1
|
Su Q, Peng X, Zhang Z, Xiong Z, He B, Chu P, Zhu C. Isolation, characterization of Bacillus subtilis and Bacillus amyloliquefaciens and validation of the potential probiotic efficacy on growth, immunity, and gut microbiota in hybrid sturgeon (Acipenser baerii ♀ × Acipenser schrenckii ♂). FISH & SHELLFISH IMMUNOLOGY 2024; 157:110081. [PMID: 39653179 DOI: 10.1016/j.fsi.2024.110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Probiotics are increasingly considered as an alternative to antibiotics in developing environmentally sustainable aquaculture practices. Hybrid sturgeon (Acipenser baerii ♀ × Acipenser schrenckii ♂), a globally popular species valued for its nutritional content and caviar, has limited research on host-associated probiotics. In this study, we isolated and identified Bacillus subtilis and Bacillus amyloliquefaciens from healthy hybrid sturgeon and assessed their impact on growth, immunity, gut microbiota, and transcriptome following an 8-week feeding trial. The isolated strains demonstrated strong production of protease, amylase, lipase, and cellulase, along with broad-spectrum pathogen inhibition, including Aeromonas veronii, Aeromonas sobria, and Yersinia ruckeri. Supplementation with B. subtilis and B. amyloliquefaciens significantly improved growth performance and increased survival rates against A. veronii infection. Mechanistically, probiotics altered gut microbiota composition, enhancing digestive functions. Transcriptome analysis further revealed that probiotic supplementation boosted immune response and protein digestion and absorption. These findings suggest that B. subtilis and B. amyloliquefaciens are promising probiotic candidates for the hybrid sturgeon industry, offering effective protection against A. veronii infection.
Collapse
Affiliation(s)
- Qingfeng Su
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Xiaoqian Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Zihui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhongcheng Xiong
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Bowu He
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| | - Chengke Zhu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing, China.
| |
Collapse
|
2
|
Khansari AR, Wallbom N, Sundh H, Sandblom E, Tort L, Jönsson E. Sea water acclimation of rainbow trout (Oncorhynchus mykiss) modulates the mucosal transcript immune response induced by Vibrio anguillarum and Aeromonas salmonicida vaccine, and prevents further transcription of stress-immune genes in response to acute stress. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109733. [PMID: 38944251 DOI: 10.1016/j.fsi.2024.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Mucosal tissues appear to be more important in fish than in mammals due to living in a microbial-rich aquatic milieu, yet the complex interaction between the immune and the neuroendocrine system in these tissues remains elusive. The aim of this work was to investigate the mucosal immune response in immunized rainbow trout vaccinated with Alpha ject vaccine (bivalent), kept in fresh water (FW) or transferred to seawater (SW), and to evaluate their response to acute stress (chasing). Acute stress resulted in higher levels of plasma cortisol (Sham + Stress and Vaccine + Stress). A similar response was observed in skin mucus, but it was lower in Vaccine + Stress compared with stressed fish. With a few exceptions, minimal alterations were detected in the transcriptomic profile of stress-immune gene in the skin of vaccinated and stressed fish in both FW and SW. In the gills, the stress elicited activation of key stress-immune components (gr1, mr, β-ar, hsp70, c3, lysozyme, α-enolase, nadph oxidase, il1β, il6, tnfα, il10 and tgfβ1) in FW, but fewer immune changes were induced by the vaccine (nadph oxidase, il6, tnfα, il10 and igt) in both SW and FW. In the intestine, an array of immune genes was activated by the vaccine particularly those related with B cells (igm, igt) and T cells (cd8α) in FW with no stimulation observed in SW. Therefore, our survey on the transcriptomic mucosal response demonstrates that the immune protection conferred by the vaccine to the intestine is modulated in SW. Overall, our results showed: i) plasma and skin mucus cortisol showed no additional stress effect induced by prolonged SW acclimation, ii) the stress and immune response were different among mucosal tissues which indicates a tissue-specific response to specific antigens/stressor. Further, the results suggest that the systemic immune organs may be more implicated in infectious events in SW (as few changes were observed in the mucosal barriers of immunized fish in SW) than in FW.
Collapse
Affiliation(s)
- Ali Reza Khansari
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 405 30, Göteborg, Sweden.
| | - Nicklas Wallbom
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 405 30, Göteborg, Sweden
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 405 30, Göteborg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 405 30, Göteborg, Sweden
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 405 30, Göteborg, Sweden
| |
Collapse
|
3
|
Du X, Kang M, Yang C, Yao X, Zheng L, Wu Y, Zhang P, Zhang H, Zhou Y, Sun Y. Construction and analysis of the immune effect of two different vaccine types based on Vibrio harveyi VgrG. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109494. [PMID: 38499217 DOI: 10.1016/j.fsi.2024.109494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Vibrio harveyi poses a significant threat to fish and invertebrates in mariculture, resulting in substantial financial repercussions for the aquaculture sector. Valine-glycine repeat protein G (VgrG) is essential for the type VI secretion system's (T6SS) assembly and secretion. VgrG from V. harveyi QT520 was cloned and analyzed in this study. The localization of VgrG was determined by Western blot, which revealed that it was located in the cytoplasm, secreted extracellularly, and attached to the membrane. The effectiveness of two vaccinations against V. harveyi infection-a subunit vaccine (rVgrG) and a DNA vaccine (pCNVgrG) prepared with VgrG was evaluated. The findings indicated that both vaccines provided a degree of protection against V. harveyi challenge. At 4 weeks post-vaccination (p.v.), the rVgrG and pCNVgrG exhibited relative percent survival rates (RPS) of 71.43% and 76.19%, respectively. At 8 weeks p.v., the RPS for rVgrG and pCNVgrG were 68.21% and 72.71%, respectively. While both rVgrG and pCNVgrG elicited serum antibody production, the subunit vaccinated fish demonstrated significantly higher levels of serum anti-VgrG specific antibodies than the DNA vaccine group. The result of qRT-PCR demonstrated that the expression of major histocompatibility complex (MHC) class Iα, tumor necrosis factor-alpha (TNF-α), interferon γ (IFNγ), and cluster of differentiation 4 (CD4) were up-regulated by both rVgrG and pCNVgrG. Fish vaccinated with rVgrG and pCNVgrG exhibited increased activity of acid phosphatase, alkaline phosphatase, superoxide dismutase, and lysozyme. These findings suggest that VgrG from V. harveyi holds potential for application in vaccination.
Collapse
Affiliation(s)
- Xiangyu Du
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Minjie Kang
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Chunhuan Yang
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Xinping Yao
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Lvliang Zheng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Ying Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Panpan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Han Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Yongcan Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Yun Sun
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Razali SA, Shamsir MS, Ishak NF, Low CF, Azemin WA. Riding the wave of innovation: immunoinformatics in fish disease control. PeerJ 2023; 11:e16419. [PMID: 38089909 PMCID: PMC10712311 DOI: 10.7717/peerj.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023] Open
Abstract
The spread of infectious illnesses has been a significant factor restricting aquaculture production. To maximise aquatic animal health, vaccination tactics are very successful and cost-efficient for protecting fish and aquaculture animals against many disease pathogens. However, due to the increasing number of immunological cases and their complexity, it is impossible to manage, analyse, visualise, and interpret such data without the assistance of advanced computational techniques. Hence, the use of immunoinformatics tools is crucial, as they not only facilitate the management of massive amounts of data but also greatly contribute to the creation of fresh hypotheses regarding immune responses. In recent years, advances in biotechnology and immunoinformatics have opened up new research avenues for generating novel vaccines and enhancing existing vaccinations against outbreaks of infectious illnesses, thereby reducing aquaculture losses. This review focuses on understanding in silico epitope-based vaccine design, the creation of multi-epitope vaccines, the molecular interaction of immunogenic vaccines, and the application of immunoinformatics in fish disease based on the frequency of their application and reliable results. It is believed that it can bridge the gap between experimental and computational approaches and reduce the need for experimental research, so that only wet laboratory testing integrated with in silico techniques may yield highly promising results and be useful for the development of vaccines for fish.
Collapse
Affiliation(s)
- Siti Aisyah Razali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Biological Security and Sustainability Research Interest Group (BIOSES), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nur Farahin Ishak
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Chen-Fei Low
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan-Atirah Azemin
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
5
|
Meng X, Chi H, Zhang Z, Li Q, Sheng X, Tang X, Xing J, Zhan W. Transcriptome Analysis of Peritoneal Cells Reveals the Early Immune Response of Flounder ( Paralichthys olivaceus) to Inactivated Vibrio anguillarum Immunization. Vaccines (Basel) 2023; 11:1603. [PMID: 37897005 PMCID: PMC10611026 DOI: 10.3390/vaccines11101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Vibrio anguillarum (V. anguillarum) is a bacterium that seriously harms flounder and other aquaculture species. Vaccination is an effective means of preventing vibriosis and is mainly administered by intraperitoneal injection. Effective antigen processing at the initial stage of immunization is essential to elicit adaptive immune responses and improve vaccine efficacy. To understand the early immune response of flounder caused by inactivated V. anguillarum, we detected the transcriptome profiles of the cells in the peritoneal cavity (PoPerCs) after inactivated V. anguillarum immunization. More than 10 billion high-quality reads were obtained, of which about 89.33% were successfully mapped to the reference genome of flounder. A total of 1985, 3072, 4001, and 5476 differentially expressed genes were captured at 6, 12, 24, and 48 h post immunization, respectively. The hub module correlated with the immunization time was identified by WGCNA. GO and KEGG analysis showed that hub module genes were abundantly expressed in various immune-related aspects, including the response to stimuli, the immune system process, signal transducer activity, autophagy, the NOD-like receptor signaling pathway, the toll-like receptor signaling pathway, the T cell receptor signaling pathway, and Th17 cell differentiation. Additionally, genes related to Th cell differentiation are presented as heatmaps. These genes constitute a complex immune regulatory network, mainly involved in pathogen recognition, antigen processing and presentation, and Th cell differentiation. The results of this study provide the first transcriptome profile of PoPerCs associated with inactivated V. anguillarum immunity and lay a solid foundation for further studies on effective V. anguillarum vaccines.
Collapse
Affiliation(s)
- Xianghu Meng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.M.); (Q.L.); (X.S.); (X.T.); (J.X.); (W.Z.)
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.M.); (Q.L.); (X.S.); (X.T.); (J.X.); (W.Z.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zuobing Zhang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China;
| | - Qian Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.M.); (Q.L.); (X.S.); (X.T.); (J.X.); (W.Z.)
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.M.); (Q.L.); (X.S.); (X.T.); (J.X.); (W.Z.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.M.); (Q.L.); (X.S.); (X.T.); (J.X.); (W.Z.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.M.); (Q.L.); (X.S.); (X.T.); (J.X.); (W.Z.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.M.); (Q.L.); (X.S.); (X.T.); (J.X.); (W.Z.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
6
|
Lim J, Jang Y, Han HJ, Hong S. Molecular mechanisms of the virulence and efficacy of a highly virulent Vibrio anguillarum strain and its formalin-inactivated vaccine in rainbow trout. JOURNAL OF FISH DISEASES 2023; 46:563-574. [PMID: 36872644 DOI: 10.1111/jfd.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In this study, we have isolated four strains of Vibrio anguillarum, revealing that they share the same serotype of O1, biochemical characteristics and virulence factor genes. However, there were differences in haemolytic activity among the bacterial strains; a strain with lower pathogenicity showed γ-haemolytic activity, whereas other virulent strains showed α-haemolytic activity on blood agar and higher empA gene expression in RTG-2 cell line. The most virulent strain was V. anguillarum RTBHR from diseased masu salmon (Oncorhynchus masou), which resulted in mortality of 100% and 93.3% when injected intraperitoneally at concentrations of 9 × 105 and 6.3 × 105 colony-forming units/fish in rainbow trout (Oncorhynchus mykiss) and Coho salmon (Oncorhynchus kisutch), respectively. A formalin-inactivated vaccine of V. anguillarum RTBHR induced a protective and specific immunity in rainbow trout as the vaccinated fish exhibited low cumulative mortality in a challenge test and a high specific antibody response in enzyme-linked immunosorbent assay at 8 weeks post-vaccination. The produced antibody was bound to bacterial proteins of 30-37 kDa in size. This adaptive immune response was detected as early as day 1, with quantitative polymerase chain reaction analysis revealing the upregulated expression of genes encoding for TCRα, T-bet, mIgM and sIgM in rainbow trout. This suggested that the vaccine induced T (probably a more dominant Th1 response) and B cell responses. In conclusion, the vaccine successfully protected fish from V. anguillarum infection by eliciting cellular and humoral immune responses.
Collapse
Affiliation(s)
- Jongwon Lim
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Yoonyoung Jang
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Hyun-Ja Han
- Pathology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Suhee Hong
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, Republic of Korea
| |
Collapse
|
7
|
Xu K, Wang Y, Yang W, Cai H, Zhang Y, Huang L. Strategies for Prevention and Control of Vibriosis in Asian Fish Culture. Vaccines (Basel) 2022; 11:vaccines11010098. [PMID: 36679943 PMCID: PMC9862775 DOI: 10.3390/vaccines11010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
It is estimated that vibriosis account for about half of the economic losses in Asian fish culture. Consequently, the prevention and control of vibriosis is one of the priority research topics in the field of Asian fish culture disease. Relevant measures have been proposed to control some Vibrios that pose a threat to Asian fish culture, but there are currently only a few effective vaccines available to combat these Vibrios. The purpose of our review is to sum up the main prevention methods and the latest control strategies of seven Vibrio species that cause great harm to Asian aquaculture, including Vibrio harveyi, Vibrio vulnificus, Vibrio parahaemolyticus, Vibrio mimicus, Vibrio anguillarum, Vibrio alginolyticus and Vibrio cholerae. Strategies such as antibiotics, probiotics, bacteriophages, antimicrobials from plants and other natural sources, as well as vaccines, are compared and discussed here. We expect this review will provide some new views and recommendations for the future better prevention and control of vibriosis in Asian fish culture.
Collapse
Affiliation(s)
- Kangping Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Yushu Wang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Wangxiaohan Yang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Hongyan Cai
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
- Correspondence: (Y.Z.); (L.H.)
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen 361021, China
- Correspondence: (Y.Z.); (L.H.)
| |
Collapse
|
8
|
Du Y, Hu X, Miao L, Chen J. Current status and development prospects of aquatic vaccines. Front Immunol 2022; 13:1040336. [PMID: 36439092 PMCID: PMC9684733 DOI: 10.3389/fimmu.2022.1040336] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Diseases are a significant impediment to aquaculture's sustainable and healthy growth. The aquaculture industry is suffering significant financial losses as a result of the worsening water quality and increasing frequency of aquatic disease outbreaks caused by the expansion of aquaculture. Drug control, immunoprophylaxis, ecologically integrated control, etc. are the principal control strategies for fish infections. For a long time, the prevention and control of aquatic diseases have mainly relied on the use of various antibiotics and chemical drugs. However, long-term use of chemical inputs not only increases pathogenic bacteria resistance but also damages the fish and aquaculture environments, resulting in drug residues in aquatic products, severely impeding the development of the aquaculture industry. The development and use of aquatic vaccines are the safest and most effective ways to prevent aquatic animal diseases and preserve the health and sustainability of aquaculture. To give references for the development and implementation of aquatic vaccines, this study reviews the development history, types, inoculation techniques, mechanisms of action, development prospects, and challenges encountered with aquatic vaccines.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Liang Miao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Wu X, Xing J, Tang X, Sheng X, Chi H, Zhan W. Protective cellular and humoral immune responses to Edwardsiella tarda in flounder (Paralichthys olivaceus) immunized by an inactivated vaccine. Mol Immunol 2022; 149:77-86. [DOI: 10.1016/j.molimm.2022.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/27/2022]
|
10
|
Tian HF, Xing J, Tang XQ, Chi H, Sheng XZ, Zhan WB. Cluster of differentiation antigens: essential roles in the identification of teleost fish T lymphocytes. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:303-316. [PMID: 37073166 PMCID: PMC10077257 DOI: 10.1007/s42995-022-00136-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/25/2022] [Indexed: 05/03/2023]
Abstract
Cluster of differentiation (CD) antigens are cell surface molecules expressed on leukocytes and other cells associated with the immune system. Antibodies that react with CD antigens are known to be one of the most essential tools for identifying leukocyte subpopulations. T lymphocytes, as an important population of leukocytes, play essential roles in the adaptive immune system. Many of the CD antigens expressed on T lymphocytes are used as surface markers for T lymphocyte classification, including CD3, CD4 and CD8 molecules. In this review, we summarize the recent advances in the identification of CD molecules on T lymphocytes in teleosts, with emphasis on the functions of CD markers in the classification of T lymphocyte subsets. We notice that genes encoding CD3, co-receptors CD4 and CD8 have been cloned in several fish species and antibodies have been developed to study protein expression in morphological and functional contexts. T lymphocytes can be divided into CD4+ and CD8+ cells discriminated by the expression of CD4 and CD8 molecules in teleost, which are functionally similar to mammalian helper T cells (Th) and cytotoxic T cells (Tc), respectively. Further studies are still needed on the particular characteristics of teleost T cell repertoires and adaptive responses, and results will facilitate the health management and development of vaccines for fish.
Collapse
Affiliation(s)
- Hong-fei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Xiao-qian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Xiu-zhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Wen-bin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
11
|
Lin T, Xing J, Tang X, Sheng X, Chi H, Zhan W. Development and Evaluation of a Bicistronic DNA Vaccine against Nervous Necrosis Virus in Pearl Gentian Grouper ( Epinephelus lanceolatus × Epinephelus fuscoguttatus). Vaccines (Basel) 2022; 10:946. [PMID: 35746554 PMCID: PMC9228064 DOI: 10.3390/vaccines10060946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
Nervous necrosis virus (NNV) can cause enormous economic losses in mariculture. Vaccines are promising ways to control the disease. In this study: the interferon regulatory factor 3 (IRF3) gene of pearl gentian grouper was cloned and functionally analyzed; then a bicistronic DNA vaccine encoding both capsid protein (CP) and IRF3 was constructed; then the cellular, humoral, and local immune responses in the grouper after immunization were investigated; and then the protective effects after the NNV challenge were investigated. The results showed that the vaccine successfully expressed CP and IRF3. After immunization, the lymphocytes were recruited at the injection site in the muscles. The percentage of sIgM+ lymphocytes in the head, kidney, and spleen significantly increased and peaked at 28.8 ± 3.1% and 42.6 ± 4.2% at the 3rd to 4th weeks. Six immune-related genes were significantly up-regulated. In the meantime, the total antibodies, anti-NNV specific antibodies, and neutralizing antibody titers in serum increased. After the challenge with 105, 106 or 107 TCID50/fish, the relative percent survival rate was 81.25%, 73.91%, and 66.67%, respectively. In 106 TCID50/fish groups, the percentages of sIgM+ lymphocytes, antibodies, and the viral load were investigated. In conclusion, the bicistronic vaccine significantly induced humoral and cellular responses in pearl gentian grouper and provided effective protection against NVV infection.
Collapse
Affiliation(s)
- Tianwen Lin
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (T.L.); (X.T.); (X.S.); (H.C.); (W.Z.)
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (T.L.); (X.T.); (X.S.); (H.C.); (W.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao 266071, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (T.L.); (X.T.); (X.S.); (H.C.); (W.Z.)
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (T.L.); (X.T.); (X.S.); (H.C.); (W.Z.)
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (T.L.); (X.T.); (X.S.); (H.C.); (W.Z.)
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (T.L.); (X.T.); (X.S.); (H.C.); (W.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao 266071, China
| |
Collapse
|
12
|
Thermostable Vaccines in Veterinary Medicine: State of the Art and Opportunities to Be Seized. Vaccines (Basel) 2022; 10:vaccines10020245. [PMID: 35214703 PMCID: PMC8876287 DOI: 10.3390/vaccines10020245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 pandemic has highlighted the weakness of the vaccine supply chain, and the lack of thermostable formulations is one of its major limitations. This study presents evidence from peer-reviewed literature on the development of thermostable vaccines for veterinary use. A systematic review and meta-analysis were performed to evaluate the immunogenicity and/or the efficacy/effectiveness of thermostable vaccines against infectious diseases. The selected studies (n = 78) assessed the vaccine’s heat stability under different temperature conditions and over different periods. Only one study assessed the exposure of the vaccine to freezing temperatures. Two field studies provided robust evidence on the immunogenicity of commercial vaccines stored at temperatures far in excess of the manufacturer’s recommended cold-chain conditions. The drying process was the most-used method to improve the vaccine’s thermostability, along with the use of different stabilizers. The pooled vaccine efficacy was estimated to be high (VE = 69%), highlighting the importance of vaccination in reducing the economic losses due to the disease impact. These findings provide evidence on the needs and benefits of developing a portfolio of heat- and freeze-stable veterinary vaccines to unleash the true potential of immunization as an essential component of improved animal health and welfare, reduce the burden of certain zoonotic events and thus contribute to economic resilience worldwide.
Collapse
|
13
|
Lim J, Hong S. Transcriptome Analysis in the Head Kidney of Rainbow Trout ( Oncorhynchus mykiss) Immunized with a Combined Vaccine of Formalin-Inactivated Aeromonas salmonicida and Vibrio anguillarum. Vaccines (Basel) 2021; 9:vaccines9111234. [PMID: 34835165 PMCID: PMC8619301 DOI: 10.3390/vaccines9111234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
This study aimed to identify the molecular mechanisms regulated by a combined vaccine against Aeromonas salmonicida and Vibrio anguillarum (O1 serotype). These bacteria cause furunculosis and vibriosis, respectively, and are associated with a high mortality in rainbow trout in Korea. The vaccine upregulated gene expression of TCRα, T-bet, sIgM, and mIgM, markers of an activated adaptive immune response. On days 1, 3, and 5, transcriptome analysis revealed 862 (430 up- and 432 downregulated), 492 (204 up- and 288 downregulated), and 741 (270 up- and 471 downregulated) differentially expressed genes (DEGs), respectively. Gene ontology (GO) enrichment analysis identified 377 (108 MF, 132 CC, 137 BP), 302 (60 MF, 180 CC, 62 BP), and 314 (115 MF, 129 CC, 70 BP) GOs at days 1, 3, and 5, respectively. Kyoto Encyclopedia of Genetic and Genomic enrichment analysis identified eight immune system-related pathways like cytokine-cytokine receptor interaction, NF-kappaB signaling pathway, TNF signaling pathway, NOD-like receptor signaling pathway, cytosolic DNA sensing pathway, cell adhesion molecule, complement and coagulation cascade, and antigen processing and presentation. In the analysis of the protein–protein interaction of immune-related DEGs, a total of 59, 21, and 21 interactional relationships were identified at days 1, 3, and 5, respectively, with TNF having the highest centrality at all three time points.
Collapse
|
14
|
Ning X, Sun L. Identification and characterization of immune-related lncRNAs and lncRNA-miRNA-mRNA networks of Paralichthys olivaceus involved in Vibrio anguillarum infection. BMC Genomics 2021; 22:447. [PMID: 34130627 PMCID: PMC8204505 DOI: 10.1186/s12864-021-07780-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) structurally resemble mRNAs and exert crucial effects on host immune defense against pathogen infection. Japanese flounder (Paralichthys olivaceus) is an economically important marine fish susceptible to Vibrio anguillarum infection. To date, study on lncRNAs in flounder is scarce. RESULTS Here, we reported the first systematic identification and characterization of flounder lncRNAs induced by V. anguillarum infection at different time points. A total of 2,368 lncRNAs were identified, 414 of which were differentially expressed lncRNAs (DElncRNAs) that responded significantly to V. anguillarum infection. For these DElncRNAs, 3,990 target genes (named DETGs) and 42 target miRNAs (named DETmiRs) were identified based on integrated analyses of lncRNA-mRNA and lncRNA-miRNA expressions, respectively. The DETGs were enriched in a cohort of functional pathways associated with immunity. In addition to modulating mRNAs, 36 DElncRNAs were also found to act as competitive endogenous RNAs (ceRNAs) that regulate 37 DETGs through 16 DETmiRs. The DETmiRs, DElncRNAs, and DETGs formed ceRNA regulatory networks consisting of 114 interacting DElncRNAs-DETmiRs-DETGs trinities spanning 10 immune pathways. CONCLUSIONS This study provides a comprehensive picture of lncRNAs involved in V. anguillarum infection. The identified lncRNAs and ceRNA networks add new insights into the anti-bacterial immunity of flounder.
Collapse
Affiliation(s)
- Xianhui Ning
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071, Qingdao, China.,College of Marine Science and Engineering, Nanjing Normal University, 210023, Nanjing, Jiangsu, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, 222005, Lianyungang, Jiangsu, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
15
|
Hou ZS, Xin YR, Yang XD, Zeng C, Zhao HK, Liu MQ, Zhang MZ, Daniel JG, Li JF, Wen HS. Transcriptional Profiles of Genes Related to Stress and Immune Response in Rainbow Trout ( Oncorhynchus mykiss) Symptomatically or Asymptomatically Infected With Vibrio anguillarum. Front Immunol 2021; 12:639489. [PMID: 33968031 PMCID: PMC8097155 DOI: 10.3389/fimmu.2021.639489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/11/2021] [Indexed: 12/29/2022] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) is one of the most common aquaculture fish species worldwide. Vibriosis disease outbreaks cause significant setbacks to aquaculture. The stress and immune responses are bidirectionally modulated in response to the health challenges. Therefore, an investigation into the regulatory mechanisms of the stress and immune responses in trout is invaluable for identifying potential vibriosis treatments. We investigated the transcriptional profiles of genes associated with stress and trout immune functions after Vibrio anguillarum infection. We compared the control trout (CT, 0.9% saline injection), asymptomatic trout (AT, surviving trout with minor or no symptoms after bacteria injection), and symptomatic trout (ST, moribund trout with severe symptoms after bacteria injection). Our results showed activated immunomodulatory genes in the cytokine network and downregulated glucocorticoid and mineralocorticoid receptors in both AT and ST, indicating activation of the proinflammatory cytokine cascade as a common response in AT and ST. Moreover, the AT specifically activated the complement- and TNF-associated immune defenses in response to V. anguillarum infection. However, the complement and coagulation cascades, as well as steroid hormone homeostasis in ST, were disturbed by V. anguillarum. Our studies provide new insights toward understanding regulatory mechanisms in stress and immune functions in response to diseases.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Yuan-Ru Xin
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiao-Dong Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Chu Zeng
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hong-Kui Zhao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Meng-Qun Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Mei-Zhao Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Jeffrey G Daniel
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| |
Collapse
|
16
|
Xing J, Jiang X, Xu H, Sheng X, Tang X, Chi H, Zhan W. Local immune responses to VAA DNA vaccine against Listonella anguillarum in flounder (Paralichthys olivaceus). Mol Immunol 2021; 134:141-149. [PMID: 33773157 DOI: 10.1016/j.molimm.2021.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/21/2023]
Abstract
The efficacy of DNA vaccine is associated closely with the expression of the antigen and the intensity of local immune responses. In our previous study, a recombinant DNA plasmid expressing the VAA protein (pVAA) of Listonella anguillarum has been proved to have a good protection against the infection of L. anguillarum. In the present study, the local immune responses eliciting by immunizing flounder with intramuscular (I.M.) injection of pVAA was investigated at the cellular and genetic level, the muscle at the injection site at 7th post vaccination day was sampled and analyzed by hematoxylin-eosin (H&E) staining, immunohistochemistry (IHC), flow cytometry (FCM), RNA sequencing (RNA-Seq)-based transcriptomics and RT-qPCR. Then variations on the specific antibodies in serum at 1st-6th post vaccination week and the relative percent survival rate (RPS) at following 14 days after challenge were measured. The H&E results showed that inflammatory cells and immune cells significantly increased at the injection site. The IHC using monoclonal antibody against T cell markers revealed that both CD4-1+ and CD4-2+ T lymphocytes were recruited to the injection site and FCM results showed that the proportion of CD4-1+ cells in pVAA immunized group was 28.6 %, in the control group was 8.7 %, and that of CD4-2+ cells in two groups was 21.2 % and 8.5 %, respectively. These results indicating that the proportion of CD4+ cells in the immune group was significantly increased compared with the control group. Moreover, there were 2551 genes differently expressed in pVAA immunized group, KEGG analysis showed the genes involved in the signal transduction and immune system, and surface markers for B-cells genes, T-cells and antigen presenting cells (APCs) genes were highly upregulated, suggesting the activation of the systemic immune responses. Antibody specific anti-L. anguillarum or anti-rVAA antibodies were significantly induced at 2nd post-immunization week, that reached a peak at 4-5th week. RPS in pVAA group was 53.85±3.64 %. In conclusion, pVAA induced effective local immune responses and then the systematic response. This probably is the main contribution of pVAA to effective protection against L. anguillarum.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao 266071, China
| | - Xiaoyu Jiang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China
| | - Hongsen Xu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao 266071, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao 266071, China.
| |
Collapse
|
17
|
Ji Q, Wang S, Ma J, Liu Q. A review: Progress in the development of fish Vibrio spp. vaccines. Immunol Lett 2020; 226:46-54. [DOI: 10.1016/j.imlet.2020.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/28/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
|
18
|
Xing J, Tian HF, Tang XQ, Sheng XZ, Zhan WB. Kinetics of T lymphocyte subsets and B lymphocytes in response to immunostimulants in flounder (Paralichthys olivaceus): implications for CD4 + T lymphocyte differentiation. Sci Rep 2020; 10:13827. [PMID: 32796864 PMCID: PMC7429840 DOI: 10.1038/s41598-020-69542-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/12/2020] [Indexed: 01/22/2023] Open
Abstract
CD4+ T lymphocytes play crucial roles in the adaptive immune system. CD4, as the most effective marker to delineate the T-helper subsets, was identified in many fish species. Two CD4 homologs, CD4-1 and CD4-2, have been reported in flounder (Paralichthys olivaceus). In this study, monoclonal antibodies (mAbs) against CD4-1 and CD4-2 of flounder were produced, CD4+ T lymphocytes were isolated and identified, and the variations in CD4+ and CD8+ T lymphocytes and IgM+ B lymphocytes after Poly I:C, PMA or β-glucan stimulation were investigated. Then, the expression of transcription factors and cytokines in sorted CD4+ T lymphocytes was analyzed. The results showed that the mAbs were specific to flounder CD4-1+ and CD4-2+ T cells. CD4-1+ and CD4-2+ cells responded to all three stimulants, while CD8+ T lymphocytes only give a strong response to Poly I:C, and the percentages of IgM+ B lymphocytes showed a tendency to increase. After stimulation, the expression of transcription factors and cytokines of Th1, Th2 and Th17 cells varied in CD4+ T cells. These results will provide crucial foundations for the differentiation and function of teleost CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, People's Republic of China
| | - Hong-Fei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Xiao-Qian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Xiu-Zhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Wen-Bin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, People's Republic of China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, People's Republic of China.
| |
Collapse
|
19
|
Interleukin 34 Serves as a Novel Molecular Adjuvant against Nocardia Seriolae Infection in Largemouth Bass ( Micropterus Salmoides). Vaccines (Basel) 2020; 8:vaccines8020151. [PMID: 32231137 PMCID: PMC7349345 DOI: 10.3390/vaccines8020151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
DNA vaccines have been widely employed in controlling viral and bacterial infections in mammals and teleost fish. Co-injection of molecular adjuvants, including chemokines, cytokines, and immune co-stimulatory molecules, is one of the potential strategies used to improve DNA vaccine efficacy. In mammals and teleost fish, interleukin-34 (IL-34) had been described as a multifunctional cytokine and its immunological role had been confirmed; however, the adjuvant capacity of IL-34 remains to be elucidated. In this study, IL-34 was identified in largemouth bass. A recombinant plasmid of IL-34 (pcIL-34) was constructed and co-administered with a DNA vaccine encoding hypoxic response protein 1 (Hrp1; pcHrp1) to evaluate the adjuvant capacity of pcIL-34 against Nocardia seriolae infection. Our results indicated that pcIL-34 co-injected with pcHrp1 not only triggered innate immunity and a specific antibody response, but also enhanced the mRNA expression level of immune-related genes encoding for cytokines, chemokines, and humoral and cell-mediated immunity. Moreover, pcIL-34 enhanced the protection of pcHrp1 against N. seriolae challenge and conferred the relative percent survival of 82.14%. Collectively, IL-34 is a promising adjuvant in a DNA vaccine against nocardiosis in fish.
Collapse
|
20
|
Xu H, Xing J, Tang X, Sheng X, Zhan W. The effects of CCL3, CCL4, CCL19 and CCL21 as molecular adjuvants on the immune response to VAA DNA vaccine in flounder (Paralichthys olivaceus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103492. [PMID: 31494219 DOI: 10.1016/j.dci.2019.103492] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 05/21/2023]
Abstract
The magnitude of the immune response induced by DNA vaccines depends on the amount and type of antigen-presenting cells attracted to the injection site. In our previous study, a DNA plasmid encoding the VAA gene of Vibrio anguillarum was constructed and shown to confer moderate protection against V. anguillarum challenge. To augment the protective efficacy of the VAA DNA vaccine and compare the adjuvant effects of CCL3, CCL4, CCL19 and CCL21, four bicistronic DNA plasmids containing the VAA gene of V. anguillarum together with the gene encoding the CCL3/CCL4/CCL19/CCL21 chemokines of flounder were successfully constructed and administered to fish, and the immune response of the animals and the enhancement of immunoprotection by the four chemokines were investigated. Vaccinated with pCCL3-VAA, pCCL4-VAA, pCCL19-VAA and pCCL21-VAA, flounder showed relative percent survivals of 62.16%, 83.78%, 78.38% and 72.97%, respectively, higher than the relative survival of flounder immunized with pVAA (40.54%). Compared with the pVAA group, the percentages of sIgM+, CD4-1+, and CD4-2+ lymphocytes and the levels of specific antibodies increased in pCCL3-VAA, pCCL4-VAA, pCCL19-VAA and pCCL21-VAA injection groups; CCL4 and CCL19 induced significantly higher levels of these parameters than CCL3 and CCL21 did. The amount of V. anguillarum in liver, spleen and kidney of pCCL3-VAA-, pCCL4-VAA-, pCCL19-VAA- and pCCL21-VAA-immunized flounder after V. anguillarum challenge was reduced compared to that in the pVAA group. Moreover, the co-expression of CCL3/CCL4/CCL19/CCL21 up-regulated immune-related gene expression associated with the local immune response. Our results indicate that CCL4 and CCL19 are promising adjuvants for use in VAA DNA vaccine against V. anguillarum.
Collapse
Affiliation(s)
- Hongsen Xu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, 266071, China
| |
Collapse
|
21
|
Xu H, Xing J, Tang X, Sheng X, Zhan W. Generation and functional evaluation of a DNA vaccine co-expressing Vibrio anguillarum VAA protein and flounder interleukin-2. FISH & SHELLFISH IMMUNOLOGY 2019; 93:1018-1027. [PMID: 31446082 DOI: 10.1016/j.fsi.2019.08.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 05/21/2023]
Abstract
In our previous study, a DNA plasmid encoding the VAA gene of Vibrio anguillarum was constructed and demonstrated to confer moderated protection against V. anguillarum challenge. Here, a bicistronic DNA vaccine (pVAA-IRES-IL2), co-expressing the VAA gene of V. anguillarum and Interleukin-2 (IL2) gene of flounder, was constructed to increase the protective efficacy of VAA DNA vaccine. The potential of pVAA-IRES-IL2 to express both VAA and IL2 in transfected HINAE cell lines was confirmed by immunofluorescence assay. Further, the variation of sIgM+, CD4-1+, CD4-2+ lymphocytes and production of VAA-specific antibodies in flounder, which was intramuscularly immunized with three DNA plasmids (pIRES, pVAA-IRES, pVAA-IRES-IL2), were investigated, respectively. The bacterial burden and relative percentage survival (RPS) of flounder exposed to V. anguillarum infection were both analyzed to evaluate the efficacy of bicistronic DNA plasmid. Our results revealed that the percentages of sIgM+, CD4-1+, CD4-2+ lymphocytes and antibodies specific to VAA were remarkably increased in pVAA-IRES or pVAA-IRES-IL2 immunized fish. Moreover, the co-expression of IL2 enhanced the immune response in response to VAA DNA vaccination, as shown by the higher percentages of sIgM+, CD4-1+, CD4-2+ lymphocytes and production of specific antibody. Importantly, the RPS in pVAA-IRES-IL2 and pVAA-IRES groups reached 64.1% and 51.3%, respectively, when compared with the 97.5% cumulative mortality in pIRES group. Furthermore, the number of V. anguillarum in liver, spleen and kidney of pVAA-IRES or pVAA-IRES-IL2 immunized flounder after V. anguillarum challenge was significantly reduced, as compared to that in pIRES group. These suggest that the bicistronic DNA vaccine can be an effective immunization strategy in inducing immune response against V. anguillarum infection and IL2 has the potential as the adjuvant for VAA DNA vaccine.
Collapse
Affiliation(s)
- Hongsen Xu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, 266071, China
| |
Collapse
|