1
|
Bei KF, Moshkelgosha S, Liu BJ, Juvet S. Intragraft regulatory T cells in the modern era: what can high-dimensional methods tell us about pathways to allograft acceptance? Front Immunol 2023; 14:1291649. [PMID: 38077395 PMCID: PMC10701590 DOI: 10.3389/fimmu.2023.1291649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Replacement of diseased organs with transplanted healthy donor ones remains the best and often only treatment option for end-stage organ disease. Immunosuppressants have decreased the incidence of acute rejection, but long-term survival remains limited. The broad action of current immunosuppressive drugs results in global immune impairment, increasing the risk of cancer and infections. Hence, achievement of allograft tolerance, in which graft function is maintained in the absence of global immunosuppression, has long been the aim of transplant clinicians and scientists. Regulatory T cells (Treg) are a specialized subset of immune cells that control a diverse array of immune responses, can prevent allograft rejection in animals, and have recently been explored in early phase clinical trials as an adoptive cellular therapy in transplant recipients. It has been established that allograft residency by Tregs can promote graft acceptance, but whether intragraft Treg functional diversification and spatial organization contribute to this process is largely unknown. In this review, we will explore what is known regarding the properties of intragraft Tregs during allograft acceptance and rejection. We will summarize recent advances in understanding Treg tissue residency through spatial, transcriptomic and high-dimensional cytometric methods in both animal and human studies. Our discussion will explore properties of intragraft Tregs in mediating operational tolerance to commonly transplanted solid organs. Finally, given recent developments in Treg cellular therapy, we will review emerging knowledge of whether and how these adoptively transferred cells enter allografts in humans. An understanding of the properties of intragraft Tregs will help lay the foundation for future therapies that will promote immune tolerance.
Collapse
Affiliation(s)
- Ke Fan Bei
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sajad Moshkelgosha
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Bo Jie Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Stephen Juvet
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
2
|
Luo Z, Zhang Y, Saleh QW, Zhang J, Zhu Z, Tepel M. Metabolic regulation of forkhead box P3 alternative splicing isoforms and their impact on health and disease. Front Immunol 2023; 14:1278560. [PMID: 37868998 PMCID: PMC10588449 DOI: 10.3389/fimmu.2023.1278560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Forkhead Box P3 (FOXP3) is crucial for the development and suppressive function of human regulatory T cells (Tregs). There are two predominant FOXP3 splicing isoforms in healthy humans, the full-length isoform and the isoform lacking exon 2, with different functions and regulation mechanisms. FOXP3 splicing isoforms show distinct abilities in the cofactor interaction and the nuclear translocation, resulting in different effects on the differentiation, cytokine secretion, suppressive function, linage stability, and environmental adaptation of Tregs. The balance of FOXP3 splicing isoforms is related to autoimmune diseases, inflammatory diseases, and cancers. In response to environmental challenges, FOXP3 transcription and splicing can be finely regulated by T cell antigen receptor stimulation, glycolysis, fatty acid oxidation, and reactive oxygen species, with various signaling pathways involved. Strategies targeting energy metabolism and FOXP3 splicing isoforms in Tregs may provide potential new approaches for the treatment of autoimmune diseases, inflammatory diseases, and cancers. In this review, we summarize recent discoveries about the FOXP3 splicing isoforms and address the metabolic regulation and specific functions of FOXP3 splicing isoforms in Tregs.
Collapse
Affiliation(s)
- Zhidan Luo
- Department of Geriatrics, Chongqing General Hospital, Chongqing, China
- Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Yihua Zhang
- Department of Cardiology, Chongqing Fifth People’s Hospital, Chongqing, China
| | - Qais Waleed Saleh
- Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Jie Zhang
- Department of Geriatrics, Chongqing General Hospital, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Chongqing, China
| | - Martin Tepel
- Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
3
|
Minskaia E, Lacerda JF. Analysis of FOXP3 DNA Methylation Patterns to Identify Functional FOXP3+ T-Cell Subpopulations. Methods Mol Biol 2023; 2559:115-136. [PMID: 36180630 DOI: 10.1007/978-1-0716-2647-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Human regulatory CD4+CD25+FOXP3+ T cells (Tregs) are involved in the suppression of immune responses and play important roles in the maintenance of self-tolerance and immune homeostasis. Abnormal Treg function may result in disease states of varying severity. As FOXP3-expressing Treg cells are phenotypically and functionally heterogeneous, the success of Treg therapies depends on the ability to reliably distinguish subpopulations of T cells bearing a Treg-like phenotype. Methylation of cytosines within CpG dinucleotides is an important epigenetic mechanism involved in regulation (and suppression) of gene expression. On the other hand, demethylation of regulatory DNA sequences, such as promoters and enhancers, is essential for initiation of gene transcription. This protocol shows that bisulfite sequencing (BS) distinguishes methylated and unmethylated cytosines within DNA and reveals the methylation status of individual CpGs in cells within each population, identifying functionally different FOXP3+ subpopulations.
Collapse
Affiliation(s)
- Ekaterina Minskaia
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Infection and Immunity Division, Institute of Immunity and Transplantation, University College London, Royal Free Hospital, London, UK
| | - João F Lacerda
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
4
|
A Higher-Order Galerkin Time Discretization and Numerical Comparisons for Two Models of HIV Infection. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3599827. [DOI: 10.1155/2022/3599827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
Human immunodeficiency virus (HIV) infection affects the immune system, particularly white blood cells known as CD4+ T-cells. HIV destroys CD4+ T-cells and significantly reduces a human’s resistance to viral infectious diseases as well as severe bacterial infections, which can lead to certain illnesses. The HIV framework is defined as a system of nonlinear first-order ordinary differential equations, and the innovative Galerkin technique is used to approximate the solutions of the model. To validate the findings, solve the model employing the Runge-Kutta (RK) technique of order four. The findings of the suggested techniques are compared with the results obtained from conventional schemes such as MuHPM, MVIM, and HPM that exist in the literature. Furthermore, the simulations are performed with different time step sizes, and the accuracy is measured at various time intervals. The numerical computations clearly demonstrate that the Galerkin scheme, in contrast to the Runge-Kutta scheme, provides incredibly precise solutions at relatively large time step sizes. A comparison of the solutions reveals that the obtained results through the Galerkin scheme are in fairly good agreement with the RK4 scheme in a given time interval as compared to other conventional schemes. Moreover, having performed various numerical tests for assessing the efficiency and computational cost (in terms of time) of the suggested schemes, it is observed that the Galerkin scheme is noticeably slower than the Runge-Kutta scheme. On the other hand, this work is also concerned with the path tracking and damped oscillatory behaviour of the model with a variable supply rate for the generation of new CD4+ T-cells (based on viral load concentration) and the HIV infection incidence rate. Additionally, we investigate the influence of various physical characteristics by varying their values and analysing them using graphs. The investigations indicate that the lateral system ensured more accurate predictions than the previous model.
Collapse
|
5
|
Gao Y, Min Q, Li X, Liu L, Lv Y, Xu W, Liu X, Wang H. Immune System Acts on Orthodontic Tooth Movement: Cellular and Molecular Mechanisms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9668610. [PMID: 36330460 PMCID: PMC9626206 DOI: 10.1155/2022/9668610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022]
Abstract
Orthodontic tooth movement (OTM) is a tissue remodeling process based on orthodontic force loading. Compressed periodontal tissues have a complicated aseptic inflammatory cascade, which are considered the initial factor of alveolar bone remodeling. Since skeletal and immune systems shared a wide variety of molecules, osteoimmunology has been generally accepted as an interdisciplinary field to investigate their interactions. Unsurprisingly, OTM is considered a good mirror of osteoimmunology since it involves immune reaction and bone remolding. In fact, besides bone remodeling, OTM involves cementum resorption, soft tissue remodeling, orthodontic pain, and relapse, all correlated with immune cells and/or immunologically active substance. The aim of this paper is to review the interaction of immune system with orthodontic tooth movement, which helps gain insights into mechanisms of OTM and search novel method to short treatment period and control complications.
Collapse
Affiliation(s)
- Yajun Gao
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Qingqing Min
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Xingjia Li
- Department of Prosthodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Linxiang Liu
- Department of Implantology, Wuxi Stomatology Hospital, Wuxi, China
| | - Yangyang Lv
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Wenjie Xu
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, China
| | | | - Hua Wang
- Wuhu Stomatology Hospital, Wuhu, China
| |
Collapse
|
6
|
Haddadi MH, Negahdari B. Clinical and diagnostic potential of regulatory T cell markers: From bench to bedside. Transpl Immunol 2021; 70:101518. [PMID: 34922022 DOI: 10.1016/j.trim.2021.101518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022]
Abstract
Regulatory T (Treg) cells are heterogeneous immune cell populations residing in the thymus and peripheral lymphatic tissues. This immune cell plays a central and critical role in maintaining immune tolerance against undesirable immune responses. Treg cells' phenotypic heterogeneity caused by different pathological conditions makes their identification and differentiation from non-suppressive T cells difficult. On the other hand, using nonspecific markers and variable isolation panels leads to undesirable outcomes. There are a variety of markers to identify functional Treg cells, including CD25, FOXP3, and CTLA-4, as well as the epigenetic signature of forkhead box P3 (FOXP3), which can be used for both natural and induced Treg cells. Phenotypic heterogeneity is a major concern in Treg purification when using nonspecific markers, which can be addressed by utilizing suitable isolation panels designed for different purposes. This review presents a clinical framework for Treg detection and isolation, focusing on Treg markers such as CD25, FOXP3, CTLA-4, CD127, GPA-33, and TSDR demethylation to design Treg isolation panels suitable for different Treg therapy purposes. The current review also highlights new reliable Treg markers applicable for different purposes.
Collapse
Affiliation(s)
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Piotrowska M, Gliwiński M, Trzonkowski P, Iwaszkiewicz-Grzes D. Regulatory T Cells-Related Genes Are under DNA Methylation Influence. Int J Mol Sci 2021; 22:7144. [PMID: 34281195 PMCID: PMC8267835 DOI: 10.3390/ijms22137144] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) exert a highly suppressive function in the immune system. Disturbances in their function predispose an individual to autoimmune dysregulation, with a predominance of the pro-inflammatory environment. Besides Foxp3, which is a master regulator of these cells, other genes (e.g., Il2ra, Ctla4, Tnfrsf18, Ikzf2, and Ikzf4) are also involved in Tregs development and function. Multidimensional Tregs suppression is determined by factors that are believed to be crucial in the action of Tregs-related genes. Among them, epigenetic changes, such as DNA methylation, tend to be widely studied over the past few years. DNA methylation acts as a repressive mark, leading to diminished gene expression. Given the role of increased CpG methylation upon Tregs imprinting and functional stability, alterations in the methylation pattern can cause an imbalance in the immune response. Due to the fact that epigenetic changes can be reversible, so-called epigenetic modifiers are broadly used in order to improve Tregs performance. In this review, we place emphasis on the role of DNA methylation of the genes that are key regulators of Tregs function. We also discuss disease settings that have an impact on the methylation status of Tregs and systematize the usefulness of epigenetic drugs as factors able to influence Tregs functions.
Collapse
Affiliation(s)
| | | | | | - Dorota Iwaszkiewicz-Grzes
- Department of Medical Immunology, Medical University of Gdansk, 80-210 Gdańsk, Poland; (M.P.); (M.G.); (P.T.)
| |
Collapse
|
8
|
Kim J, Hope CM, Perkins GB, Stead SO, Scaffidi JC, Kette FD, Carroll RP, Barry SC, Coates PT. Rapamycin and abundant TCR stimulation are required for the generation of stable human induced regulatory T cells. Clin Transl Immunology 2020; 9:e1223. [PMID: 33425354 PMCID: PMC7780108 DOI: 10.1002/cti2.1223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 07/07/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Regulatory T cells (Tregs) are a vital sub-population of CD4+ T cells with major roles in immune tolerance and homeostasis. Given such properties, the use of regulatory T cells for immunotherapies has been extensively investigated, with a focus on adoptive transfer of ex vivo expanded natural Tregs (nTregs). For immunotherapies, induced Tregs (iTregs), generated in vitro from naïve CD4+ T cells, provide an attractive alternative, given the ease of generating cell numbers required for clinical dosage. While the combination of TGF-β, ATRA and rapamycin has been shown to generate highly suppressive iTregs, the challenge for therapeutic iTreg generation has been their instability. Here, we investigate the impact of rapamycin concentrations and α-CD3/CD28 bead ratios on human iTreg stability. METHODS We assess iTregs generated with various concentrations of rapamycin and differing ratios of α-CD3/CD28 beads for their differentiation, stability, expression of Treg signature molecules and T helper effector cytokines, and Treg-specific demethylation region (TSDR) status. RESULTS iTregs generated in the presence of TGF-β, ATRA, rapamycin and a higher ratio of α-CD3/CD28 beads were highly suppressive and stable upon in vitro re-stimulation. These iTregs exhibited a similar expression profile of Treg signature molecules and T helper effector cytokines to nTregs, in the absence of TSDR demethylation. CONCLUSION This work establishes a method to generate human iTregs which maintain stable phenotype and function upon in vitro re-stimulation. Further validation in pre-clinical models will be needed to ensure its suitability for applications in adoptive transfer.
Collapse
Affiliation(s)
- Juewan Kim
- The Department of Molecular & Biomedical ScienceThe School of Biological SciencesThe Faculty of SciencesThe University of AdelaideAdelaideSAAustralia
| | - Christopher M Hope
- Department of GastroenterologyWomen’s and Children’s HospitalAdelaideSAAustralia
- Molecular Immunology GroupRobinson Research InstituteSchool of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Griffith B Perkins
- The Department of Molecular & Biomedical ScienceThe School of Biological SciencesThe Faculty of SciencesThe University of AdelaideAdelaideSAAustralia
| | - Sebastian O Stead
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- College of Medicine and Public HealthDiscipline of MedicineFlinders UniversityBedford ParkSAAustralia
| | - Jacqueline C Scaffidi
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Francis D Kette
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- College of Medicine and Public HealthDiscipline of MedicineFlinders UniversityBedford ParkSAAustralia
| | - Robert P Carroll
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS)The Royal Adelaide HospitalAdelaideSAAustralia
- Division of Medical SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Simon C Barry
- Department of GastroenterologyWomen’s and Children’s HospitalAdelaideSAAustralia
- Molecular Immunology GroupRobinson Research InstituteSchool of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Patrick Toby Coates
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS)The Royal Adelaide HospitalAdelaideSAAustralia
| |
Collapse
|
9
|
DNA methylation in blood-Potential to provide new insights into cell biology. PLoS One 2020; 15:e0241367. [PMID: 33147241 PMCID: PMC7641429 DOI: 10.1371/journal.pone.0241367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/13/2020] [Indexed: 11/19/2022] Open
Abstract
Epigenetics plays a fundamental role in cellular development and differentiation; epigenetic mechanisms, such as DNA methylation, are involved in gene regulation and the exquisite nuance of expression changes seen in the journey from pluripotency to final differentiation. Thus, DNA methylation as a marker of cell identify has the potential to reveal new insights into cell biology. We mined publicly available DNA methylation data with a machine-learning approach to identify differentially methylated loci between different white blood cell types. We then interrogated the DNA methylation and mRNA expression of candidate loci in CD4+, CD8+, CD14+, CD19+ and CD56+ fractions from 12 additional, independent healthy individuals (6 male, 6 female). ‘Classic’ immune cell markers such as CD8 and CD19 showed expected methylation/expression associations fitting with established dogma that hypermethylation is associated with the repression of gene expression. We also observed large differential methylation at loci which are not established immune cell markers; some of these loci showed inverse correlations between methylation and mRNA expression (such as PARK2, DCP2). Furthermore, we validated these observations further in publicly available DNA methylation and RNA sequencing datasets. Our results highlight the value of mining publicly available data, the utility of DNA methylation as a discriminatory marker and the potential value of DNA methylation to provide additional insights into cell biology and developmental processes.
Collapse
|
10
|
Barbato-Ferreira DA, Costa SFDS, Gomez RS, Bastos JV. DNA Methylation patterns of immune response-related genes in inflammatory external root resorption. Braz Oral Res 2020; 34:e087. [PMID: 32785479 DOI: 10.1590/1807-3107bor-2020.vol34.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/28/2020] [Indexed: 11/22/2022] Open
Abstract
Inflammatory external root resorption (IERR) is a pathological process defined by the progressive loss of dental hard tissue, dentin, and cementum, resulting from the combination of the loss of external root protective apparatus and root canal infection. It has been suggested that healing patterns after tooth replantation may be influenced by the genetic and immunological profiles of the patients. The purpose of the present investigation was to evaluate the DNA methylation patterns of 22 immune response-related genes in extracted human teeth presenting with IERR. Methylation assays were performed on samples of root fragments showing IERR and compared with healthy bone tissue collected during the surgical extraction of impacted teeth. The methylation patterns were quantified using EpiTect Methyl II Signature Human Cytokine Production PCR Array. The results revealed significantly higher hypermethylation of the FOXP3 gene promoter in IERR (65.95%) than in the bone group (23.43%) (p < 0.001). The ELANE gene was also highly methylated in the pooled IERR sample, although the difference was not statistically significant (p= 0.054). Our study suggests that the differential methylation patterns of immune response-related genes, such as FOXP3 and ELANE, may be involved in IERR modulation, and this could be related to the presence of root canal infection. However, further studies are needed to corroborate these findings to determine the functional relevance of these alterations and their role in the pathogenesis of IERR.
Collapse
Affiliation(s)
| | - Sara Ferreira Dos Santos Costa
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Vilela Bastos
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Lan F, Zhang N, Bachert C, Zhang L. Stability of regulatory T cells in T helper 2-biased allergic airway diseases. Allergy 2020; 75:1918-1926. [PMID: 32124987 DOI: 10.1111/all.14257] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Regulatory T (Treg) cells potentially suppress the deleterious activities of effector T cells and maintain a state of tolerance against antigens in the airway mucosa. A decrease in the number and function of Treg cells is observed in T helper 2 (Th2)-biased allergic airway diseases. However, adoptive transfer of naturally occurring Treg (tTreg) cells or peripherally derived Treg (pTreg) cells in asthmatic mouse models did not yield satisfactory results in any previous studies. Here, we review the recent progress in the identification and plasticity of tTreg and pTreg cells in Th2-biased airway diseases and summarize the factors affecting the stability and function of Treg cells. This review may serve as foundation for understanding the molecular mechanisms underlying the stability of tTreg and pTreg cells and development of effective strategies for treating allergic airway diseases.
Collapse
Affiliation(s)
- Feng Lan
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Disease Beijing Institute of Otolaryngology Beijing China
| | - Nan Zhang
- Upper Airways Research Laboratory ENT Department Ghent University Ghent Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory ENT Department Ghent University Ghent Belgium
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Disease Beijing Institute of Otolaryngology Beijing China
| |
Collapse
|
12
|
Zohouri M, Mehdipour F, Razmkhah M, Faghih Z, Ghaderi A. CD4 +CD25 -FoxP3 + T cells: a distinct subset or a heterogeneous population? Int Rev Immunol 2020; 40:307-316. [PMID: 32705909 DOI: 10.1080/08830185.2020.1797005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In addition to generating effective immunity against infectious agents, the immune system helps to fight against different noninfectious human diseases while maintaining the balance between self and non-self discrimination. The breakdown of tolerance in autoimmune diseases or sustainable tolerance in an abnormal microenvironment such as chronic inflammation may initiate the process of malignancy. Immune system regulation is controlled by a complex, dynamic network of cells and mediators. Understanding the cellular and molecular basis of immune regulation provides better insight into the mechanisms governing the immune pathology of diseases. Among several cellular subsets and mediators with regulatory roles, a subpopulation of CD4+ T cells was recently reported to be positive for FoxP3 and negative for CD25, with a suggested range of functional activities in both cancer and autoimmune diseases. This CD4 subset was first reported in 2006 and thought to have a role in the pathogenesis of cancer. However, the spectrum of roles played by this T cell subset is broad, and no consensus has been reached regarding its immunological functions. In this review, we focused on the possible origin of CD4+CD25‒FoxP3+ T cells and their function in cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Mahshid Zohouri
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Mehdipour
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Azevedo RI, Minskaia E, Fernandes-Platzgummer A, Vieira AIS, da Silva CL, Cabral JMS, Lacerda JF. Mesenchymal stromal cells induce regulatory T cells via epigenetic conversion of human conventional CD4 T cells in vitro. Stem Cells 2020; 38:1007-1019. [PMID: 32352186 PMCID: PMC7497276 DOI: 10.1002/stem.3185] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (Treg) play a critical role in immune tolerance. The scarcity of Treg therapy clinical trials in humans has been largely due to the difficulty in obtaining sufficient Treg numbers. We performed a preclinical investigation on the potential of mesenchymal stromal cells (MSCs) to expand Treg in vitro to support future clinical trials. Human peripheral blood mononuclear cells from healthy donors were cocultured with allogeneic bone marrow‐derived MSCs expanded under xenogeneic‐free conditions. Our data show an increase in the counts and frequency of CD4+ CD25high Foxp3+ CD127low Treg cells (4‐ and 6‐fold, respectively) after a 14‐day coculture. However, natural Treg do not proliferate in coculture with MSCs. When purified conventional CD4 T cells (Tcon) are cocultured with MSCs, only cells that acquire a Treg‐like phenotype proliferate. These MSC‐induced Treg‐like cells also resemble Treg functionally, since they suppress autologous Tcon proliferation. Importantly, the DNA methylation profile of MSC‐induced Treg‐like cells more closely resembles that of natural Treg than of Tcon, indicating that this population is stable. The expression of PD‐1 is higher in Treg‐like cells than in Tcon, whereas the frequency of PDL‐1 increases in MSCs after coculture. TGF‐β levels are also significantly increased MSC cocultures. Overall, our data suggest that Treg enrichment by MSCs results from Tcon conversion into Treg‐like cells, rather than to expansion of natural Treg, possibly through mechanisms involving TGF‐β and/or PD‐1/PDL‐1 expression. This MSC‐induced Treg population closely resembles natural Treg in terms of phenotype, suppressive ability, and methylation profile.
Collapse
Affiliation(s)
- Rita I Azevedo
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ekaterina Minskaia
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana I S Vieira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - João F Lacerda
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Epigenetic factors involved in the pathophysiology of inflammatory skin diseases. J Allergy Clin Immunol 2020; 145:1049-1060. [DOI: 10.1016/j.jaci.2019.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
|
15
|
Ono M. Control of regulatory T-cell differentiation and function by T-cell receptor signalling and Foxp3 transcription factor complexes. Immunology 2020; 160:24-37. [PMID: 32022254 DOI: 10.1111/imm.13178] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/18/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
The transcription factor Foxp3 controls the differentiation and function of regulatory T-cells (Treg). Studies in the past decades identified numerous Foxp3-interacting protein partners. However, it is still not clear how Foxp3 produces the Treg-type transcriptomic landscape through cooperating with its partners. Here I show the current understanding of how Foxp3 transcription factor complexes regulate the differentiation, maintenance and functional maturation of Treg. Importantly, T-cell receptor (TCR) signalling plays central roles in Treg differentiation and Foxp3-mediated gene regulation. Differentiating Treg will have recognized their cognate antigens and received TCR signals before initiating Foxp3 transcription, which is triggered by TCR-induced transcription factors including NFAT, AP-1 and NF-κB. Once expressed, Foxp3 seizes TCR signal-induced transcriptional and epigenetic mechanisms through interacting with AML1/Runx1 and NFAT. Thus, Foxp3 modifies gene expression dynamics of TCR-induced genes, which constitute cardinal mechanisms for Treg-mediated immune suppression. Next, I discuss the following key topics, proposing new mechanistic models for Foxp3-mediated gene regulation: (i) how Foxp3 transcription is induced and maintained by the Foxp3-inducing enhanceosome and the Foxp3 autoregulatory transcription factor complex; (ii) molecular mechanisms for effector Treg differentiation (i.e. Treg maturation); (iii) how Foxp3 activates or represses its target genes through recruiting coactivators and corepressors; (iv) the 'decision-making' Foxp3-containing transcription factor complex for Th17 and Treg differentiation; and (v) the roles of post-translational modification in Foxp3 regulation. Thus, this article provides cutting-edge understanding of molecular biology of Foxp3 and Treg, integrating findings by biochemical and genomic studies.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|