1
|
Mainou E, Berendam SJ, Obregon-Perko V, Uffman EA, Phan CT, Shaw GM, Bar KJ, Kumar MR, Fray EJ, Siliciano JM, Siliciano RF, Silvestri G, Permar SR, Fouda GG, McCarthy J, Chahroudi A, Conway JM, Chan C. Assessing the impact of autologous neutralizing antibodies on viral rebound in postnatally SHIV-infected ART-treated infant rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550159. [PMID: 37502921 PMCID: PMC10370170 DOI: 10.1101/2023.07.22.550159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
While the benefits of early antiretroviral therapy (ART) initiation in perinatally infected infants are well documented, early ART initiation is not always possible in postnatal pediatric HIV infections, which account for the majority of pediatric HIV cases worldwide. The timing of onset of ART initiation is likely to affect the size of the latent viral reservoir established, as well as the development of adaptive immune responses, such as the generation of neutralizing antibody responses against the virus. How these parameters impact the ability of infants to control viremia and the time to viral rebound after ART interruption is unclear. To gain insight into the dynamics, we utilized mathematical models to investigate the effect of time of ART initiation via latent reservoir size and autologous virus neutralizing antibody responses in delaying viral rebound when treatment is interrupted. We used an infant nonhuman primate Simian/Human Immunodeficiency Virus (SHIV) infection model that mimics breast milk HIV transmission in human infants. Infant Rhesus macaques (RMs) were orally challenged with SHIV.C.CH505 375H dCT and either given ART at 4-7 days post-infection (early ART condition), at 2 weeks post-infection (intermediate ART condition), or at 8 weeks post-infection (late ART condition). These infants were then monitored for up to 60 months post-infection with serial viral load and immune measurements. We develop a stochastic mathematical model to investigate the joint effect of latent reservoir size, the autologous neutralizing antibody potency, and CD4+ T cell levels on the time to viral rebound and control of post-rebound viral loads. We find that the latent reservoir size is an important determinant in explaining time to viral rebound by affecting the growth rate of the virus. The presence of neutralizing antibodies also can delay rebound, but we find this effect for high potency antibody responses only.
Collapse
Affiliation(s)
- Ellie Mainou
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | | | | | - Emilie A Uffman
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Caroline T Phan
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - George M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine J Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mithra R Kumar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily J Fray
- Department of Biochemistry and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janet M Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | - Janice McCarthy
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jessica M Conway
- Department of Mathematics, Pennsylvania State University, University Park, PA, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
2
|
Sokolov D, Gorshkova A, Markova K, Milyutina Y, Pyatygina K, Zementova M, Korenevsky A, Mikhailova V, Selkov S. Natural Killer Cell Derived Microvesicles Affect the Function of Trophoblast Cells. MEMBRANES 2023; 13:213. [PMID: 36837716 PMCID: PMC9963951 DOI: 10.3390/membranes13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The interaction of natural killer (NK) and trophoblast cells underlies the formation of immune tolerance in the mother-fetus system and the maintenance of the physiological course of pregnancy. In addition, NK cells affect the function of trophoblast cells, interacting with them via the receptor apparatus and through the production of cytokines. Microvesicles (MVs) derived from NK cells are able to change the function of target cells. However, in the overall pattern of interactions between NK cells and trophoblasts, the possibility that both can transmit signals to each other via MVs has not been taken into account. Therefore, the aim of this study was to assess the effect of NK cell-derived MVs on the phenotype, proliferation, and migration of trophoblast cells and their expression of intracellular messengers. We carried out assays for the detection of content transferred from MV to trophoblasts. We found that NK cell-derived MVs did not affect the expression of CD54, CD105, CD126, CD130, CD181, CD119, and CD120a receptors in trophoblast cells or lead to the appearance of CD45 and CD56 receptors in the trophoblast membrane. Further, the MVs reduced the proliferation but increased the migration of trophoblasts with no changes to their viability. Incubation of trophoblast cells in the presence of MVs resulted in the activation of STAT3 via pSTAT3(Ser727) but not via pSTAT3(Tyr705). The treatment of trophoblasts with MVs did not result in the phosphorylation of STAT1 and ERK1/2. The obtained data indicate that NK cell-derived MVs influence the function of trophoblast cells, which is accompanied by the activation of STAT3 signaling.
Collapse
|
3
|
Sun Y, Zhou J, Jiang Y. Negative Regulation and Protective Function of Natural Killer Cells in HIV Infection: Two Sides of a Coin. Front Immunol 2022; 13:842831. [PMID: 35320945 PMCID: PMC8936085 DOI: 10.3389/fimmu.2022.842831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells play an important immunologic role, targeting tumors and virus-infected cells; however, NK cells do not impede the progression of human immunodeficiency virus (HIV) infection. In HIV infection, NK cells exhibit impaired functions and negatively regulate other immune cell responses, although NK cells can kill HIV-infected cells and thereby suppress HIV replication. Considerable recent research has emerged regarding NK cells in the areas of immune checkpoints, negative regulation, antibody-dependent cell-mediated cytotoxicity and HIV reservoirs during HIV infection; however, no overall summary of these factors is available. This review focuses on several important aspects of NK cells in relation to HIV infection, including changes in NK cell count, subpopulations, and immune checkpoints, as well as abnormalities in NK cell functions and NK cell negative regulation. The protective function of NK cells in inhibiting HIV replication to reduce the viral reservoir and approaches for enhancing NK cell functions are also summarized.
Collapse
|
4
|
Chen X, Anderson LJ, Rostad CA, Ding L, Lai L, Mulligan M, Rouphael N, Natrajan MS, McCracken C, Anderson EJ. Development and optimization of a Zika virus antibody-dependent cell-mediated cytotoxicity (ADCC) assay. J Immunol Methods 2020; 488:112900. [PMID: 33075363 DOI: 10.1016/j.jim.2020.112900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022]
Abstract
Zika virus (ZIKV) has become a global public health issue due to its teratogenicity and ability to cause Guillain-Barré syndrome in adults. Although anti-ZIKV envelope protein neutralizing antibodies correlate with protection, the non-neutralizing function of ZIKV antibodies including antibody-dependent cell-mediated cytotoxicity (ADCC) is incompletely understood. To study the role of ADCC antibodies during ZIKV infections, we generated a stably transfected, dual-reporter target cell line with inducible expression of a chimeric ZIKV prM-E protein on the cell surface as the target cell for the assay. By using this assay, nine of ten serum samples from ZIKV-infected patients had >20% ADCC killing of target cells, whereas none of the 12 healthy control sera had >10% ADCC killing. We also observed a time-dependent ADCC response in 2 patients with Zika. This demonstrates that this assay can detect ZIKV ADCC with high sensitivity and specificity, which could be useful for measurement of ADCC responses to ZIKV infection or vaccination.
Collapse
Affiliation(s)
- Xuemin Chen
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Larry J Anderson
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Christina A Rostad
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Lingmei Ding
- Cincinnati Children's Hospital Medical Center, Division of Infectious Diseases, Cincinnati, OH, USA
| | - Lilin Lai
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Division of Infectious Diseases and Microbiology and NYU Langone Vaccine Center, New York University, New York City, New York, USA
| | - Mark Mulligan
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Division of Infectious Diseases and Microbiology and NYU Langone Vaccine Center, New York University, New York City, New York, USA
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Muktha S Natrajan
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Courtney McCracken
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Evan J Anderson
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Functional Assessment for Clinical Use of Serum-Free Adapted NK-92 Cells. Cancers (Basel) 2019; 11:cancers11010069. [PMID: 30634595 PMCID: PMC6356567 DOI: 10.3390/cancers11010069] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells stand out as promising candidates for cellular immunotherapy due to their capacity to kill malignant cells. However, the therapeutic use of NK cells is often dependent on cell expansion and activation with considerable amounts of serum and exogenous cytokines. We aimed to develop an expansion protocol for NK-92 cells in an effort to generate a cost-efficient, xeno-free, clinical grade manufactured master cell line for therapeutic applications. By making functional assays with NK-92 cells cultured under serum-free conditions (NK-92SF) and comparing to serum-supplemented NK-92 cells (NK-92S) we did not observe significant alterations in the viability, proliferation, receptor expression levels, or in perforin and granzyme levels. Interestingly, even though NK-92SF cells displayed decreased degranulation and cytotoxicity against tumor cells in vitro, the degranulation capacity was recovered after overnight incubation with 20% serum in the medium. Moreover, lentiviral vector-based genetic modification efficiency of NK-92SF cells was comparable with NK-92S cells. The application of similar strategies can be useful in reducing the costs of manufacturing cells for clinical use and can help us understand and implement strategies towards chemically defined expansion and genetic modification protocols.
Collapse
|