1
|
Floyd JL, Prasad R, Dupont MD, Adu-Rutledge Y, Anshumali S, Paul S, Li Calzi S, Qi X, Malepati A, Johnson E, Jumbo-Lucioni P, Crosson JN, Mason JO, Boulton ME, Welner RS, Grant MB. Intestinal neutrophil extracellular traps promote gut barrier damage exacerbating endotoxaemia, systemic inflammation and progression of diabetic retinopathy in type 2 diabetes. Diabetologia 2025; 68:866-889. [PMID: 39875729 PMCID: PMC11950064 DOI: 10.1007/s00125-024-06349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/01/2024] [Indexed: 01/30/2025]
Abstract
AIMS/HYPOTHESIS Within the small intestine, neutrophils play an integral role in preventing bacterial infection. Upon interaction with bacteria or bacteria-derived antigens, neutrophils initiate a multi-staged response of which the terminal stage is NETosis, formation of protease-decorated nuclear DNA into extracellular traps. NETosis has a great propensity to elicit ocular damage and has been associated with diabetic retinopathy and diabetic macular oedema (DME) progression. Here, we interrogate the relationship between gut barrier dysfunction, endotoxaemia and systemic and intestinal neutrophilia in diabetic retinopathy. METHODS In a cohort of individuals with type 2 diabetes (n=58) with varying severity of diabetic retinopathy and DME, we characterised the abundance of circulating neutrophils by flow cytometry and markers of gut permeability and endotoxaemia by plasma ELISA. In a mouse model of type 2 diabetes, we examined the effects of diabetes on abundance and function of intestinal, blood and bone marrow neutrophils, gut barrier integrity, endotoxaemia and diabetic retinopathy severity. Pharmacological inhibition of NETosis was achieved by i.p. injection of the peptidyl arginine deiminase 4 inhibitor (PAD4i) GSK484 daily for 4 weeks between 6 and 7 months of type 2 diabetes. RESULTS In human participants, neutrophilia was unique to individuals with type 2 diabetes with diabetic retinopathy and DME and was accompanied by heightened circulating markers of gut permeability. At late-stage diabetes, neutrophilia and gut barrier dysfunction were seen in db/db mice. The db/db mice exhibited an increase in stem-like pre-neutrophils in the intestine and bone marrow and a decrease in haematopoietic vascular reparative cells. In the db/db mouse intestine, enhanced loss of gut barrier integrity was associated with elevated intestinal NETosis. Inhibition of NETosis by the PAD4i GSK484 resulted in decreased abundance of premature neutrophils in the intestine and blood and resulted in neutrophil retention in the bone marrow compared with vehicle-treated db/db mice. Additionally, the PAD4i decreased senescence within the gut epithelium and yielded a slowing of diabetic retinopathy progression. CONCLUSIONS/INTERPRETATION Severity of diabetic retinopathy and DME were associated with peripheral neutrophilia, gut barrier dysfunction and endotoxaemia in the human participants. db/db mice exhibited intestinal neutrophilia, specifically stem-like pre-neutrophils, which was associated with elevated NETosis and decreased levels of vascular reparative cells. Chronic inhibition of NETosis in db/db mice reduced intestinal senescence and NETs in the retina. These changes were associated with reduced endotoxaemia and an anti-inflammatory bone marrow milieu with retention of pre-neutrophils in the bone marrow and increased gut infiltration of myeloid angiogenic cells. Collectively, PAD-4i treatment decreased gut barrier dysfunction, restoring physiological haematopoiesis and levels of haematopoietic vascular reparative cells.
Collapse
Affiliation(s)
- Jason L Floyd
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ram Prasad
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mariana D Dupont
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yvonne Adu-Rutledge
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shambhavi Anshumali
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarbodeep Paul
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Akanksha Malepati
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emory Johnson
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patricia Jumbo-Lucioni
- Pharmaceutical, Social and Administrative Sciences, Samford University, Birmingham, AL, USA
| | - Jason N Crosson
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Retina Consultants of Alabama, Birmingham, AL, USA
| | - John O Mason
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Retina Consultants of Alabama, Birmingham, AL, USA
| | - Michael E Boulton
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert S Welner
- Department of Medicine, Division Hematology/Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Wu S, Chen Y, Jin X, Yu J, Chen X, Wan T. Toll Like Receptors Promote High Glucose-Induced Vascular Endothelial Cell Dysfunction by Regulating Neutrophil Extracellular Traps Formation. Inflammation 2025:10.1007/s10753-025-02283-8. [PMID: 40087251 DOI: 10.1007/s10753-025-02283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 02/19/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
Diabetic retinopathy (DR) is a major cause of blindness globally. Neutrophils and neutrophil extracellular traps (NETs) are believed to play a role in the development of DR. However, the specific contribution of NETs to hyperglycemia-induced vascular endothelial cell dysfunction remains unclear. In this study, we cocultured high glucose-activated neutrophils (HGNs) with human umbilical vein endothelial cells (HUVECs) to investigate the role of NETs in high glucose-induced HUVEC dysfunction. Our findings indicate that high glucose levels promote NETs formation, which can be inhibited by a toll-like receptor (TLR) 2 antagonist and a TLR4 antagonist. It was observed that reactive oxygen species production plays a role in TLR2- but not TLR4-mediated NETs formation. Additionally, HGNs were found to promote HUVEC proliferation through phagocytosis rather than NETs. We also discovered that NETs contribute to high glucose-induced HUVEC dysfunction by enhancing neutrophil-HUVEC adhesion, inhibiting HUVEC migration, and compromising the barrier function of the cells by reducing zonula occludens-1 expression. This dysfunction could be partially mitigated by TLR2 and TLR4 antagonists. In conclusion, high glucose stimulates NETs formation, leading to vascular endothelial cell damage, and TLRs may facilitate high glucose-induced endothelial dysfunction by modulating NETs formation.
Collapse
Affiliation(s)
- Shirou Wu
- Eye Center of Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Yahui Chen
- Quintiles Medical Research & Development Beijing Ltd, Liangshuihe No.2 Street, Beijing, 100176, China
| | - Xiuming Jin
- Eye Center of Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Jiayun Yu
- Eye Center of Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Xueping Chen
- Eye Center of Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Ting Wan
- Eye Center of Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China.
| |
Collapse
|
3
|
Renò F, Pagano CA, Bignotto M, Sabbatini M. Neutrophil Heterogeneity in Wound Healing. Biomedicines 2025; 13:694. [PMID: 40149670 PMCID: PMC11940162 DOI: 10.3390/biomedicines13030694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
Neutrophils are the most abundant type of immune cells and also the most underestimated cell defenders in the human body. In fact, their lifespan has also been extensively revised in recent years, going from a half-life of 8-10 h to a longer lifespan of up to 5.4 days in humans; it has been discovered that their mechanisms of defense are multiple and finely modulated, and it has been suggested that the heterogeneity of neutrophils occurs as well as in other immune cells. Neutrophils also play a critical role in the wound healing process, and their involvement is not limited to the initial stages of defense against pathogens, but extends to the inflammatory phase of tissue reconstruction. Neutrophil heterogeneity has recently been reported at the presence of distinct subtypes expressing different functional states, which contribute uniquely to the different phases of innate immunity and wound healing. This heterogeneity can be induced by the local microenvironment, by the presence of specific cytokines and by the type of injury. The different functional states of neutrophils enable a finely tuned response to injury and stress, which is essential for effective healing. Understanding the functional heterogeneity of neutrophils in wound healing can unveil potential pathological profiles and therapeutic targets. Moreover, the understanding of neutrophil heterogeneity dynamics could help in designing strategies to manage excessive inflammation or impaired healing processes. This review highlights the complexity of neutrophil heterogeneity and its critical roles throughout the phases of wound healing.
Collapse
Affiliation(s)
- Filippo Renò
- Health Sciences Department (DiSS), San Paolo Hospital, Università di Milano, Via A. di Rudini 8, 20142 Milano, Italy; (F.R.); (M.B.)
| | - Corinna Anais Pagano
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy;
| | - Monica Bignotto
- Health Sciences Department (DiSS), San Paolo Hospital, Università di Milano, Via A. di Rudini 8, 20142 Milano, Italy; (F.R.); (M.B.)
| | - Maurizio Sabbatini
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy;
| |
Collapse
|
4
|
Cai Y, Yang Q, Tang X, Wang P, Cui J, Du X, Zhang T, Chen Y. Baicalin mitigates hyperglycemia-linked intestinal epithelial barrier impairment in part by inhibiting the formation of neutrophil extracellular traps. Front Immunol 2025; 16:1551256. [PMID: 40098957 PMCID: PMC11911346 DOI: 10.3389/fimmu.2025.1551256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Background Under hyperglycemic conditions, impaired intestinal barrier integrity leads to heightened level of inflammation, playing important roles in driving diabetic complications. Emerging evidence supports the implications of neutrophil extracellular traps (NETs) in the pathogenesis of diabetes. However, whether NETs contribute to hyperglycemia-linked intestinal barrier impairment remains to be investigated. Moreover, baicalin, the major chemical component of Scutellaria baicalensis Georgi, is equipped with twofold intestinal protective and neutrophil suppressive activities. Yet, it is unclear if baicalin is effective at mitigating hyperglycemia-linked NETs-mediated intestinal barrier impairment. Methods To directly address the mechanistic implications of NETs in hyperglycemia-linked intestinal epithelial barrier impairment, the impact of DNase I treatment or Padi4 gene deficiency on intestinal epithelial integrity was first examined in the streptozotocin (STZ)-induced hyperglycemic mice in vivo. Next, the pharmacological impact of baicalin on NETs formation and intestinal epithelial barrier impairment was investigated in high glucose- and/or lipopolysaccharides (LPS)-stimulated neutrophils in vitro and in STZ-induced hyperglycemic mice in vivo, respectively. Results The in vitro experiments confirmed that high glucose and/or LPS induced NETs formation. NETs directly impaired the viability and tight junction of the intestinal epithelial cells. The histological and immunohistochemical examinations unveiled that along with impaired intestinal epithelial morphology, citrullinated histone H3 (H3Cit), a marker of NETs, and neutrophil specific Ly6G were readily detected in the intestinal epithelium in the hyperglycemic mice. Without affecting the presence of neutrophils, DNase I treatment or Padi4 gene deficiency markedly mitigated intestinal NETs formation and improved the intestinal morphology in the hyperglycemic mice. Notably, baicalin suppressed NETs formation and inhibited histone H3 citrullination stimulated by high glucose, LPS or both in vitro. Furthermore, baicalin blunted NETs formation and partially preserved the integrity of the intestinal epithelium in the hyperglycemic mice in vivo. Conclusions The current study sheds new light on the pathophysiological implications of NETs in intestinal epithelial barrier impairment under hyperglycemic conditions. Most importantly, the findings here demonstrate for the first time that baicalin directly inhibits NETs formation stimulated by high glucose and/or LPS, which may in part account for its pharmacological effects at protecting against hyperglycemia-linked intestinal epithelial barrier impairment.
Collapse
Affiliation(s)
- Yiqing Cai
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinbo Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xinmiao Tang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peiwei Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jingang Cui
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoye Du
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Teng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Chen
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Clinical and Molecular Pharmacology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Feješ A, Šebeková K, Borbélyová V. Pathophysiological Role of Neutrophil Extracellular Traps in Diet-Induced Obesity and Metabolic Syndrome in Animal Models. Nutrients 2025; 17:241. [PMID: 39861371 PMCID: PMC11768048 DOI: 10.3390/nu17020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
The global pandemic of obesity poses a serious health, social, and economic burden. Patients living with obesity are at an increased risk of developing noncommunicable diseases or to die prematurely. Obesity is a state of chronic low-grade inflammation. Neutrophils are first to be recruited to sites of inflammation, where they contribute to host defense via phagocytosis, degranulation, and extrusion of neutrophil extracellular traps (NETs). NETs are web-like DNA structures of nuclear or mitochondrial DNA associated with cytosolic antimicrobial proteins. The primary function of NETosis is preventing the dissemination of pathogens. However, neutrophils may occasionally misidentify host molecules as danger-associated molecular patterns, triggering NET formation. This can lead to further recruitment of neutrophils, resulting in propagation and a vicious cycle of persistent systemic inflammation. This scenario may occur when neutrophils infiltrate expanded obese adipose tissue. Thus, NETosis is implicated in the pathophysiology of autoimmune and metabolic disorders, including obesity. This review explores the role of NETosis in obesity and two obesity-associated conditions-hypertension and liver steatosis. With the rising prevalence of obesity driving research into its pathophysiology, particularly through diet-induced obesity models in rodents, we discuss insights gained from both human and animal studies. Additionally, we highlight the potential offered by rodent models and the opportunities presented by genetically modified mouse strains for advancing our understanding of obesity-related inflammation.
Collapse
Affiliation(s)
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 83303 Bratislava, Slovakia; (A.F.); (V.B.)
| | | |
Collapse
|
6
|
Liang A, Feng T, Gao X, Zhao B, Chen S. Identification of PDGFA as a Neutrophil-related Biomarker Linked to the Advancement of Diabetic Retinopathy through Integrated Bioinformatics Analysis. Endocr Metab Immune Disord Drug Targets 2025; 25:109-121. [PMID: 38504565 DOI: 10.2174/0118715303279463240220050158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The dysregulation of the innate immune system plays a crucial role in the development of Diabetic Retinopathy (DR). To gain an insight into the underlying mechanism of DR, it is essential to identify specific biomarkers associated with immune cell infiltration. METHODS In this study, we retrieved the GSE94019 and GSE60436 datasets from the Gene Expression Omnibus (GEO) database. By utilizing CIBERSORT, MCPcounter, and xCell algorithms, we conducted a comprehensive analysis of the immune cell infiltration landscape in DR. The limma package was employed to identify Differentially Expressed Necroptosis-related Genes (DENRGs). Subsequently, enrichment analysis was performed to investigate the potential functions of the DENRGs. To identify the core DENRGs, the CytoHubba plug-in in Cytoscape software was utilized. The expression levels of these core DENRGs were verified in an independent dataset. RESULTS Our analysis identified 213 DENRGs, and among them, Platelet-derived Growth Factor subunit A (PDGFA) was identified as a core DENRG. Notably, the expression of PDGFA was found to be upregulated in DR, and this finding was further validated in the GSE102485 dataset. Additionally, the results of GSVA and GSEA revealed that in the high PDGFA group, there was activation of pathways related to inflammation and the immune system. Moreover, analysis of immune infiltration demonstrated a significant association between PDGFA gene expression and the infiltration levels of specific immune cells, including basophils, macrophages M1, macrophages, neutrophils, monocytes, NK cells, and B cells. CONCLUSION The involvement of neutrophils in the development and progression of DR is suggested. PDGFA has emerged as a potential marker and is linked to the infiltration of immune cells in DR. These findings shed new light on the underlying mechanisms of DR.
Collapse
Affiliation(s)
- Anran Liang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Department of Ophthalmology, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Tingting Feng
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Xiang Gao
- Anyang Eye Hospital, Anyang, Henan, China
| | - Bowen Zhao
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Song Chen
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| |
Collapse
|
7
|
Wu C, Xu X, Shi Y, Li F, Zhang X, Huang Y, Xia D. Neutrophil Extracellular Trap Formation Model Induced by Monosodium Urate and Phorbol Myristate Acetate: Involvement in MAPK Signaling Pathways. Int J Mol Sci 2024; 26:143. [PMID: 39796001 PMCID: PMC11719704 DOI: 10.3390/ijms26010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/05/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Neutrophil extracellular traps (NETs) formation is a key process in inflammatory diseases like gout, but the underlying molecular mechanisms remain incompletely understood. This study aimed to establish a model to examine the formation of NETs induced by monosodium urate (MSU) and phorbol 12-myristate 13-acetate (PMA) and to elucidate their molecular pathways. Laser confocal microscopy was used to visualize NET formation, while flow cytometry was employed to detect reactive oxygen species (ROS) production. The microstructure of neutrophils was observed by transmission electron microscopy, and the expression of key proteins was determined by Western blotting. Additionally, the effect of various inhibitors targeting the MAPK signaling pathway on NET formation was evaluated. They include the Ras inhibitor Salirasib, Raf inhibitor Vemurafenib, ERK inhibitor PD98059, and p38 MAPK inhibitor SB203580, as well as NADPH oxidase inhibitor DPI and neutrophil elastase inhibitor Alvelestat. The results showed that MSU and PMA triggered significant NET formation, which was accompanied by increased ROS levels, lactate dehydrogenase release, dsDNA, and IL-8. Notably, selective MAPK pathway inhibitors and DPI and Alvelestat, except for SB203580, effectively down-regulated these indicators. These data indicated that the activation of a signaling pathway involving Ras-Raf-ERK, which is dependent on ROS, is crucial for the induction of NET formation by MSU and PMA. Given the involvement of NETs in multiple pathologies, our findings could potentially serve as molecular targets for the intervention and treatment of crystal-related diseases, especially for gout.
Collapse
Affiliation(s)
- Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (C.W.); (X.X.); (Y.S.); (F.L.); (Y.H.)
| | - Xinru Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (C.W.); (X.X.); (Y.S.); (F.L.); (Y.H.)
| | - Yueyue Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (C.W.); (X.X.); (Y.S.); (F.L.); (Y.H.)
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (C.W.); (X.X.); (Y.S.); (F.L.); (Y.H.)
| | - Xiaoxi Zhang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (C.W.); (X.X.); (Y.S.); (F.L.); (Y.H.)
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (C.W.); (X.X.); (Y.S.); (F.L.); (Y.H.)
| |
Collapse
|
8
|
Zhao B, Zhao Y, Sun X. Mechanism and therapeutic targets of circulating immune cells in diabetic retinopathy. Pharmacol Res 2024; 210:107505. [PMID: 39547465 DOI: 10.1016/j.phrs.2024.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Diabetic retinopathy (DR) continues to be the leading cause of preventable vision loss among working-aged adults, marked by immune dysregulation within the retinal microenvironment. Typically, the retina is considered as an immune-privileged organ, where circulating immune cells are restricted from entry under normal conditions. However, during the progression of DR, this immune privilege is compromised as circulating immune cells breach the barrier and infiltrate the retina. Increasing evidence suggests that vascular and neuronal degeneration in DR is largely driven by the infiltration of immune cells, particularly neutrophils, monocyte-derived macrophages, and lymphocytes. This review delves into the mechanisms and therapeutic targets associated with these immune cell populations in DR, offering a promising and innovative approach to managing the disease.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
Haliyur R, Parkinson DH, Ma F, Xu J, Li Q, Huang Y, Tsoi LC, Bogle R, Liu J, Gudjonsson JE, Rao RC. Liquid Biopsy for Proliferative Diabetic Retinopathy: Single-Cell Transcriptomics of Human Vitreous Reveals Inflammatory T-Cell Signature. OPHTHALMOLOGY SCIENCE 2024; 4:100539. [PMID: 39220810 PMCID: PMC11365369 DOI: 10.1016/j.xops.2024.100539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 09/04/2024]
Abstract
Purpose Current therapies for proliferative diabetic retinopathy (PDR) do not specifically target VEGF-independent, cell-type-specific processes that lead to vision loss, such as inflammatory pathways. This study aimed to identify targetable cell types and corresponding signaling pathways by elucidating the single-cell landscape of the vitreous of patients with PDR. Design Case series. Subjects Vitreous and peripheral blood obtained from 5 adult patients (6 eyes) undergoing pars plana vitrectomy for vision-threatening PDR. Methods Single-cell RNA sequencing (scRNA-seq) was performed on vitreous cells obtained from diluted cassette washings during vitrectomy from 6 eyes and peripheral blood mononuclear cells (PBMCs, n = 5). Droplet-based scRNA-seq was performed using the Chromium 10x platform to obtain single-cell transcriptomes. Differences in tissue compartments were analyzed with gene ontology enrichment of differentially expressed genes and an unbiased ligand-receptor interaction analysis. Main Outcome Measures Single-cell transcriptomic profiles of vitreous and peripheral blood. Results Transcriptomes from 13 675 surgically harvested vitreous cells and 22 636 PBMCs were included. Clustering revealed 4 cell states consistently across all eyes with representative transcripts for T cells (CD2, CD3D, CD3E, and GZMA), B cells (CD79A, IGHM, MS4A1 (CD20), and HLA-DRA), myeloid cells (LYZ, CST3, AIF1, and IFI30), and neutrophils (BASP1, CXCR2, S100A8, and S100A9). Most vitreous cells were T cells (91.6%), unlike the peripheral blood (46.2%), whereas neutrophils in the vitreous were essentially absent. The full repertoire of adaptive T cells including CD4+, CD8+ and T regulatory cells (Treg) and innate immune system effectors (i.e., natural killer T cells) was present in the vitreous. Pathway analysis also demonstrated activation of CD4+ and CD8+ memory T cells and ligand-receptor interactions unique to the vitreous. Conclusions In the first single-cell transcriptomic characterization of human vitreous in a disease state, we show PDR vitreous is primarily composed of T cells, a critical component of adaptive immunity, with activity and proportions distinct from T cells within the peripheral blood, and neutrophils are essentially absent. These results demonstrate the feasibility of liquid vitreous biopsies via collection of otherwise discarded, diluted cassette washings during vitrectomy to gain mechanistic and therapeutic insights into human vitreoretinal disease. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Rachana Haliyur
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - David H. Parkinson
- Medical Scientist Training Program, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan
| | - Feiyang Ma
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jing Xu
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Qiang Li
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Yuanhao Huang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rachael Bogle
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jie Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rajesh C. Rao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan
- Section of Ophthalmology, Surgery Service, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, Michigan
| |
Collapse
|
10
|
Sinclair SH, Schwartz S. Diabetic retinopathy: New concepts of screening, monitoring, and interventions. Surv Ophthalmol 2024; 69:882-892. [PMID: 38964559 DOI: 10.1016/j.survophthal.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The science of diabetes care has progressed to provide a better understanding of the oxidative and inflammatory lesions and pathophysiology of the neurovascular unit within the retina (and brain) that occur early in diabetes, even prediabetes. Screening for retinal structural abnormalities, has traditionally been performed by fundus examination or color fundus photography; however, these imaging techniques detect the disease only when there are sufficient lesions, predominantly hemorrhagic, that are recognized to occur late in the disease process after significant neuronal apoptosis and atrophy, as well as microvascular occlusion with alterations in vision. Thus, interventions have been primarily oriented toward the later-detected stages, and clinical trials, while demonstrating a slowing of the disease progression, demonstrate minimal visual improvement and modest reduction in the continued loss over prolonged periods. Similarly, vision measurement utilizing charts detects only problems of visual function late, as the process begins most often parafoveally with increasing number and progressive expansion, including into the fovea. While visual acuity has long been used to define endpoints of visual function for such trials, current methods reviewed herein are found to be imprecise. We review improved methods of testing visual function and newer imaging techniques with the recommendation that these must be utilized to discover and evaluate the injury earlier in the disease process, even in the prediabetic state. This would allow earlier therapy with ocular as well as systemic pharmacologic treatments that lower the and neuro-inflammatory processes within eye and brain. This also may include newer, micropulsed laser therapy that, if applied during the earlier cascade, should result in improved and often normalized retinal function without the adverse treatment effects of standard photocoagulation therapy.
Collapse
Affiliation(s)
| | - Stan Schwartz
- University of Pennsylvania Affiliate, Main Line Health System, USA
| |
Collapse
|
11
|
Taranto D, Kloosterman DJ, Akkari L. Macrophages and T cells in metabolic disorder-associated cancers. Nat Rev Cancer 2024; 24:744-767. [PMID: 39354070 DOI: 10.1038/s41568-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
Cancer and metabolic disorders have emerged as major global health challenges, reaching epidemic levels in recent decades. Often viewed as separate issues, metabolic disorders are shown by mounting evidence to heighten cancer risk and incidence. The intricacies underlying this connection are still being unraveled and encompass a complex interplay between metabolites, cancer cells and immune cells within the tumour microenvironment (TME). Here, we outline the interplay between metabolic and immune cell dysfunction in the context of three highly prevalent metabolic disorders, namely obesity; two associated liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH); and type 2 diabetes. We focus primarily on macrophages and T cells, the critical roles of which in dictating inflammatory response and immune surveillance in metabolic disorder-associated cancers are widely reported. Moreover, considering the ever-increasing number of patients prescribed with metabolism disorder-altering drugs and diets in recent years, we discuss how these therapies modulate systemic and local immune phenotypes, consequently impacting cancer malignancy. Collectively, unraveling the determinants of metabolic disorder-associated immune landscape and their role in fuelling cancer malignancy will provide a framework essential to therapeutically address these highly prevalent diseases.
Collapse
Affiliation(s)
- Daniel Taranto
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Jayasuriya R, Ganesan K, Ramkumar KM. Mangiferin Represses Inflammation in Macrophages Under a Hyperglycemic Environment Through Nrf2 Signaling. Int J Mol Sci 2024; 25:11197. [PMID: 39456979 PMCID: PMC11508804 DOI: 10.3390/ijms252011197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammation in macrophages is exacerbated under hyperglycemic conditions, contributing to chronic inflammation and impaired wound healing in diabetes. This study investigates the potential of mangiferin, a natural polyphenol, to alleviate this inflammatory response by targeting a redox-sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2). Mangiferin, a known Nrf2 activator, was evaluated for its ability to counteract the hyperglycemia-induced inhibition of Nrf2 and enhance antioxidant defenses. The protective effects of mangiferin on macrophages in a hyperglycemic environment were assessed by examining the expression of Nrf2, NF-κB, NLRP3, HO-1, CAT, COX-2, IL-6, and IL-10 through gene and protein expression analyses using qPCR and immunoblotting, respectively. The mangiferin-mediated nuclear translocation of Nrf2 was evidenced, leading to a robust antioxidant response in macrophages exposed to a hyperglycemic microenvironment. This activation suppressed NF-κB signaling, reducing the expression of pro-inflammatory mediators such as COX-2 and IL-6. Additionally, mangiferin decreased NLRP3 inflammasome activation and reactive oxygen species accumulation in hyperglycemia exposed macrophages. Our findings revealed that mangiferin alleviated hyperglycemia-induced reductions in AKT phosphorylation, highlighting its potential role in modulating key signaling pathways. Furthermore, mangiferin significantly enhanced the invasiveness and migration of macrophages in a hyperglycemic environment, indicating its potential to improve wound healing. In conclusion, this study suggests that mangiferin may offer a promising therapeutic approach for managing inflammation and promoting wound healing in diabetic patients by regulating Nrf2 activity in hyperglycemia-induced macrophages.
Collapse
Affiliation(s)
- Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong 999077, China;
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| |
Collapse
|
13
|
Hao L, Wang S, Zhang L, Huang J, Zhang Y, Qin X. Transcriptome sequencing and Mendelian randomization analysis identified biomarkers related to neutrophil extracellular traps in diabetic retinopathy. Front Immunol 2024; 15:1408974. [PMID: 39483475 PMCID: PMC11524841 DOI: 10.3389/fimmu.2024.1408974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Summary In the development of diabetic retinopathy (DR), neutrophil infiltration hastens the adhesion between neutrophils and endothelial cells, leading to inflammation. Meanwhile, neutrophil extracellular traps (NETs) produced by neutrophils could clear aging blood vessels, setting the stage for retinal vascular regeneration. To explore the mechanism of NETs-related genes in DR, the transcriptome of NETs from normal and DR individuals were analyzed with gene sequencing and mendelian randomization (MR) analysis. Five NETs-related genes were identified as key genes. Among these genes, CLIC3, GBP2, and P2RY12 were found to be risk factors for Proliferative DR(PDR), whereas HOXA1 and PSAP were protective factors. Further verification by qRT-PCR recognized GBP2, P2RY12 and PSAP as NETs-associated biomarkers in PDR. Purpose To investigate neutrophil extracellular traps (NETs) related genes as biomarkers in the progression of diabetic retinopathy (DR). Methods We collected whole blood samples from 10 individuals with DR and 10 normal controls (NCs) for transcriptome sequencing. Following quality control and preprocessing of the sequencing data, differential expression analysis was conducted to identify differentially expressed genes (DEGs) between the DR and NC groups. Candidate genes were then selected by intersecting these DEGs with key module genes identified through weighted gene co-expression network analysis. These candidate genes were subjected to mendelian randomization (MR) analysis, then least absolute shrinkage and selection operator analysis to pinpoint key genes. The diagnostic utility of these key genes was evaluated using receiver operating characteristic curve analysis, and their expression levels were examined. Additional analysis, including nomogram construction, gene set enrichment analysis, drug prediction and molecular docking, were performed to investigate the functions and molecular mechanisms of the key genes. Finally, the expression of key genes was verified by qRT-PCR and biomarkers were identified. Results Intersection of 1,004 DEGs with 1,038 key module genes yielded 291 candidate genes. Five key genes were identified: HOXA1, GBP2, P2RY12, CLIC3 and PSAP. Among them, CLIC3, GBP2, and P2RY12 were identified as risk factors for DR, while HOXA1 and PSAP were protective. These key genes demonstrated strong diagnostic performance for DR. With the exception of P2RY12, all other key genes exhibited down-regulation in the DR group. Furthermore, the nomogram incorporating multiple key genes demonstrated superior predictive capacity for DR compared to a single key genes. The identified key genes are involved in oxidative phosphorylation and ribosome functions. Drug predictions targeting P2RY12 suggested prasugrel, ticagrelor, and ticlopidine as potential options owing to their high binding affinity with this key genes. The qRT-PCR results revealed that the results of GBP2, PSAP and P2RY12 exhibited consistent expression patterns with the dataset. Conclusion This study identified GBP2, P2RY12 and PSAP as NETs-associated biomarkers in the development of PDR, offering new insights for clinical diagnosis and potential treatment strategies for DR.
Collapse
Affiliation(s)
- Linlin Hao
- Department of Ophthalmology, the Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Songhong Wang
- Department of Ophthalmology, the Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lian Zhang
- Department of Ophthalmology, the Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong University, Jinan, China
| | - Jie Huang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong University, Jinan, China
| | - Yue Zhang
- Department of Operating Room, the Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuejiao Qin
- Department of Ophthalmology, the Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
14
|
Britt EC, Qing X, Votava JA, Lika J, Wagner AS, Shen S, Arp NL, Khan H, Schieke SM, Fletcher CD, Huttenlocher A, Fan J. Activation induces shift in nutrient utilization that differentially impacts cell functions in human neutrophils. Proc Natl Acad Sci U S A 2024; 121:e2321212121. [PMID: 39284072 PMCID: PMC11441510 DOI: 10.1073/pnas.2321212121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/29/2024] [Indexed: 09/25/2024] Open
Abstract
Neutrophils utilize a variety of metabolic sources to support their crucial functions as the first responders in innate immunity. Here, through in vivo and ex vivo isotopic tracing, we examined the contributions of different nutrients to neutrophil metabolism under specific conditions. Human peripheral blood neutrophils, in contrast to a neutrophil-like cell line, rely on glycogen storage as a major metabolic source under resting state but rapidly switch to primarily using extracellular glucose upon activation with various stimuli. This shift is driven by a substantial increase in glucose uptake, enabled by rapidly increased GLUT1 on cell membrane, that dominates the simultaneous increase in gross glycogen cycling capacity. Shifts in nutrient utilization impact neutrophil functions in a function-specific manner: oxidative burst depends on glucose utilization, whereas NETosis and phagocytosis can be flexibly supported by either glucose or glycogen, and neutrophil migration and fungal control are enhanced by the shift from glycogen utilization to glucose utilization. This work provides a quantitative and dynamic understanding of fundamental features in neutrophil metabolism and elucidates how metabolic remodeling shapes neutrophil functions, which has broad health relevance.
Collapse
Affiliation(s)
- Emily C. Britt
- Morgridge Institute for Research, Madison, WI53715
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI53706
| | - Xin Qing
- Morgridge Institute for Research, Madison, WI53715
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI53706
| | | | - Jorgo Lika
- Morgridge Institute for Research, Madison, WI53715
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI53792
| | - Andrew S. Wagner
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Simone Shen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Nicholas L. Arp
- Morgridge Institute for Research, Madison, WI53715
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI53792
| | - Hamidullah Khan
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI53715
- Department of Dermatology, Georgetown University Medical Center Washington DC VA Medical Center, Washington, DC20036
| | - Stefan M. Schieke
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI53715
- Department of Dermatology, Georgetown University Medical Center Washington DC VA Medical Center, Washington, DC20036
| | | | - Anna Huttenlocher
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI53792
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Carbone Cancer Center, Madison, WI53792
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI53792
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI53715
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI53792
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Carbone Cancer Center, Madison, WI53792
| |
Collapse
|
15
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Ettel P, Weichhart T. Not just sugar: metabolic control of neutrophil development and effector functions. J Leukoc Biol 2024; 116:487-510. [PMID: 38450755 PMCID: PMC7617515 DOI: 10.1093/jleuko/qiae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
The mammalian immune system is constantly surveying our tissues to clear pathogens and maintain tissue homeostasis. In order to fulfill these tasks, immune cells take up nutrients to supply energy for survival and for directly regulating effector functions via their cellular metabolism, a process now known as immunometabolism. Neutrophilic granulocytes, the most abundant leukocytes in the human body, have a short half-life and are permanently needed in the defense against pathogens. According to a long-standing view, neutrophils were thought to primarily fuel their metabolic demands via glycolysis. Yet, this view has been challenged, as other metabolic pathways recently emerged to contribute to neutrophil homeostasis and effector functions. In particular during neutrophilic development, the pentose phosphate pathway, glycogen synthesis, oxidative phosphorylation, and fatty acid oxidation crucially promote neutrophil maturation. At steady state, both glucose and lipid metabolism sustain neutrophil survival and maintain the intracellular redox balance. This review aims to comprehensively discuss how neutrophilic metabolism adapts during development, which metabolic pathways fuel their functionality, and how these processes are reconfigured in case of various diseases. We provide several examples of hereditary diseases, in which mutations in metabolic enzymes validate their critical role for neutrophil function.
Collapse
Affiliation(s)
- Paul Ettel
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090Vienna, Austria
| | - Thomas Weichhart
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090Vienna, Austria
| |
Collapse
|
17
|
Joosten SC, Wiersinga WJ, Poll TVD. Dysregulation of Host-Pathogen Interactions in Sepsis: Host-Related Factors. Semin Respir Crit Care Med 2024; 45:469-478. [PMID: 38950605 PMCID: PMC11663080 DOI: 10.1055/s-0044-1787554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Sepsis stands as a prominent contributor to sickness and death on a global scale. The most current consensus definition characterizes sepsis as a life-threatening organ dysfunction stemming from an imbalanced host response to infection. This definition does not capture the intricate array of immune processes at play in sepsis, marked by simultaneous states of heightened inflammation and immune suppression. This overview delves into the immune-related processes of sepsis, elaborating about mechanisms involved in hyperinflammation and immune suppression. Moreover, we discuss stratification of patients with sepsis based on their immune profiles and how this could impact future sepsis management.
Collapse
Affiliation(s)
- Sebastiaan C.M. Joosten
- Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Willem J. Wiersinga
- Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Tom van der Poll
- Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Kortam N, Liang W, Shiple C, Huang S, Gedert R, Clair JS, Sarosh C, Foster C, Tsou PS, Varga J, Knight JS, Khanna D, Ali RA. Elevated neutrophil extracellular traps in systemic sclerosis-associated vasculopathy and suppression by a synthetic prostacyclin analog. Arthritis Res Ther 2024; 26:139. [PMID: 39054558 PMCID: PMC11270934 DOI: 10.1186/s13075-024-03379-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES Neutrophils and neutrophil extracellular traps (NETs) contribute to the vascular complications of multiple diseases, but their role in systemic sclerosis (SSc) is understudied. We sought to test the hypothesis that NETs are implicated in SSc vasculopathy and that treatment with prostacyclin analogs may ameliorate SSc vasculopathy not only through vasodilation but also by inhibiting NET release. METHODS Blood from 125 patients with SSc (87 diffuse cutaneous SSc and 38 limited cutaneous SSc) was collected at a single academic medical center. Vascular complications such as digital ulcers, pulmonary artery hypertension, and scleroderma renal crisis were recorded. The association between circulating NETs and vascular complications was determined using in vitro and ex vivo assays. The impact of the synthetic prostacyclin analog epoprostenol on NET release was determined. RESULTS Neutrophil activation and NET release were elevated in patients with SSc-associated vascular complications compared to matched patients without vascular complications. Neutrophil activation and NETs positively correlated with soluble E-selectin and VCAM-1, circulating markers of vascular injury. Treatment of patients with digital ischemia with a synthetic prostacyclin analog boosted neutrophil cyclic AMP, which was associated with the blunting of NET release and reduced NETs in circulation. CONCLUSION Our study demonstrates an association between NETs and vascular complications in SSc. We also identified the potential for an additional therapeutic benefit of synthetic prostacyclin analogs, namely to reduce neutrophil hyperactivity and NET release in SSc patients.
Collapse
Affiliation(s)
- Neda Kortam
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Wenying Liang
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Claire Shiple
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Suiyuan Huang
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Rosemary Gedert
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - James St Clair
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Cyrus Sarosh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Caroline Foster
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Ramadan A Ali
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
19
|
Li Y, Hu B, Lu L, Li Y, Caika S, Song Z, Sen G. Development and external validation of a predictive model for type 2 diabetic retinopathy. Sci Rep 2024; 14:16741. [PMID: 39033211 PMCID: PMC11271465 DOI: 10.1038/s41598-024-67533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Diabetes retinopathy (DR) is a critical clinical disease with that causes irreversible visual damage in adults, and may even lead to permanent blindness in serious cases. Early identification and treatment of DR is critical. Our aim was to train and externally validate a prediction nomogram for early prediction of DR. 2381 patients with type 2 diabetes mellitus (T2DM) were retrospective study from the First Affiliated Hospital of Xinjiang Medical University in Xinjiang, China, hospitalised between Jan 1, 2019 and Jun 30, 2022. 962 patients with T2DM from the Suzhou BenQ Hospital in Jiangsu, China hospitalised between Jul 1, 2020 to Jun 30, 2022 were considered for external validation. The least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression was performed to identify independent predictors and establish a nomogram to predict the occurrence of DR. The performance of the nomogram was evaluated using a receiver operating characteristic curve (ROC), a calibration curve, and decision curve analysis (DCA). Neutrophil, 25-hydroxyvitamin D3 [25(OH)D3], Duration of T2DM, hemoglobin A1c (HbA1c), and Apolipoprotein A1 (ApoA1) were used to establish a nomogram model for predicting the risk of DR. In the development and external validation groups, the areas under the curve of the nomogram constructed from the above five factors were 0.834 (95%CI 0.820-0.849) and 0.851 (95%CI 0.829-0.874), respectively. The nomogram demonstrated excellent performance in the calibration curve and DCA. This research has developed and externally verified that the nomograph model shows a good predictive ability in assessing DR risk in people with type 2 diabetes. The application of this model will help clinicians to intervene early, thus effectively reducing the incidence rate and mortality of DR in the future, and has far-reaching significance in improving the long-term health prognosis of diabetes patients.
Collapse
Affiliation(s)
- Yongsheng Li
- Department of Preventive Medicine, Medical College, Tarim University, Alar, 843300, China
| | - Bin Hu
- Department of Preventive Medicine, Medical College, Tarim University, Alar, 843300, China
| | - Lian Lu
- Department of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, 830011, China
| | - Yongnan Li
- Nursing Department, Suzhou BenQ Hospital, Suzhou, 215163, China
| | - Siqingaowa Caika
- Nursing Department, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, China
| | - Zhixin Song
- Department of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, 830011, China
| | - Gan Sen
- Department of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, 830011, China.
| |
Collapse
|
20
|
Lin Y, Ke S, Ye W, Xie B, Huang Z. Non-Apoptotic Programmed Cell Death as Targets for Diabetic Retinal Neurodegeneration. Pharmaceuticals (Basel) 2024; 17:837. [PMID: 39065688 PMCID: PMC11279440 DOI: 10.3390/ph17070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic retinopathy (DR) remains the leading cause of blindness among the global working-age population. Emerging evidence underscores the significance of diabetic retinal neurodegeneration (DRN) as a pivotal biomarker in the progression of vasculopathy. Inflammation, oxidative stress, neural cell death, and the reduction in neurotrophic factors are the key determinants in the pathophysiology of DRN. Non-apoptotic programmed cell death (PCD) plays a crucial role in regulating stress response, inflammation, and disease management. Therapeutic modalities targeting PCD have shown promising potential for mitigating DRN. In this review, we highlight recent advances in identifying the role of various PCD types in DRN, with specific emphasis on necroptosis, pyroptosis, ferroptosis, parthanatos, and the more recently characterized PANoptosis. In addition, the therapeutic agents aimed at the regulation of PCD for addressing DRN are discussed.
Collapse
Affiliation(s)
- Yingjia Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Shuping Ke
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Weiqing Ye
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Biyao Xie
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
| |
Collapse
|
21
|
Zhang Z, Deng C, Paulus YM. Advances in Structural and Functional Retinal Imaging and Biomarkers for Early Detection of Diabetic Retinopathy. Biomedicines 2024; 12:1405. [PMID: 39061979 PMCID: PMC11274328 DOI: 10.3390/biomedicines12071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic retinopathy (DR), a vision-threatening microvascular complication of diabetes mellitus (DM), is a leading cause of blindness worldwide that requires early detection and intervention. However, diagnosing DR early remains challenging due to the subtle nature of initial pathological changes. This review explores developments in multimodal imaging and functional tests for early DR detection. Where conventional color fundus photography is limited in the field of view and resolution, advanced quantitative analysis of retinal vessel traits such as retinal microvascular caliber, tortuosity, and fractal dimension (FD) can provide additional prognostic value. Optical coherence tomography (OCT) has also emerged as a reliable structural imaging tool for assessing retinal and choroidal neurodegenerative changes, which show potential as early DR biomarkers. Optical coherence tomography angiography (OCTA) enables the evaluation of vascular perfusion and the contours of the foveal avascular zone (FAZ), providing valuable insights into early retinal and choroidal vascular changes. Functional tests, including multifocal electroretinography (mfERG), visual evoked potential (VEP), multifocal pupillographic objective perimetry (mfPOP), microperimetry, and contrast sensitivity (CS), offer complementary data on early functional deficits in DR. More importantly, combining structural and functional imaging data may facilitate earlier detection of DR and targeted management strategies based on disease progression. Artificial intelligence (AI) techniques show promise for automated lesion detection, risk stratification, and biomarker discovery from various imaging data. Additionally, hematological parameters, such as neutrophil-lymphocyte ratio (NLR) and neutrophil extracellular traps (NETs), may be useful in predicting DR risk and progression. Although current methods can detect early DR, there is still a need for further research and development of reliable, cost-effective methods for large-scale screening and monitoring of individuals with DM.
Collapse
Affiliation(s)
- Zhengwei Zhang
- Department of Ophthalmology, Jiangnan University Medical Center, Wuxi 214002, China;
- Department of Ophthalmology, Wuxi No.2 People’s Hospital, Wuxi Clinical College, Nantong University, Wuxi 214002, China
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Callie Deng
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Biomedical Engineering, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105, USA
| |
Collapse
|
22
|
Lou X, Chen H, Chen S, Ji H, He T, Chen H, Zhu R, Le Y, Sang A, Yu Y. LL37/FPR2 regulates neutrophil mPTP promoting the development of neutrophil extracellular traps in diabetic retinopathy. FASEB J 2024; 38:e23697. [PMID: 38842874 DOI: 10.1096/fj.202400656r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Diabetic retinopathy (DR) is characterized by chronic, low-grade inflammation. This state may be related to the heightened production of neutrophil extracellular traps (NETs) induced by high glucose (HG). Human cathelicidin antimicrobial peptide (LL37) is an endogenous ligand of G protein-coupled chemoattractant receptor formyl peptide receptor 2 (FPR2), expressed on neutrophils and facilitating the formation and stabilization of the structure of NETs. In this study, we detected neutrophils cultured under different conditions, the retinal tissue of diabetic mice, and fibrovascular epiretinal membranes (FVM) samples of patients with proliferative diabetic retinopathy (PDR) to explore the regulating effect of LL37/FPR2 on neutrophil in the development of NETs during the process of DR. Specifically, HG or NG with LL37 upregulates the expression of FPR2 in neutrophils, induces the opening of mitochondrial permeability transition pore (mPTP), promotes the increase of reactive oxygen species and mitochondrial ROS, and then leads to the rise of NET production, which is mainly manifested by the release of DNA reticular structure and the increased expression of NETs-related markers. The PI3K/AKT signaling pathway was activated in neutrophils, and the phosphorylation level was enhanced by FPR2 agonists in vitro. In vivo, increased expression of NETs markers was detected in the retina of diabetic mice and in FVM, vitreous fluid, and serum of PDR patients. Transgenic FPR2 deletion led to decreased NETs in the retina of diabetic mice. Furthermore, in vitro, inhibition of the LL37/FPR2/mPTP axis and PI3K/AKT signaling pathway decreased NET production induced by high glucose. These results suggested that FPR2 plays an essential role in regulating the production of NETs induced by HG, thus may be considered as one of the potential therapeutic targets.
Collapse
Affiliation(s)
- Xueying Lou
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Hongliang Chen
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Songwei Chen
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Haixia Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Tianzhen He
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Hui Chen
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Rongrong Zhu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Aimin Sang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Ying Yu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
23
|
Aslanian-Kalkhoran L, Mehdizadeh A, Aghebati-Maleki L, Danaii S, Shahmohammadi-Farid S, Yousefi M. The role of neutrophils and neutrophil extracellular traps (NETs) in stages, outcomes and pregnancy complications. J Reprod Immunol 2024; 163:104237. [PMID: 38503075 DOI: 10.1016/j.jri.2024.104237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Neutrophils are the main components of innate immunity to eliminate infectious pathogens. Neutrophils play a role in several stages of the reproductive cycle, and their presence in the female reproductive system is highly regulated, so their function may change during pregnancy. Emerging evidence suggests that neutrophils are important at all stages of pregnancy, from implantation, placentation, and connective tissue regeneration to birth, as well as birth itself. Neutrophil extracellular traps (NETs) are defined as extracellular strands of unfolded DNA together with histone complexes and neutrophil granule proteins. NET formation is a new mechanism of these cells for their defense function. These strands containing DNA and antimicrobial peptides were initially recognized as one of the defense mechanisms of neutrophils, but later it was explained that they are involved in a variety of non-infectious diseases. Since the source of inflammation and tissue damage is the irregular activity of neutrophils, it is not surprising that NETosis are associated with a number of inflammatory conditions and diseases. The overexpression of NET components or non-principled NET clearance is associated with the risk of production and activation of autoantibodies, which results in participation in autoinflammatory and autoimmune disorders (SLE, RA), fibrosis, sepsis and other disorders such as vascular diseases, for example, thrombosis and atherosclerosis. Recent published articles have shown the role of neutrophils and extracellular traps (NETs) in pregnancy, childbirth and pregnancy-related diseases. The aim of this study was to identify and investigate the role of neutrophils and neutrophil extracellular traps (NETs) in the stages of pregnancy, as well as the complications caused by these cells.
Collapse
Affiliation(s)
- Lida Aslanian-Kalkhoran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Centre, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Fleetwood AJ, Noonan J, La Gruta N, Kallies A, Murphy AJ. Immunometabolism in atherosclerotic disorders. NATURE CARDIOVASCULAR RESEARCH 2024; 3:637-650. [PMID: 39196223 DOI: 10.1038/s44161-024-00473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 04/11/2024] [Indexed: 08/29/2024]
Abstract
Cardiovascular diseases (CVDs), including atherosclerosis, myocardial infarction and heart failure, are the leading causes of morbidity and mortality worldwide. Emerging evidence suggests a crucial role for immune cell dysfunction and inflammation in the progression of this complex set of diseases. Recent advances demonstrate that immune cells, tightly linked to CVD pathogenesis, are sensitive to environmental signals and respond by engaging immunometabolic networks that shape their behavior. Inflammatory cues and altered nutrient availability within atherosclerotic plaques or following ischemia synergize to elicit metabolic shifts in immune cells that influence the course of disease pathology. Understanding these metabolic adaptations and how they contribute to cellular dysfunction may reveal novel therapeutic approaches for the treatment of CVD. Here we provide a comprehensive summary of the metabolic reprogramming that occurs in immune cells and their progenitors during CVD, offering insights into the potential therapeutic interventions to mitigate disease progression.
Collapse
Affiliation(s)
- Andrew J Fleetwood
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Jonathan Noonan
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Nicole La Gruta
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Axel Kallies
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
25
|
Lin S, Zhu P, Jiang L, Hu Y, Huang L, He Y, Zhang H. Neutrophil extracellular traps induced by IL-1β promote endothelial dysfunction and aggravate limb ischemia. Hypertens Res 2024; 47:1654-1667. [PMID: 38605142 DOI: 10.1038/s41440-024-01661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Vascular inflammation and endothelial dysfunction contribute to vascular diseases. While neutrophil extracellular traps (NETs) participate in some vascular pathologies, their roles in lower limb ischemia remain poorly defined. This study investigated the functional significance of NETs in vascular inflammation and remodeling associated with limb ischemia. Single-cell RNA sequencing (scRNA-seq) and flow cytometry revealed neutrophil activation and upregulated NETs formation in human limb ischemia, with immunofluorescence confirming IL-1β-induced release of NETs for vascular inflammation. Endothelial cell activation was examined via scRNA-seq and western blotting, indicating enhanced proliferation, expression of adhesion molecules (VCAM-1, ICAM-1), inflammatory cytokines (IL-1β, IL-6) and decreased expression of VE-cadherin, that could be mediated by NETs to exacerbate endothelial inflammation. Mechanistically, NETs altered endothelial cell function via increased pSTAT1/STAT1 signaling. Vascular inflammation and subsequent ischemia were alleviated in vivo by NETosis or IL-1β inhibition in ischemic mice. IL-1β-NETs induce endothelial activation and inflammation in limb ischemia by stimulating STAT1 signaling. Targeting NETs may thus represent a novel therapeutic strategy for inflammatory vascular diseases associated with limb ischemia. Graphical abstract of NETs regulation of the development of vascular inflammation in lower limb ischemia via pSTAT1/STAT1 signaling pathway.
Collapse
Affiliation(s)
- Shigang Lin
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengwei Zhu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujun Jiang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yujian Hu
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lirui Huang
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyan He
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hongkun Zhang
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
26
|
Wu X, Yang Y. Neutrophil extracellular traps (NETs) and fibrotic diseases. Int Immunopharmacol 2024; 133:112085. [PMID: 38626550 DOI: 10.1016/j.intimp.2024.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Fibrosis, a common cause and serious outcome of organ failure that can affect any organ, is responsible for up to 45% of all deaths in various clinical settings. Both preclinical models and clinical trials investigating various organ systems have shown that fibrosis is a highly dynamic process. Although many studies have sought to gain understanding of the mechanism of fibrosis progression, their findings have been mixed. In recent years, increasing evidence indicates that neutrophil extracellular traps (NETs) are involved in many inflammatory and autoimmune disorders and participate in the regulation of fibrotic processes in various organs and systems. In this review, we summarize the current understanding of the role of NETs in fibrosis development and progression and their possibility as therapeutic targets.
Collapse
Affiliation(s)
- Xiaojiao Wu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
27
|
Li T, Qian Y, Li H, Wang T, Jiang Q, Wang Y, Zhu Y, Li S, He X, Shi G, Su W, Lu Y, Chen Y. Cellular communication network factor 1 promotes retinal leakage in diabetic retinopathy via inducing neutrophil stasis and neutrophil extracellular traps extrusion. Cell Commun Signal 2024; 22:275. [PMID: 38755602 PMCID: PMC11097549 DOI: 10.1186/s12964-024-01653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major cause of blindness and is characterized by dysfunction of the retinal microvasculature. Neutrophil stasis, resulting in retinal inflammation and the occlusion of retinal microvessels, is a key mechanism driving DR. These plugging neutrophils subsequently release neutrophil extracellular traps (NETs), which further disrupts the retinal vasculature. Nevertheless, the primary catalyst for NETs extrusion in the retinal microenvironment under diabetic conditions remains unidentified. In recent studies, cellular communication network factor 1 (CCN1) has emerged as a central molecule modulating inflammation in pathological settings. Additionally, our previous research has shed light on the pathogenic role of CCN1 in maintaining endothelial integrity. However, the precise role of CCN1 in microvascular occlusion and its potential interaction with neutrophils in diabetic retinopathy have not yet been investigated. METHODS We first examined the circulating level of CCN1 and NETs in our study cohort and analyzed related clinical parameters. To further evaluate the effects of CCN1 in vivo, we used recombinant CCN1 protein and CCN1 overexpression for gain-of-function, and CCN1 knockdown for loss-of-function by intravitreal injection in diabetic mice. The underlying mechanisms were further validated on human and mouse primary neutrophils and dHL60 cells. RESULTS We detected increases in CCN1 and neutrophil elastase in the plasma of DR patients and the retinas of diabetic mice. CCN1 gain-of-function in the retina resulted in neutrophil stasis, NETs extrusion, capillary degeneration, and retinal leakage. Pre-treatment with DNase I to reduce NETs effectively eliminated CCN1-induced retinal leakage. Notably, both CCN1 knockdown and DNase I treatment rescued the retinal leakage in the context of diabetes. In vitro, CCN1 promoted adherence, migration, and NETs extrusion of neutrophils. CONCLUSION In this study, we uncover that CCN1 contributed to retinal inflammation, vessel occlusion and leakage by recruiting neutrophils and triggering NETs extrusion under diabetic conditions. Notably, manipulating CCN1 was able to hold therapeutic promise for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Ting Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yixia Qian
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Haicheng Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Tongtong Wang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qi Jiang
- Department of Ocular Immunology & Uveitis, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510515, China
| | - Yuchan Wang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yanhua Zhu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shasha Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xuemin He
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Guojun Shi
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wenru Su
- Department of Ocular Immunology & Uveitis, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510515, China
| | - Yan Lu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yanming Chen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
28
|
Kim TS, Moutsopoulos NM. Neutrophils and neutrophil extracellular traps in oral health and disease. Exp Mol Med 2024; 56:1055-1065. [PMID: 38689085 PMCID: PMC11148164 DOI: 10.1038/s12276-024-01219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Neutrophils perform essential functions in antimicrobial defense and tissue maintenance at mucosal barriers. However, a dysregulated neutrophil response and, in particular, the excessive release of neutrophil extracellular traps (NETs) are implicated in the pathology of various diseases. In this review, we provide an overview of the basic concepts related to neutrophil functions, including NET formation, and discuss the mechanisms associated with NET activation and function in the context of the prevalent oral disease periodontitis.
Collapse
Affiliation(s)
- Tae Sung Kim
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
29
|
Wang N, Zhang C. Oxidative Stress: A Culprit in the Progression of Diabetic Kidney Disease. Antioxidants (Basel) 2024; 13:455. [PMID: 38671903 PMCID: PMC11047699 DOI: 10.3390/antiox13040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic kidney disease (DKD) is the principal culprit behind chronic kidney disease (CKD), ultimately developing end-stage renal disease (ESRD) and necessitating costly dialysis or kidney transplantation. The limited therapeutic efficiency among individuals with DKD is a result of our finite understanding of its pathogenesis. DKD is the result of complex interactions between various factors. Oxidative stress is a fundamental factor that can establish a link between hyperglycemia and the vascular complications frequently encountered in diabetes, particularly DKD. It is crucial to recognize the essential and integral role of oxidative stress in the development of diabetic vascular complications, particularly DKD. Hyperglycemia is the primary culprit that can trigger an upsurge in the production of reactive oxygen species (ROS), ultimately sparking oxidative stress. The main endogenous sources of ROS include mitochondrial ROS production, NADPH oxidases (Nox), uncoupled endothelial nitric oxide synthase (eNOS), xanthine oxidase (XO), cytochrome P450 (CYP450), and lipoxygenase. Under persistent high glucose levels, immune cells, the complement system, advanced glycation end products (AGEs), protein kinase C (PKC), polyol pathway, and the hexosamine pathway are activated. Consequently, the oxidant-antioxidant balance within the body is disrupted, which triggers a series of reactions in various downstream pathways, including phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), transforming growth factor beta/p38-mitogen-activated protein kinase (TGF-β/p38-MAPK), nuclear factor kappa B (NF-κB), adenosine monophosphate-activated protein kinase (AMPK), and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling. The disease might persist even if strict glucose control is achieved, which can be attributed to epigenetic modifications. The treatment of DKD remains an unresolved issue. Therefore, reducing ROS is an intriguing therapeutic target. The clinical trials have shown that bardoxolone methyl, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, blood glucose-lowering drugs, such as sodium-glucose cotransporter 2 inhibitors, and glucagon-like peptide-1 receptor agonists can effectively slow down the progression of DKD by reducing oxidative stress. Other antioxidants, including vitamins, lipoic acid, Nox inhibitors, epigenetic regulators, and complement inhibitors, present a promising therapeutic option for the treatment of DKD. In this review, we conduct a thorough assessment of both preclinical studies and current findings from clinical studies that focus on targeted interventions aimed at manipulating these pathways. We aim to provide a comprehensive overview of the current state of research in this area and identify key areas for future exploration.
Collapse
Affiliation(s)
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
30
|
Thakur V, Gonzalez MA, Parada M, Martinez RD, Chattopadhyay M. Role of Histone Deacetylase Inhibitor in Diabetic Painful Neuropathy. Mol Neurobiol 2024; 61:2283-2296. [PMID: 37875708 DOI: 10.1007/s12035-023-03701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Diabetic painful neuropathy (DPN) is one of the most detrimental complications of diabetes. Alterations in neuroinflammatory mediators play significant roles in the development of DPN. Infiltration of the neutrophils and monocyte/macrophages contributes substantial role in the degenerative process of the distal sciatic nerve by forming neutrophil extracellular traps (NETs) under diabetic condition. Citrullination of histones due to increase in protein arginine deiminase (PAD) enzyme activity under hyperglycemia may promote NET formation, which can further increase the cytokine production by activating macrophages and proliferation of neutrophils. This study reveals that the increase in histone deacetylases (HDAC) is crucial in DPN and inhibition of HDAC using HDAC inhibitor (HDACi) FK228 would suppress NETosis and alleviate diabetic nerve degeneration and pain. FK228, also known as romidepsin, is FDA approved for the treatment of cutaneous T-cell lymphoma yet the molecular mechanisms of this drug are not completely understood in DPN. In this study, type 2 diabetic (T2D) mice with pain were treated with HDACi, FK228 1 mg/kg; I.P. 2 × /week for 3 weeks. The results demonstrate that FK228 treatment can alleviate thermal hyperalgesia and mechanical allodynia significantly along with changes in the expression of HDACs in the dorsal root ganglia (DRG) and spinal cord dorsal horn neurons of diabetic animals. The results also indicate that FK228 treatment can alter the expression of neutrophil elastase (NE), extracellular or cell free DNA (cfDNA), citrullinated histone-3 (CitH3), PADI4, growth-associated protein (GAP)-43, and glucose transporter (GLUT)-4. Overall, this study suggests that FK228 could amend the expression of nerve regeneration markers and inflammatory mediators in diabetic animals and may offer an alternative treatment approach for DPN.
Collapse
Affiliation(s)
- Vikram Thakur
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Mayra A Gonzalez
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Maria Parada
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Robert D Martinez
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Munmun Chattopadhyay
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
| |
Collapse
|
31
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
32
|
Conedera FM, Kokona D, Zinkernagel MS, Stein JV, Lin CP, Alt C, Enzmann V. Macrophages coordinate immune response to laser-induced injury via extracellular traps. J Neuroinflammation 2024; 21:68. [PMID: 38500151 PMCID: PMC10949579 DOI: 10.1186/s12974-024-03064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Retinal degeneration results from disruptions in retinal homeostasis due to injury, disease, or aging and triggers peripheral leukocyte infiltration. Effective immune responses rely on coordinated actions of resident microglia and recruited macrophages, critical for tissue remodeling and repair. However, these phagocytes also contribute to chronic inflammation in degenerated retinas, yet the precise coordination of immune response to retinal damage remains elusive. Recent investigations have demonstrated that phagocytic cells can produce extracellular traps (ETs), which are a source of self-antigens that alter the immune response, which can potentially lead to tissue injury. METHODS Innovations in experimental systems facilitate real-time exploration of immune cell interactions and dynamic responses. We integrated in vivo imaging with ultrastructural analysis, transcriptomics, pharmacological treatments, and knockout mice to elucidate the role of phagocytes and their modulation of the local inflammatory response through extracellular traps (ETs). Deciphering these mechanisms is essential for developing novel and enhanced immunotherapeutic approaches that can redirect a specific maladaptive immune response towards favorable wound healing in the retina. RESULTS Our findings underscore the pivotal role of innate immune cells, especially macrophages/monocytes, in regulating retinal repair and inflammation. The absence of neutrophil and macrophage infiltration aids parenchymal integrity restoration, while their depletion, particularly macrophages/monocytes, impedes vascular recovery. We demonstrate that macrophages/monocytes, when recruited in the retina, release chromatin and granular proteins, forming ETs. Furthermore, the pharmacological inhibition of ETosis support retinal and vascular repair, surpassing the effects of blocking innate immune cell recruitment. Simultaneously, the absence of ETosis reshapes the inflammatory response, causing neutrophils, helper, and cytotoxic T-cells to be restricted primarily in the superficial capillary plexus instead of reaching the damaged photoreceptor layer. CONCLUSIONS Our data offer novel insights into innate immunity's role in responding to retinal damage and potentially help developing innovative immunotherapeutic approaches that can shift the immune response from maladaptive to beneficial for retinal regeneration.
Collapse
Affiliation(s)
- Federica M Conedera
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland.
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Despina Kokona
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Alt
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
33
|
Takeuchi H. The Standard-Dose Heparin-Warfarin Remedy Partially Resolves Thrombi in the Right Superior Pulmonary Vein and Left Atrium and Ameliorates Type 2 Diabetes Mellitus. Cureus 2024; 16:e57323. [PMID: 38559512 PMCID: PMC10981902 DOI: 10.7759/cureus.57323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 04/04/2024] Open
Abstract
Pulmonary vein thrombosis is common and underdiagnosed. Previously, we reported several cases of pulmonary vein thrombi (PVTs) using cardiac computed tomography (CT) and transesophageal echocardiography (TEE). We reported that warfarin and direct oral anticoagulants (DOACs) partially resolved PVTs; however, it is difficult to resolve all PVTs completely. Therefore, we evaluated the effects of standard-dose heparin-warfarin remedy on PVTs and left atrium (LA) thrombi using TEE and cardiac CT. A 64-year-old male with type 2 diabetes mellitus (T2DM) and hypertension was assessed for thrombi in the LA and pulmonary veins using TEE and 80-slice multidetector computed tomography (80-MDCT). After one month of standard-dose heparin-warfarin remedy, the patient's right superior pulmonary vein (RSPV) thrombi and expanded LA thrombi from the RSPV thrombi had partially resolved. The RSPV thrombi and the expanded LA thrombi from the RSPV thrombi were detected using cardiac CT and TEE; however, they were depicted as black areas on TEE. They periodically moved inward with the patient's heartbeats. Additionally, the standard-dose heparin-warfarin remedy ameliorated the patient's T2DM, and the remedy effect could be maintained for five months to some extent by administering a standard dose of warfarin. The standard-dose heparin-warfarin remedy can ameliorate not only T2DM but also diabetic complications such as diabetic nephropathy and gestational diabetes mellitus.
Collapse
Affiliation(s)
- Hidekazu Takeuchi
- Internal Medicine and Cardiology, Takeuchi Naika Clinic, Ogachi-Gun, JPN
| |
Collapse
|
34
|
Qiu J, Wu J, Chen W, Ruan Y, Mao J, Li S, Tang X, Zhao L, Li S, Li K, Liu D, Duan Y. NOD1 deficiency ameliorates the progression of diabetic retinopathy by modulating bone marrow-retina crosstalk. Stem Cell Res Ther 2024; 15:38. [PMID: 38336763 PMCID: PMC10858517 DOI: 10.1186/s13287-024-03654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) plays a pivotal role in inducing metabolic inflammation in diabetes. Additionally, the NOD1 ligand disrupts the equilibrium of bone marrow-derived hematopoietic stem/progenitor cells, a process that has immense significance in the development of diabetic retinopathy (DR). We hypothesized that NOD1 depletion impedes the advancement of DR by resolving bone marrow dysfunction. METHODS We generated NOD1-/--Akita double-mutant mice and chimeric mice with hematopoietic-specific NOD1 depletion to study the role of NOD1 in the bone marrow-retina axis. RESULTS Elevated circulating NOD1 activators were observed in Akita mice after 6 months of diabetes. NOD1 depletion partially restored diabetes-induced structural changes and retinal electrical responses in NOD1-/--Akita mice. Loss of NOD1 significantly ameliorated the progression of diabetic retinal vascular degeneration, as determined by acellular capillary quantification. The preventive effect of NOD1 depletion on DR is linked to bone marrow phenotype alterations, including a restored HSC pool and a shift in hematopoiesis toward myelopoiesis. We also generated chimeric mice with hematopoietic-specific NOD1 ablation, and the results further indicated that NOD1 had a protective effect against DR. Mechanistically, loss of hematopoietic NOD1 resulted in reduced bone marrow-derived macrophage infiltration and decreased CXCL1 and CXCL2 secretion within the retina, subsequently leading to diminished neutrophil chemoattraction and NETosis. CONCLUSIONS The results of our study unveil, for the first time, the critical role of NOD1 as a trigger for a hematopoietic imbalance toward myelopoiesis and local retinal inflammation, culminating in DR progression. Targeting NOD1 in bone marrow may be a potential strategy for the prevention and treatment of DR.
Collapse
Affiliation(s)
- Jingwen Qiu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wu
- Department of Hematology/Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Wenwen Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Ruan
- Division of Growth, Development and Mental Health of Children and Adolescence, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jingning Mao
- Health Medical Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shue Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Tang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Zhao
- Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengbing Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongfang Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yaqian Duan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
35
|
Adeeb S, Arabi TZ, Shah H, Alsalameh S, Abu-Shaar M, El-Sibai AM, Alkattan K, Yaqinuddin A. Unveiling the Web: Exploring the Multifaceted Role of Neutrophil Extracellular Traps in Ocular Health and Disease. J Clin Med 2024; 13:512. [PMID: 38256646 PMCID: PMC10816449 DOI: 10.3390/jcm13020512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Neutrophil extracellular traps (NETs) play an essential role in antimicrobial defense. However, NETs have also been shown to promote and mediate a wide spectrum of diseases, including cancer, diabetes mellitus, cardiovascular diseases, and ocular diseases. Data regarding NETs in ocular diseases remain limited. In physiological conditions, NETs protect the eye from debris and cleave proinflammatory cytokines, including several interleukins. On the other hand, NETs play a role in corneal diseases, such as dry eye disease and ocular graft-versus-host disease, where they promote acinar atrophy and delayed wound healing. Additionally, NET levels positively correlate with increased severity of uveitis. NETs have also been described in the context of diabetic retinopathy. Although increased NET biomarkers are associated with an increased risk of the disease, NETs also assist in the elimination of pathological blood vessels and the regeneration of normal vessels. Targeting NET pathways for the treatment of ocular diseases has shown promising outcomes; however, more studies are still needed in this regard. In this article, we summarize the literature on the protective roles of NETs in the eye. Then, we describe their pathogenetic effects in ocular diseases, including those of the cornea, uvea, and retinal blood vessels. Finally, we describe the therapeutic implications of targeting NETs in such conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.); (T.Z.A.); (H.S.); (S.A.); (M.A.-S.); (A.M.E.-S.); (K.A.)
| |
Collapse
|
36
|
Trotta MC, Gesualdo C, Russo M, Lepre CC, Petrillo F, Vastarella MG, Nicoletti M, Simonelli F, Hermenean A, D’Amico M, Rossi S. Changes in Circulating Acylated Ghrelin and Neutrophil Elastase in Diabetic Retinopathy. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:118. [PMID: 38256379 PMCID: PMC10820226 DOI: 10.3390/medicina60010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Background and Objectives: The role and the levels of ghrelin in diabetes-induced retinal damage have not yet been explored. The present study aimed to measure the serum levels of total ghrelin (TG), and its acylated (AG) and des-acylated (DAG) forms in patients with the two stages of diabetic retinopathy (DR), non-proliferative (NPDR) and proliferative (PDR). Moreover, the correlation between serum ghrelin and neutrophil elastase (NE) levels was investigated. Materials and Methods: The serum markers were determined via enzyme-linked immunosorbent assays in 12 non-diabetic subjects (CTRL), 15 diabetic patients without DR (Diabetic), 15 patients with NPDR, and 15 patients with PDR. Results: TG and AG serum levels were significantly decreased in Diabetic (respectively, p < 0.05 and p < 0.01 vs. CTRL), NPDR (p < 0.01 vs. Diabetic), and in PDR patients (p < 0.01 vs. NPDR). AG serum levels were inversely associated with DR abnormalities (microhemorrhages, microaneurysms, and exudates) progression (r = -0.83, p < 0.01), serum neutrophil percentage (r = -0.74, p < 0.01), and serum NE levels (r = -0.73, p < 0.01). The latter were significantly increased in the Diabetic (p < 0.05 vs. CTRL), NPDR (p < 0.01 vs. Diabetic), and PDR (p < 0.01 vs. PDR) groups. Conclusions: The two DR stages were characterized by decreased AG and increased NE levels. In particular, serum AG levels were lower in PDR compared to NPDR patients, and serum NE levels were higher in the PDR vs. the NPDR group. Together with the greater presence of retinal abnormalities, this could underline a distinctive role of AG in PDR compared to NPDR.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (F.P.); (M.D.)
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (M.N.); (F.S.)
| | - Marina Russo
- PhD Course in National Interest in Public Administration and Innovation for Disability and Social Inclusion, Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- School of Pharmacology and Clinical Toxicology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (F.P.); (M.D.)
- PhD Course in Translational Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Francesco Petrillo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (F.P.); (M.D.)
- PhD Course in Translational Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Giovanna Vastarella
- PhD Course in Translational Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maddalena Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (M.N.); (F.S.)
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (M.N.); (F.S.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania;
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (F.P.); (M.D.)
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (M.N.); (F.S.)
| |
Collapse
|
37
|
Shafqat A, Khan JA, Alkachem AY, Sabur H, Alkattan K, Yaqinuddin A, Sing GK. How Neutrophils Shape the Immune Response: Reassessing Their Multifaceted Role in Health and Disease. Int J Mol Sci 2023; 24:17583. [PMID: 38139412 PMCID: PMC10744338 DOI: 10.3390/ijms242417583] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neutrophils are the most abundant of the circulating immune cells and are the first to be recruited to sites of inflammation. Neutrophils are a heterogeneous group of immune cells from which are derived extracellular traps (NETs), reactive oxygen species, cytokines, chemokines, immunomodulatory factors, and alarmins that regulate the recruitment and phenotypes of neutrophils, macrophages, dendritic cells, T cells, and B cells. In addition, cytokine-stimulated neutrophils can express class II major histocompatibility complex and the internal machinery necessary for successful antigen presentation to memory CD4+ T cells. This may be relevant in the context of vaccine memory. Neutrophils thus emerge as orchestrators of immune responses that play a key role in determining the outcome of infections, vaccine efficacy, and chronic diseases like autoimmunity and cancer. This review aims to provide a synthesis of current evidence as regards the role of these functions of neutrophils in homeostasis and disease.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia (K.A.); (A.Y.); (G.K.S.)
| | | | | | | | | | | | | |
Collapse
|
38
|
Sun WJ, An XD, Zhang YH, Zhao XF, Sun YT, Yang CQ, Kang XM, Jiang LL, Ji HY, Lian FM. The ideal treatment timing for diabetic retinopathy: the molecular pathological mechanisms underlying early-stage diabetic retinopathy are a matter of concern. Front Endocrinol (Lausanne) 2023; 14:1270145. [PMID: 38027131 PMCID: PMC10680169 DOI: 10.3389/fendo.2023.1270145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetic retinopathy (DR) is a prevalent complication of diabetes, significantly impacting patients' quality of life due to vision loss. No pharmacological therapies are currently approved for DR, excepted the drugs to treat diabetic macular edema such as the anti-VEGF agents or steroids administered by intraocular route. Advancements in research have highlighted the crucial role of early intervention in DR for halting or delaying disease progression. This holds immense significance in enhancing patients' quality of life and alleviating the societal burden associated with medical care costs. The non-proliferative stage represents the early phase of DR. In comparison to the proliferative stage, pathological changes primarily manifest as microangiomas and hemorrhages, while at the cellular level, there is a loss of pericytes, neuronal cell death, and disruption of components and functionality within the retinal neuronal vascular unit encompassing pericytes and neurons. Both neurodegenerative and microvascular abnormalities manifest in the early stages of DR. Therefore, our focus lies on the non-proliferative stage of DR and we have initially summarized the mechanisms involved in its development, including pathways such as polyols, that revolve around the pathological changes occurring during this early stage. We also integrate cutting-edge mechanisms, including leukocyte adhesion, neutrophil extracellular traps, multiple RNA regulation, microorganisms, cell death (ferroptosis and pyroptosis), and other related mechanisms. The current status of drug therapy for early-stage DR is also discussed to provide insights for the development of pharmaceutical interventions targeting the early treatment of DR.
Collapse
Affiliation(s)
- Wen-Jie Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Dong An
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue-Hong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Fei Zhao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Ting Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Cun-Qing Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Min Kang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Lin Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Hang-Yu Ji
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feng-Mei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
39
|
Luo X, Liu M, Wang S, Chen Y, Bao X, Lv Y, Zhang S, Xu B, Weng X, Bai X, Zeng M, Zhao C, Li J, Jia H, Yu B. Combining metabolomics and OCT to reveal plasma metabolic profiling and biomarkers of plaque erosion and plaque rupture in STEMI patients. Int J Cardiol 2023; 390:131223. [PMID: 37517782 DOI: 10.1016/j.ijcard.2023.131223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/15/2023] [Accepted: 02/26/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE Plaque erosion (PE) and plaque rupture (PR) are the main subtypes of ST-segment elevation myocardial infarction (STEMI), the differences of metabolic patterns between PE and PR remain largely unknown. METHODS 132 STEMI patients were divided into training set (PR, n = 36; PE, n = 36) and test set (PR, n = 30; PE, n = 30), the plasma from patients were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry. RESULTS We identified 56 and 28 differences in training and test set, respectively. Among these metabolites, it was found that docosahexaenoic acid (DHA), salicylic acid and proline were recognized in both tests. Receiver Operating Characteristic (ROC) analysis showed that the area under curve of docosahexaenoic acid (DHA) was 0.81 and 0.75 in training and test samples, respectively; proline was 0.67 and 0.74 in training and test samples, respectively; salicylic acid was 0.70 and 0.73 in training and test samples, respectively. CONCLUSIONS DHA, salicylic acid, and proline could be used as non-invasive biomarkers to differentiate PE and PR.
Collapse
Affiliation(s)
- Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Minghao Liu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Shengfang Wang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Yuwu Chen
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Xiaoyi Bao
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Ying Lv
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Shan Zhang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Biyi Xu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Xiuzhu Weng
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Xiaoxuan Bai
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Ming Zeng
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Chen Zhao
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Ji Li
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China.
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China.
| |
Collapse
|
40
|
Islam MM, Takeyama N. Role of Neutrophil Extracellular Traps in Health and Disease Pathophysiology: Recent Insights and Advances. Int J Mol Sci 2023; 24:15805. [PMID: 37958788 PMCID: PMC10649138 DOI: 10.3390/ijms242115805] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Neutrophils are the principal trouper of the innate immune system. Activated neutrophils undergo a noble cell death termed NETosis and release a mesh-like structure called neutrophil extracellular traps (NETs) as a part of their defensive strategy against microbial pathogen attack. This web-like architecture includes a DNA backbone embedded with antimicrobial proteins like myeloperoxidase (MPO), neutrophil elastase (NE), histones and deploys in the entrapment and clearance of encountered pathogens. Thus NETs play an inevitable beneficial role in the host's protection. However, recent accumulated evidence shows that dysregulated and enhanced NET formation has various pathological aspects including the promotion of sepsis, pulmonary, cardiovascular, hepatic, nephrological, thrombotic, autoimmune, pregnancy, and cancer diseases, and the list is increasing gradually. In this review, we summarize the NET-mediated pathophysiology of different diseases and focus on some updated potential therapeutic approaches against NETs.
Collapse
Affiliation(s)
- Md Monirul Islam
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Aichi 480-1195, Japan
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Chattogram 4202, Bangladesh
| | - Naoshi Takeyama
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Aichi 480-1195, Japan
| |
Collapse
|
41
|
Britt EC, Qing X, Votava JA, Lika J, Wagner A, Shen S, Arp NL, Khan H, Schieke SM, Fletcher CD, Huttenlocher A, Fan J. Activation induces shift in nutrient utilization that differentially impacts cell functions in human neutrophils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559385. [PMID: 37808750 PMCID: PMC10557599 DOI: 10.1101/2023.09.25.559385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Neutrophils - the first responders in innate immunity - perform a variety of effector functions associated with specific metabolic demand. To maintain fitness and support functions, neutrophils have been found to utilize extracellular glucose, intracellular glycogen, and other alternative substrates. However, the quantitative contribution of these nutrients under specific conditions and the relative dependence of various cell functions on specific nutrients remain unclear. Here, using ex vivo and in vivo isotopic tracing, we reveal that under resting condition, human peripheral blood neutrophils, in contrast to in vitro cultured human neutrophil-like cell lines, rely on glycogen as a major direct source of glycolysis and pentose phosphate pathway. Upon activation with a diversity of stimuli, neutrophils undergo a significant and often rapid nutrient preference shift, with glucose becoming the dominant metabolic source thanks to a multi-fold increase in glucose uptake mechanistically mediated by the phosphorylation and translocation of GLUT1. At the same time, cycling between gross glycogenesis and glycogenolysis is also substantially increased, while the net flux favors sustained or increased glycogen storage. The shift in nutrient utilization impacts neutrophil functions in a function-specific manner. The activation of oxidative burst specifically depends on the utilization of extracellular glucose rather than glycogen. In contrast, the release of neutrophil traps can be flexibly supported by either glucose or glycogen. Neutrophil migration and fungal control is promoted by the shift away from glycogen utilization. Together, these results quantitatively characterize fundamental features of neutrophil metabolism and elucidate how metabolic remodeling shapes neutrophil functions upon activation.
Collapse
Affiliation(s)
- Emily C. Britt
- Morgridge Institute for Research, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Xin Qing
- Morgridge Institute for Research, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | | | - Jorgo Lika
- Morgridge Institute for Research, Madison, WI, USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Andrew Wagner
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Simone Shen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas L. Arp
- Morgridge Institute for Research, Madison, WI, USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Hamidullah Khan
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA. Department of Dermatology, Georgetown University Medical Center and Washington DC VA Medical Center, Washington, D.C., USA
| | - Stefan M. Schieke
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA. Department of Dermatology, Georgetown University Medical Center and Washington DC VA Medical Center, Washington, D.C., USA
| | | | - Anna Huttenlocher
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI, USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| |
Collapse
|
42
|
Liu C, Yalavarthi S, Tambralli A, Zeng L, Rysenga CE, Alizadeh N, Hudgins L, Liang W, NaveenKumar SK, Shi H, Shelef MA, Atkins KB, Pennathur S, Knight JS. Inhibition of neutrophil extracellular trap formation alleviates vascular dysfunction in type 1 diabetic mice. SCIENCE ADVANCES 2023; 9:eadj1019. [PMID: 37878711 PMCID: PMC10599623 DOI: 10.1126/sciadv.adj1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
While neutrophil extracellular traps (NETs) have previously been linked to some diabetes-associated complications, such as dysfunctional wound healing, their potential role in diabetic vascular dysfunction has not been studied. Diabetic Akita mice were crossed with either Elane-/- or Pad4-/- mice to generate NET-deficient diabetic mice. By 24 weeks of age, Akita aortae showed markedly impaired relaxation in response to acetylcholine, indicative of vascular dysfunction. Both Akita-Elane-/- mice and Akita-Pad4-/- mice had reduced levels of circulating NETs and improved acetylcholine-mediated aortic relaxation. Compared with wild-type aortae, the thromboxane metabolite TXB2 was roughly 10-fold higher in both intact and endothelium-denuded aortae of Akita mice. In contrast, Akita-Elane-/- and Akita-Pad4-/- aortae had TXB2 levels similar to wild type. In summary, inhibition of NETosis by two independent strategies prevented the development of vascular dysfunction in diabetic Akita mice. Thromboxane was up-regulated in the vessel walls of NETosis-competent diabetic mice, suggesting a role for neutrophils in driving the production of this vasoconstrictive and atherogenic prostanoid.
Collapse
Affiliation(s)
- Chao Liu
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ajay Tambralli
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lixia Zeng
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Christine E. Rysenga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nikoo Alizadeh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lucas Hudgins
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Wenying Liang
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Hui Shi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Rheumatology and Immunology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Miriam A. Shelef
- Division of Rheumatology, Department of Medicine, University of Wisconsin–Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Kevin B. Atkins
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Jason S. Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
43
|
Shu Q, Zhang N, Liu Y, Wang X, Chen J, Xie H, Pan F, Zhao L, Ding X, Wen Y, Wang L, Xie W, Lu J, Su G, Peng H, Yang P. IL-8 Triggers Neutrophil Extracellular Trap Formation Through an Nicotinamide Adenine Dinucleotide Phosphate Oxidase- and Mitogen-Activated Protein Kinase Pathway-Dependent Mechanism in Uveitis. Invest Ophthalmol Vis Sci 2023; 64:19. [PMID: 37824136 PMCID: PMC10587853 DOI: 10.1167/iovs.64.13.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Purpose To explore the mechanism underlying IL-8-induced neutrophil extracellular trap (NET) formation in patients with ocular-active Behçet's disease (BD) and the effect of inhibiting NET formation on the severity of inflammation in experimental autoimmune uveitis (EAU) mice. Methods The serum extracellular DNA and neutrophil elastase (NE) and IL-8 levels in patients with ocular-active BD, the expression of myeloperoxidase, NE, and histone H3Cit in IL-8-induced neutrophils isolated from healthy controls, and the effects of NETs on HMC3 cells were detected. Female C57BL/6J mice were immunized with IRBP651-670 to induce EAU and EAU mice received intravitreal injection of the CXCR2 (IL-8 receptor) antagonist SB225002 or PBS. The serum levels of extracellular DNA, NE, and keratinocyte-derived chemokine (the mouse ortholog of human IL-8) and expression of myeloperoxidase, NE, and histone H3Cit in mouse retinas were detected. Disease severity was evaluated by clinical and histopathological scores. Results Serum keratinocyte-derived chemokine expression levels in EAU mice and IL-8 expression levels in patients with ocular-active BD increased. IL-8 notably increased NET formation in a dose-dependent manner through an nicotinamide adenine dinucleotide phosphate oxidase and mitogen-activated protein kinase pathway dependent mechanism. IL-8-induced NET formation damaged HMC3 cells in vitro. Pretreatment with SB225002 notably ameliorated the production of NETs in EAU mice. Conclusions Our data confirm that NET formation is induced by IL-8. IL-8-induced NET formation was found to be related to mitogen-activated protein kinase and nicotinamide adenine dinucleotide phosphate pathways. Pretreatment with the CXCR2 antagonist SB225002 alleviated neutrophil infiltration and suppressed NET formation in EAU mice.
Collapse
Affiliation(s)
- Qinxin Shu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Ni Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Yanyao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xing Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jinquan Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hao Xie
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Fuying Pan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Long Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xuanheng Ding
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Yan Wen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Lingda Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Wenxi Xie
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jing Lu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hui Peng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
44
|
Gomchok D, Ge RL, Wuren T. Platelets in Renal Disease. Int J Mol Sci 2023; 24:14724. [PMID: 37834171 PMCID: PMC10572297 DOI: 10.3390/ijms241914724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Kidney disease is a major global health concern, affecting millions of people. Nephrologists have shown interest in platelets because of coagulation disorders caused by renal diseases. With a better understanding of platelets, it has been found that these anucleate and abundant blood cells not only play a role in hemostasis, but also have important functions in inflammation and immunity. Platelets are not only affected by kidney disease, but may also contribute to kidney disease progression by mediating inflammation and immune effects. This review summarizes the current evidence regarding platelet abnormalities in renal disease, and the multiple effects of platelets on kidney disease progression. The relationship between platelets and kidney disease is still being explored, and further research can provide mechanistic insights into the relationship between thrombosis, bleeding, and inflammation related to kidney disease, and elucidate targeted therapies for patients with kidney disease.
Collapse
Affiliation(s)
- Drolma Gomchok
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining 810001, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining 810001, China
| |
Collapse
|
45
|
Habibi-Kavashkohie MR, Scorza T, Oubaha M. Senescent Cells: Dual Implications on the Retinal Vascular System. Cells 2023; 12:2341. [PMID: 37830555 PMCID: PMC10571659 DOI: 10.3390/cells12192341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Cellular senescence, a state of permanent cell cycle arrest in response to endogenous and exogenous stimuli, triggers a series of gradual alterations in structure, metabolism, and function, as well as inflammatory gene expression that nurtures a low-grade proinflammatory milieu in human tissue. A growing body of evidence indicates an accumulation of senescent neurons and blood vessels in response to stress and aging in the retina. Prolonged accumulation of senescent cells and long-term activation of stress signaling responses may lead to multiple chronic diseases, tissue dysfunction, and age-related pathologies by exposing neighboring cells to the heightened pathological senescence-associated secretory phenotype (SASP). However, the ultimate impacts of cellular senescence on the retinal vasculopathies and retinal vascular development remain ill-defined. In this review, we first summarize the molecular players and fundamental mechanisms driving cellular senescence, as well as the beneficial implications of senescent cells in driving vital physiological processes such as embryogenesis, wound healing, and tissue regeneration. Then, the dual implications of senescent cells on the growth, hemostasis, and remodeling of retinal blood vessels are described to document how senescent cells contribute to both retinal vascular development and the severity of proliferative retinopathies. Finally, we discuss the two main senotherapeutic strategies-senolytics and senomorphics-that are being considered to safely interfere with the detrimental effects of cellular senescence.
Collapse
Affiliation(s)
- Mohammad Reza Habibi-Kavashkohie
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| | - Tatiana Scorza
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| | - Malika Oubaha
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| |
Collapse
|
46
|
Zhang J, Xi K, Deng G, Zou X, Lu P. Composite Hydrogel Modulates Intrinsic Immune-Cascade Neovascularization for Ocular Surface Reconstruction after Corneal Chemical Injury. Gels 2023; 9:676. [PMID: 37754358 PMCID: PMC10528829 DOI: 10.3390/gels9090676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Ocular alkali burns recruit neutrophils and triggers neutrophil extracellular trap (NET)-neovascularization cascade effects that limit ocular surface reconstruction and functional repair. However, effective inhibition of the release of neutrophil extracellular traps after a corneal chemical injury, coordination of intrinsic immunity with corneal repair, and exploration of more effective and non-invasive drug-delivery modes are still urgently needed. Using an in vitro coculture system, we found that an alkaline environment stimulates neutrophils to release NETs, which can be regulated by deoxyribonuclease I (DNase I). Inspired by this, we loaded DNase I, which effectively regulates NETs, onto chitosan nanoparticles and combined them with silk fibroin to construct a composite hydrogel that can sustainably regulate NETs. The hydrogel reduced neutrophil extracellular trap production by 50% and neovascularization by approximately 70% through sustained DNase I release after a corneal alkali burn. The complex hydrogel promotes ocular surface reconstruction by modulating the intrinsic immune-cascade neovascularization effect, providing a new research basis for the construction of nanobiomaterials that modulate pathological neovascularization.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215000, China;
- Department of Ophthalmology, Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, 300 Lanlin North Road, Changzhou 213000, China; (G.D.); (X.Z.)
| | - Kun Xi
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215000, China;
| | - Guohua Deng
- Department of Ophthalmology, Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, 300 Lanlin North Road, Changzhou 213000, China; (G.D.); (X.Z.)
| | - Xi Zou
- Department of Ophthalmology, Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, 300 Lanlin North Road, Changzhou 213000, China; (G.D.); (X.Z.)
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215000, China;
| |
Collapse
|
47
|
Li J, Yin L, Chen S, Li Z, Ding J, Wu J, Yang K, Xu J. The perspectives of NETosis on the progression of obesity and obesity-related diseases: mechanisms and applications. Front Cell Dev Biol 2023; 11:1221361. [PMID: 37649550 PMCID: PMC10465184 DOI: 10.3389/fcell.2023.1221361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Obesity is a disease commonly associated with urbanization and can also be characterized as a systemic, chronic metabolic condition resulting from an imbalance between energy intake and expenditure. The World Health Organization (WHO) has identified obesity as the most serious chronic disease that is increasingly prevalent in the world population. If left untreated, it can lead to dangerous health issues such as hypertension, hyperglycemia, hyperlipidemia, hyperuricemia, nonalcoholic steatohepatitis, atherosclerosis, and vulnerability to cardiovascular and cerebrovascular events. The specific mechanisms by which obesity affects the development of these diseases can be refined to the effect on immune cells. Existing studies have shown that the development of obesity and its associated diseases is closely related to the balance or lack thereof in the number and function of various immune cells, of which neutrophils are the most abundant immune cells in humans, infiltrating and accumulating in the adipose tissues of obese individuals, whereas NETosis, as a newly discovered type of neutrophil-related cell death, its role in the development of obesity and related diseases is increasingly emphasized. The article reviews the significant role that NETosis plays in the development of obesity and related diseases, such as diabetes and its complications. It discusses the epidemiology and negative impacts of obesity, explains the mechanisms of NETosis, and examines its potential as a targeted drug to treat obesity and associated ailments.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijia Yin
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Siyi Chen
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiatong Ding
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, Jiangxi, China
| |
Collapse
|
48
|
Zhu Y, Xia X, He Q, Xiao QA, Wang D, Huang M, Zhang X. Diabetes-associated neutrophil NETosis: pathogenesis and interventional target of diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1202463. [PMID: 37600700 PMCID: PMC10435749 DOI: 10.3389/fendo.2023.1202463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are known as extracellular fibers networks consisting of antimicrobial proteins and decondensated chromatin DNA released by activated neutrophils. NETosis is a NETs-induced neutrophilic cell death which is unique from necrosis or apoptosis. Besides its neutralizing pathogen, NETosis plays a crucial role in diabetes and diabetes-related complications. In patients with diabetes, NETs-releasing products are significantly elevated in blood, and these findings confirm the association of NETosis and diabetic complications, including diabetic wound healing, diabetic retinopathy, and atherosclerosis. This article briefly summarizes the mechanisms of NETosis and discusses its contribution to the pathogenesis of diabetes-related complications and suggests new therapeutic targets by some small molecule compounds.
Collapse
Affiliation(s)
- Yuyan Zhu
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Xuan Xia
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Department of Physiology and Pathophysiology, College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Qian He
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing-Ao Xiao
- Department of Interventional Radiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Department of Interventional Radiology, Yichang Central People’s Hospital, Yichang, Hubei, China
| | - Decheng Wang
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Meirong Huang
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Department of Physiology and Pathophysiology, College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Xiaolin Zhang
- Department of Interventional Radiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Department of Interventional Radiology, Yichang Central People’s Hospital, Yichang, Hubei, China
| |
Collapse
|
49
|
Linnemann C, Şahin F, Li N, Pscherer S, Götz F, Histing T, Nussler AK, Ehnert S. Insulin Can Delay Neutrophil Extracellular Trap Formation In Vitro-Implication for Diabetic Wound Care? BIOLOGY 2023; 12:1082. [PMID: 37626968 PMCID: PMC10452400 DOI: 10.3390/biology12081082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Diabetes is a worldwide evolving disease with many associated complications, one of which is delayed or impaired wound healing. Appropriate wound healing strongly relies on the inflammatory reaction directly after injury, which is often altered in diabetic wound healing. After an injury, neutrophils are the first cells to enter the wound site. They have a special defense mechanism, neutrophil extracellular traps (NETs), consisting of released DNA coated with antimicrobial proteins and histones. Despite being a powerful weapon against pathogens, NETs were shown to contribute to impaired wound healing in diabetic mice and are associated with amputations in diabetic foot ulcer patients. The anti-diabetic drugs metformin and liraglutide have already been shown to regulate NET formation. In this study, the effect of insulin was investigated. NET formation after stimulation with PMA (phorbol myristate acetate), LPS (lipopolysaccharide), or calcium ionophore (CI) in the presence/absence of insulin was analyzed. Insulin led to a robust delay of LPS- and PMA-induced NET formation but had no effect on CI-induced NET formation. Mechanistically, insulin induced reactive oxygen species, phosphorylated p38, and ERK, but reduced citrullination of histone H3. Instead, bacterial killing was induced. Insulin might therefore be a new tool for the regulation of NET formation during diabetic wound healing, either in a systemic or topical application.
Collapse
Affiliation(s)
- Caren Linnemann
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Filiz Şahin
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Ningna Li
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany
| | - Stefan Pscherer
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
- Department of Internal Medicine III, Sophien- and Hufeland-Hospital, 99425 Weimar, Germany
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany
| | - Tina Histing
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Andreas K. Nussler
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| |
Collapse
|
50
|
Gu C, Pang B, Sun S, An C, Wu M, Wang N, Yuan Y, Liu G. Neutrophil extracellular traps contributing to atherosclerosis: From pathophysiology to clinical implications. Exp Biol Med (Maywood) 2023; 248:1302-1312. [PMID: 37452714 PMCID: PMC10625340 DOI: 10.1177/15353702231184217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are network-like structures of chromatin filaments decorated by histones, granules, and cytoplasmic-derived proteins expelled by activated neutrophils under multiple pathogenic conditions. NETs not only capture pathogens in innate immunity but also respond to sterile inflammatory stimuli in atherosclerosis, such as lipoproteins and inflammatory cytokines. Atherosclerosis is a lipid-driven chronic inflammatory disease characterized by the accumulation and transformation of inflammatory cells, and smooth muscle cells in the intimal space. NETs-derived extracellular components possess toxic and proinflammatory properties leading to cellular dysfunction and tissue damage, which may establish a link among lipid metabolism, inflammatory immunity, and atherosclerosis. In this review, we discuss recent advances regarding the role of NETs engaged in the pathogenesis of atherosclerosis, particularly focusing on the interaction with lipids and inflammasomes, crosstalk with smooth muscle cells and inflammatory cells, and the association with aging. We also evaluate the current knowledge on the potential of NETs as biomarkers and therapeutic targets for atherosclerosis and its related diseases in clinical practice.
Collapse
Affiliation(s)
- Chun Gu
- Department of Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Bo Pang
- Department of Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shipeng Sun
- Department of Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Cheng An
- Department of Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Min Wu
- Department of Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Na Wang
- Department of Laboratory, Southern District of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 102618, China
| | - Yuliang Yuan
- Department of Laboratory, Southern District of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 102618, China
| | - Guijian Liu
- Department of Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|