipp Leippe
- Department of ChemistryLudwig-Maximilians-Universität München and Munich Center for Integrated Protein Science Butenandtstrasse 5–13 81377 München Germany
- Present address: Department of Chemical BiologyMax Planck Institute for Medical Research Jahnstr. 29 69120 Heidelberg Germany
| | - Johannes Broichhagen
- Department of ChemistryLudwig-Maximilians-Universität München and Munich Center for Integrated Protein Science Butenandtstrasse 5–13 81377 München Germany
- Present address: Department of Chemical BiologyForschungsinstitut für Molekulare Pharmakologie Robert-Rössle Str. 10 13125 Berlin Germany
| | - Katia Cailliau
- CNRS UMR 8576University of Lille Villeneuve d'Asq France
| | - Alexandra Mougel
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019—UMR 8204, Center for Infection and Immunity of Lille (CIIL) 59000 Lille France
| | - Marion Morel
- Department of Biochemistry and Molecular BiologyBoonshoft School of MedicineWright State University Dayton OH 45435 USA
| | - Colette Dissous
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019—UMR 8204, Center for Infection and Immunity of Lille (CIIL) 59000 Lille France
| | - Dirk Trauner
- Department of ChemistryLudwig-Maximilians-Universität München and Munich Center for Integrated Protein Science Butenandtstrasse 5–13 81377 München Germany
- Department of ChemistrySilver Center for Arts and ScienceNew York University 100 Washington Square East New York NY 10003 USA
| | - Jérôme Vicogne
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019—UMR 8204, Center for Infection and Immunity of Lille (CIIL) 59000 Lille France
| |
Collapse
|
50
|
Zimmermann K, Kuehle J, Dragon AC, Galla M, Kloth C, Rudek LS, Sandalcioglu IE, Neyazi B, Moritz T, Meyer J, Rossig C, Altvater B, Eiz-Vesper B, Morgan MA, Abken H, Schambach A. Design and Characterization of an "All-in-One" Lentiviral Vector System Combining Constitutive Anti-G D2 CAR Expression and Inducible Cytokines. Cancers (Basel) 2020; 12:cancers12020375. [PMID: 32041222 PMCID: PMC7072617 DOI: 10.3390/cancers12020375] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/25/2022] Open
Abstract
Genetically modified T cells expressing chimeric antigen receptors (CARs) so far have mostly failed in the treatment of solid tumors owing to a number of limitations, including an immunosuppressive tumor microenvironment and insufficient CAR T cell activation and persistence. Next-generation approaches using CAR T cells that secrete transgenic immunomodulatory cytokines upon CAR signaling, known as TRUCKs (“T cells redirected for universal cytokine-mediated killing”), are currently being explored. As TRUCKs were engineered by the transduction of T cells with two separate vectors, we developed a lentiviral modular “all-in-one” vector system that combines constitutive CAR expression and inducible nuclear factor of activated T cells (NFAT)-driven transgene expression for more efficient production of TRUCKs. Activation of the GD2-specific CAR via GD2+ target cells induced NFAT promoter-driven cytokine release in primary human T cells, and indicated a tight linkage of CAR-specific activation and transgene expression that was further improved by a modified NFATsyn promoter. As proof-of-concept, we showed that T cells containing the “all-in-one” vector system secrete the immunomodulatory cytokines interleukin (IL)12 or IL18 upon co-cultivation with primary human GD2+ tumor cells, resulting in enhanced effector cell properties and increased monocyte recruitment. This highlights the potential of our system to simplify application of TRUCK-modified T cells in solid tumor therapy.
Collapse
Affiliation(s)
- Katharina Zimmermann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - Johannes Kuehle
- Center for Molecular Medicine Cologne, University of Cologne, and Department I of Internal Medicine, University Hospital Cologne, 50931 Cologne, Germany;
| | - Anna Christina Dragon
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany; (A.C.D.); (B.E.-V.)
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - Christina Kloth
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - Loreen Sophie Rudek
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - I. Erol Sandalcioglu
- Department of Neurosurgery, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (I.E.S.); (B.N.)
| | - Belal Neyazi
- Department of Neurosurgery, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (I.E.S.); (B.N.)
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, 48149 Muenster, Germany; (C.R.); (B.A.)
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, 48149 Muenster, Germany; (C.R.); (B.A.)
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany; (A.C.D.); (B.E.-V.)
| | - Michael Alexander Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - Hinrich Abken
- Regensburg Centre for Interventional Immunology (RCI), Department of Genetic Immunotherapy, and University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: ; Tel.: +49-511-532-5170
| |
Collapse
|