1
|
von Asmuth EGJ, Hiensch F, Heidt S, Mohseny AB, Roelen DL, Kramer CSM, Claas FHJ, Albert MH, Neven B, Lankester AC, van Beek AA. Permissible HLA mismatches in 9/10 unrelated donor pediatric stem cell transplants using HLA-EMMA: an EBMT Inborn Errors Working Party study. Blood Adv 2024; 8:4767-4777. [PMID: 38985189 DOI: 10.1182/bloodadvances.2024012945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
ABSTRACT Allogeneic hematopoietic stem cell transplantation (HSCT) with mismatched unrelated donors (MMUD) is associated with inferior outcome compared with matched unrelated donors (MUDs). We aimed to identify permissible mismatches using HLA epitope mismatch algorithm, which determines permissibility by analyzing amino acid sequences, in a single-center cohort of 70 pediatric 9/10 MMUD HSCTs and 157 10/10 MUDs for comparison. Amino acid matching was evaluated for the whole HLA protein, the α-helices, and the β-sheets, in both host vs graft (HvG) and graft vs host (GvH) direction. Superior event-free survival (EFS) was found in 13 patients permissibly mismatched in the HvG direction (totalHvG, 92% vs 58% at 1 year; P = .009) and in 21 patients matched on the α-helices (αHvG, 90% vs 53%; P = .002). These rates were similar to EFS rates in patients with 10/10 MUDs (90% vs 80%; P = .60). EFS was not related to β-sheet amino acid matching, nor to matching in the GvH direction. Overall survival (OS) rates trended similarly to those of EFS for amino acid mismatches (totalHvG, 92% vs 74%; P = .075; αHvG, 90% vs 71%; P = .072). These findings were reproduced in an EBMT Registry inborn errors cohort of 271 pediatric 9/10 MMUD HSCTs and 929 10/10 MUD HSCTs, showing a significant effect of αHvG matching on both OS and EFS and similar OS and EFS between αHvG matched MMUDs and 10/10 MUDs. In summary, HvG amino acid matching on the α-helices identifies 9/10 MMUDs with permissible mismatches, which are correlated with favorable transplant outcomes similar to those of matched donors.
Collapse
Affiliation(s)
- Erik G J von Asmuth
- Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Fleur Hiensch
- Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center Rotterdam, The Netherlands
| | - Alexander B Mohseny
- Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Dave L Roelen
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cynthia S M Kramer
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans H J Claas
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael H Albert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Bénédicte Neven
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Arjan C Lankester
- Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Adriaan A van Beek
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Zhanzak Z, Cina D, Johnson AC, Larsen CP. Implications of MHC-restricted immunopeptidome in transplantation. Front Immunol 2024; 15:1436233. [PMID: 39035001 PMCID: PMC11257886 DOI: 10.3389/fimmu.2024.1436233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
The peptide presentation by donor and recipient major histocompatibility complex (MHC) molecules is the major driver of T-cell responses in transplantation. In this review, we address an emerging area of interest, the application of immunopeptidome in transplantation, and describe the potential opportunities that exist to use peptides for targeting alloreactive T cells. The immunopeptidome, the set of peptides presented on an individual's MHC, plays a key role in immune surveillance. In transplantation, the immunopeptidome is heavily influenced by MHC-derived peptides, delineating a key subset of the diverse peptide repertoire implicated in alloreactivity. A better understanding of the immunopeptidome in transplantation has the potential to open up new approaches to identify, characterize, longitudinally quantify, and therapeutically target donor-specific T cells and ultimately support more personalized immunotherapies to prevent rejection and promote allograft tolerance.
Collapse
Affiliation(s)
- Zhuldyz Zhanzak
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Davide Cina
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Aileen C. Johnson
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Christian P. Larsen
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Peereboom ET, Maranus AE, Timmerman LM, Geneugelijk K, Spierings E. Experimental Data on PIRCHE and T-Cell Reactivity: HLA-DPB1-Derived Peptides Identified by PIRCHE-I Show Binding to HLA-A*02:01 in vitro and T-Cell Activation in vivo. Transfus Med Hemother 2024; 51:131-139. [PMID: 38867810 PMCID: PMC11166409 DOI: 10.1159/000537789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/11/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Human leukocyte antigen (HLA)-DPB1 mismatches during hematopoietic stem cell transplantation (HSCT) with an unrelated donor result in an increased risk for the development of graft-versus-host disease (GvHD). The number of CD8+ T-cell epitopes available for indirect allorecognition as predicted by the PIRCHE algorithm has been shown to be associated with GvHD development. As a proof of principle, PIRCHE-I predictions for HLA-DPB1 mismatches were validated in vitro and in vivo. Methods PIRCHE-I analysis was performed to identify HLA-DPB1-derived peptides that could theoretically bind to HLA-A*02:01. PIRCHE-I predictions for HLA-DPB1 mismatches were validated in vitro by investigating binding affinities of HLA-DPB1-derived peptides to the HLA-A*02:01 in a competition-based binding assay. To investigate the capacity of HLA-DPB1-derived peptides to elicit a T-cell response in vivo, mice were immunized with these peptides. T-cell alloreactivity was subsequently evaluated using an interferon-gamma ELISpot assay. Results The PIRCHE-I algorithm identified five HLA-DPB1-derived peptides (RMCRHNYEL, YIYNREEFV, YIYNREELV, YIYNREEYA, and YIYNRQEYA) to be presented by HLA-A*02:01. Binding of these peptides to HLA-A*02:01 was confirmed in a competition-based peptide binding assay, all showing an IC50 value of 21 μm or lower. The peptides elicited an interferon-gamma response in vivo. Conclusion Our results indicate that the PIRCHE-I algorithm can identify potential immunogenic HLA-DPB1-derived peptides present in recipients of an HLA-DPB1-mismatched donor. These combined in vitro and in vivo observations strengthen the validity of the PIRCHE-I algorithm to identify HLA-DPB1 mismatch-related GvHD development upon HSCT.
Collapse
Affiliation(s)
- Emma T.M. Peereboom
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anna E. Maranus
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laura M. Timmerman
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kirsten Geneugelijk
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Matern BM, Niemann M. PIRCHE application major versions 3 and 4 lead to equivalent T cell epitope mismatch scores in solid organ and stem cell transplantation modules. Hum Immunol 2024; 85:110789. [PMID: 38521663 DOI: 10.1016/j.humimm.2024.110789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
PIRCHE scores in organ and stem cell transplantation have been shown to correlate with increased risk of donor-specific HLA antibodies and graft-versus-host disease, respectively. With advancements of the PIRCHE application server, it is critical to compare the predicted scores with previous versions. This manuscript compares the newly introduced PIRCHE version 4.2 with its predecessor version 3.3, which was widely used in retrospective studies, using a virtual cohort of 10,000 transplant pairs. In the stem cell transplantation module, both versions yield identical results in 100% of the test population. In the solid organ module, 97% of the test population has identical PIRCHE scores. The deviating cases (3%) were attributed to refinements in the PIRCHE algorithm's specification. Furthermore, the magnitude of the difference is likely to be below the detection limit for clinical effects, confirming the equivalence in PIRCHE scores between versions 3.3 and 4.2.
Collapse
|
5
|
Zou J, Kongtim P, Oran B, Srour SA, Greenbaum U, Carmazzi Y, Rondon G, Ciurea SO, Ma Q, Shpall EJ, Champlin RE, Cao K. Molecular disparity of HLA-DPB1 is associated with the development of subsequent solid cancer after allogeneic hematopoietic stem cell transplantation. Cancer 2023; 129:1205-1216. [PMID: 36738229 DOI: 10.1002/cncr.34671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND An increased incidence of subsequent solid cancers (SSCs) has been reported in long-term survivors of allogeneic hematopoietic stem cell transplantation (allo-HSCT), and SSC is associated with inferior mortality and morbidity. Previous studies showed that the incidence of SSC is significantly higher in those who underwent allo-HSCT from HLA-mismatched donors, suggesting that persistent alloimmunity may predispose patients to SSCs. It was recently reported that, in a cohort of patients who received allo-HSCT from an unrelated donor matched at HLA-A, -B, -C, -DRB1/3/4/5, and -DQB1 loci, HLA-DPB1 alloimmunity determined by high mismatched eplets (MEs) and Predicted Indirectly Recognizable HLA Epitopes (PIRCHE) score (PS), was associated with relapse protection and increased risk of acute graft-versus-host disease (GVHD). METHODS In the present study, the impact of HLA-DPB1 alloimmunity assessed by molecular mismatch algorithms on the development of SSCs in a cohort of 1514 patients who underwent allo-HSCT for hematologic malignancies was further investigated. ME load at the HLA-DPB1 locus was measured using the HLAMatchmaker module incorporated in HLA Fusion software, and the PS for mismatched HLA-DPB1 was calculated using the HSCT module from the PIRCHE online matching service. RESULTS In multivariable analysis after adjusting for baseline risk factors, higher ME, PS-I, and PS-II in the GVH direction, but not in the HVG direction, were associated with an increased risk of SSCs (ME: subdistribution hazard ratio [SHR] 1.58, p = .01; PS-I: SHR 1.59, p = .009; PS-II: SHR 1.71, p = .003). In contrast, nonpermissive HLA-DPB1 mismatches defined by the conventional T-cell epitope algorithm were not predictive of the risk of SSCs. Moreover, posttransplant cyclophosphamide-based GVHD prophylaxis was associated with a reduced risk of subsequent solid cancer (SHR 0.34, p = .021). CONCLUSIONS These results indicate for the first time that increased GVH alloreactivity could contribute to the development of SSCs in allo-HSCT survivors.
Collapse
Affiliation(s)
- Jun Zou
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Piyanuch Kongtim
- Division of Hematology/Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
- Center of Excellence in Applied Epidemiology, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Betül Oran
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samer A Srour
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Uri Greenbaum
- Department of Hematology, Soroka University Medical Center, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Yudith Carmazzi
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stefan O Ciurea
- Division of Hematology/Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| | - Qing Ma
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kai Cao
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Crocchiolo R, Rombolà G. Human Leucocyte Antigen System and Selection of Unrelated Hematopoietic Stem Cell Donors: Impact of Patient-Donor (Mis)matching and New Challenges with the Current Technologies. J Clin Med 2023; 12:jcm12020646. [PMID: 36675576 PMCID: PMC9862309 DOI: 10.3390/jcm12020646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The selection of hematopoietic stem cell donors for allogeneic transplantation (allo-HSCT) is mainly driven by human leucocyte antigen (HLA) matching between patient and donor, with HLA-identical matched siblings being the preferred choice in most situations. Although other clinical and demographical variables matter, especially, donor age, which is unequivocally associated with better transplant outcomes, the histocompatibility criteria have a central role in the search for the best donor, particularly in the setting of unrelated allo-HSCT where HLA disparities between patient and donor are frequent. The present review is focused on the role of HLA incompatibilities on patient outcome according to the most recent literature, in an attempt to guide transplant physicians and search coordinators during the process of adult unrelated-donor selection. The technological progresses in HLA typing, i.e., with next-generation sequencing (NGS), now allow disclosing a growing number of HLA incompatibilities associated with a heterogeneous and sometimes unknown spectrum of clinical severity. Their immunogenic characteristics, i.e., their position inside or outside the antigen recognition domain (ARD), their permissiveness, their intronic or exonic nature and even the expected expression of the HLA loci where those mismatches occur, will be presented and discussed here, integrating the advances in the immunobiology of transplantation with survival and toxicity outcomes reported in the most relevant studies, within the perspective of improving donor selection in the current practice.
Collapse
Affiliation(s)
- Roberto Crocchiolo
- Servizio di Immunoematologia e Medicina Trasfusionale, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, 20162 Milano, Italy
- Correspondence: ; Tel.: +39-02-64443962
| | - Gianni Rombolà
- Laboratory of Immunogenetics and Transplant Immunology, Azienda Ospedaliero-Universitaria Careggi, 50134 Firenze, Italy
| |
Collapse
|
7
|
Analysis of biological models to predict clinical outcomes based on HLA-DPB1 disparities in unrelated transplantation. Blood Adv 2021; 5:3377-3386. [PMID: 34448833 DOI: 10.1182/bloodadvances.2020003998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/23/2021] [Indexed: 11/20/2022] Open
Abstract
HLA compatibility is a key factor for survival after unrelated hematopoietic stem cell transplantation (HSCT). HLA-A, -B, -C, -DRB1, and -DQB1 are usually matched between donor and recipient. By contrast, HLA-DPB1 mismatches are frequent, although it is feasible to optimize donor selection and DPB1 matching with prospective typing. Because classical DPB1 allele mismatches are often unavoidable, however, several biological models have been developed to predict the optimal DPB1 mismatch combination for less graft-versus-host disease (GVHD) and better overall survival. In 909 recipient/donor pairs, we analyzed the role of 3 biological models: T-cell epitopes (TCEs) based on the immunogenicity of DPB1, cell surface expression of DPB1 molecules based on a single-nucleotide polymorphism located in the 3' untranslated region, and the Predicted Indirectly ReCognizable HLA Epitopes (PIRCHE) model based on the presentation of allogeneic peptides derived from mismatched HLA, compared with the classical allele mismatch. Matching for both DPB1 alleles remains the best option to prevent acute GVHD. In the situation of one DPB1 allele mismatch, the donor associated with the lowest acute GVHD risks is mismatched for an allele with a low expression profile in the recipient, followed by a permissive TCE3/4 mismatch and/or the absence of PIRCHE II potential against the recipient. In the context of 2 DPB1 mismatches, the same considerations apply for a permissive TCE3/4 mismatch and no PIRCHE II. By combining the biological models, the most favorable DPB1 constellation can be defined. This approach will help optimize donor selection and improve post-HSCT complications and patient prognosis.
Collapse
|
8
|
Liquid biopsies: donor-derived cell-free DNA for the detection of kidney allograft injury. Nat Rev Nephrol 2021; 17:591-603. [PMID: 34031575 DOI: 10.1038/s41581-021-00428-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/03/2023]
Abstract
In kidney transplantation, the use of minimally invasive damage biomarkers that are more sensitive and specific than plasma creatinine will be crucial to enable early, actionable detection or exclusion of structural kidney damage due to acute or chronic rejection. Donor-derived cell-free DNA (dd-cfDNA), which can be quantified, for example, through next-generation sequencing, droplet digital PCR and quantitative PCR, is a candidate biomarker with great potential for enabling comprehensive monitoring of allograft injury. dd-cfDNA has a favourable overall diagnostic performance for the detection of rejection and its high negative predictive value might be especially useful for avoiding unnecessary biopsies. Elevated dd-cfDNA levels have been shown to be detectable before graft injury can be clinically identified using current diagnostic methods. Moreover, dd-cfDNA falls rapidly to baseline levels after successful treatment for rejection owing to its short half-life. dd-cfDNA can detect graft injury caused by immune activation owing to insufficient immunosuppression and might therefore also help guide immunosuppression dosing. The fractional abundance of dd-cfDNA can be affected by changes in the recipient cfDNA (for example, due to infection or physical exercise) but the use of absolute quantification of dd-cfDNA overcomes this limitation. Serial dd-cfDNA determinations might therefore facilitate cost-effective personalized clinical management of kidney transplant recipients to reduce premature graft loss.
Collapse
|
9
|
Tran JN, Günther OP, Sherwood KR, Fenninger F, Allan LL, Lan J, Sapir-Pichhadze R, Duquesnoy R, Claas F, Marsh SGE, McMaster WR, Keown PA. High-throughput sequencing defines donor and recipient HLA B-cell epitope frequencies for prospective matching in transplantation. Commun Biol 2021; 4:583. [PMID: 33990681 PMCID: PMC8121953 DOI: 10.1038/s42003-021-01989-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/08/2021] [Indexed: 11/18/2022] Open
Abstract
Compatibility for human leukocyte antigen (HLA) genes between transplant donors and recipients improves graft survival but prospective matching is rarely performed due to the vast heterogeneity of this gene complex. To reduce complexity, we have combined next-generation sequencing and in silico mapping to determine transplant population frequencies and matching probabilities of 150 antibody-binding eplets across all 11 classical HLA genes in 2000 ethnically heterogeneous renal patients and donors. We show that eplets are more common and uniformly distributed between donors and recipients than the respective HLA isoforms. Simulations of targeted eplet matching shows that a high degree of overall compatibility, and perfect identity at the clinically important HLA class II loci, can be obtained within a patient waiting list of approximately 250 subjects. Internal epitope-based allocation is thus feasible for most major renal transplant programs, while regional or national sharing may be required for other solid organs. Tran et al. combine high throughput sequencing, structural biology and computational simulation to determine the HLA allele and antibody-defined epitope frequencies in renal transplant patients and donors. These results demonstrate the feasibility of HLA epitope matching using data from a national transplantation program.
Collapse
Affiliation(s)
- Jenny N Tran
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Karen R Sherwood
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Franz Fenninger
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lenka L Allan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - James Lan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Rene Duquesnoy
- Department of Pathology, University of Pittsburgh, Pennsylvania, PA, USA
| | - Frans Claas
- Department of Immunohematology and Blood Transfusion, University of Leiden, Leiden, Netherlands
| | - Steven G E Marsh
- Anthony Nolan Research Institute and UCL Cancer Institute, Royal Free Campus, London, UK
| | - W Robert McMaster
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Infection and Immunity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Paul A Keown
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada. .,Department of Medicine, University of British Columbia, Vancouver, BC, Canada. .,Infection and Immunity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
10
|
Shieh M, Hayeck TJ, Dinh A, Duke JL, Chitnis N, Mosbruger T, Morlen RP, Ferriola D, Kneib C, Hu T, Huang Y, Monos DS. Complex Linkage Disequilibrium Effects in HLA-DPB1 Expression and Molecular Mismatch Analyses of Transplantation Outcomes. Transplantation 2021; 105:637-647. [PMID: 32301906 PMCID: PMC8628253 DOI: 10.1097/tp.0000000000003272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND HLA molecular mismatch (MM) is a risk factor for de novo donor-specific antibody (dnDSA) development in solid organ transplantation. HLA expression differences have also been associated with adverse outcomes in hematopoietic cell transplantation. We sought to study both MM and expression in assessing dnDSA risk. METHODS One hundred three HLA-DP-mismatched solid organ transplantation pairs were retrospectively analyzed. MM was computed using amino acids (aa), eplets, and, supplementarily, Grantham/Epstein scores. DPB1 alleles were classified as rs9277534-A (low-expression) or rs9277534-G (high-expression) linked. To determine the associations between risk factors and dnDSA, logistic regression, linkage disequilibrium (LD), and population-based analyses were performed. RESULTS A high-risk AA:GX (recipient:donor) expression combination (X = A or G) demonstrated strong association with HLA-DP dnDSA (P = 0.001). MM was also associated with HLA-DP dnDSA when evaluated by itself (eplet P = 0.007, aa P = 0.003, Grantham P = 0.005, Epstein P = 0.004). When attempting to determine the relative individual effects of the risk factors in multivariable analysis, only AA:GX expression status retained a strong association (relative risk = 18.6, P = 0.007 with eplet; relative risk = 15.8, P = 0.02 with aa), while MM was no longer significant (eplet P = 0.56, aa P = 0.51). Importantly, these risk factors are correlated, due to LD between the expression-tagging single-nucleotide polymorphism and polymorphisms along HLA-DPB1. CONCLUSIONS The MM and expression risk factors each appear to be strong predictors of HLA-DP dnDSA and to possess clinical utility; however, these two risk factors are closely correlated. These metrics may represent distinct ways of characterizing a common overlapping dnDSA risk profile, but they are not independent. Further, we demonstrate the importance and detailed implications of LD effects in dnDSA risk assessment and possibly transplantation overall.
Collapse
Affiliation(s)
- Mengkai Shieh
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Tristan J. Hayeck
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anh Dinh
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jamie L. Duke
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nilesh Chitnis
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Timothy Mosbruger
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Ryan P. Morlen
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Deborah Ferriola
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Carolina Kneib
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Taishan Hu
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Yanping Huang
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Dimitri S. Monos
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
11
|
Little AM, Akbarzad-Yousefi A, Anand A, Diaz Burlinson N, Dunn PPJ, Evseeva I, Latham K, Poulton K, Railton D, Vivers S, Wright PA. BSHI guideline: HLA matching and donor selection for haematopoietic progenitor cell transplantation. Int J Immunogenet 2021; 48:75-109. [PMID: 33565720 DOI: 10.1111/iji.12527] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/18/2023]
Abstract
A review of the British Society for Histocompatibility and Immunogenetics (BSHI) Guideline 'HLA matching and donor selection for haematopoietic progenitor cell transplantation' published in 2016 was undertaken by a BSHI appointed writing committee. Literature searches were performed and the data extracted were presented as recommendations according to the GRADE nomenclature.
Collapse
Affiliation(s)
- Ann-Margaret Little
- Histocompatibility and Immunogenetics Laboratory, Gartnavel General Hospital, Glasgow, UK.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Arash Akbarzad-Yousefi
- Histocompatibility and Immunogenetics Laboratory, NHS Blood and Transplant, Newcastle-Upon-Tyne, UK
| | - Arthi Anand
- Histocompatibility and Immunogenetics Laboratory, North West London Pathology, Hammersmith Hospital, London, UK
| | | | - Paul P J Dunn
- Transplant Laboratory University Hospitals of Leicester, Leicester General Hospital, Leicester, UK.,Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | | | - Katy Latham
- Cellular and Molecular Therapies, NHS Blood and Transplant, Bristol, UK
| | - Kay Poulton
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester, UK
| | - Dawn Railton
- Tissue Typing Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Paul A Wright
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester, UK
| |
Collapse
|
12
|
Schmid C, Kuball J, Bug G. Defining the Role of Donor Lymphocyte Infusion in High-Risk Hematologic Malignancies. J Clin Oncol 2021; 39:397-418. [PMID: 33434060 DOI: 10.1200/jco.20.01719] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Christoph Schmid
- Department of Hematology and Oncology, Augsburg University Hospital, Augsburg, Germany
| | - Jürgen Kuball
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gesine Bug
- Department of Medicine 2, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Stenger W, Künkele A, Niemann M, Todorova K, Pruß A, Schulte JH, Eggert A, Oevermann L. Donor selection in a pediatric stem cell transplantation cohort using PIRCHE and HLA-DPB1 typing. Pediatr Blood Cancer 2020; 67:e28127. [PMID: 31850671 DOI: 10.1002/pbc.28127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND New strategies to optimize donor selection for hematopoietic stem cell transplantation (HSCT) have mainly been evaluated in adults, but the disease spectrum requiring HSCT differs significantly in children and has consequences for the risk of complications, such as graft-versus-host disease (GvHD). PROCEDURES Here we evaluated whether HLA-DPB1 and Predicted Indirectly ReCognizable HLA-Epitope (PIRCHE) matching can improve donor selection and minimize risks specific for a pediatric cohort undergoing HSCT in Berlin between 2014 and 2016. RESULTS The percentage of HLA-DPB1-mismatched HSCT in the pediatric cohort was in line with the general distribution among matched unrelated donor HSCT. Nonpermissive HLA-DPB1 mismatches were not associated with a higher incidence of GvHD, but the incidence of relapse was higher in patients undergoing HSCT from HLA-DPB1-matched transplantations. High PIRCHE-I scores were associated with a significantly higher risk for developing GvHD in patients undergoing HSCT from nine of ten matched unrelated donors. This finding persisted after including HLA-DPB1 into the PIRCHE analysis. CONCLUSIONS Implementing PIRCHE typing in the donor selection process for HSCT in children could particularly benefit children with nonmalignant diseases and support further validation of PIRCHE-based donor selection in a larger number of children treated at different sites.
Collapse
Affiliation(s)
- Wiebke Stenger
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Kremena Todorova
- Center for Transfusion Medicine and Cell Therapies Berlin, Berlin, Germany
| | - Axel Pruß
- Center for Transfusion Medicine and Cell Therapies Berlin, Berlin, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Oevermann
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
14
|
Andreani M, Gaspari S, Locatelli F. Human leucocyte antigen diversity: A biological gift to escape infections, no longer a barrier for haploidentical Hemopoietic Stem Cell Transplantation. Int J Immunogenet 2019; 47:34-40. [PMID: 31657118 DOI: 10.1111/iji.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/10/2019] [Accepted: 10/05/2019] [Indexed: 11/29/2022]
Abstract
Since the beginning of life, every multicellular organism appeared to have a complex innate immune system although the adaptive immune system, centred on lymphocytes bearing antigen receptors generated by somatic recombination, arose in jawed fish approximately 500 million years ago. The major histocompatibility complex MHC, named the Human leucocyte antigen (HLA) system in humans, represents a vital function structure in the organism by presenting pathogen-derived peptides to T cells as the main initial step of the adaptive immune response. The huge level of polymorphism observed in HLA genes definitely reflects selection, favouring heterozygosity at the individual or population level, in a pathogen-rich environment, although many are located in introns or in exons that do not code for the antigen-biding site of the HLA. Over the past three decades, the extent of allelic diversity at HLA loci has been well characterized using high-resolution HLA-DNA typing and the number of new HLA alleles, produced through next-generation sequencing methods, is even more rapidly increasing. The level of the HLA system polymorphism represents an obstacle to the search of potential compatible donors for patients affected by haematological disease proposed for a hematopoietic stem cell transplant (HSCT). Data reported in literature clearly show that antigenic and/or allelic mismatches between related or unrelated donors and patients influences the successful HSCT outcome. However, the recent development of the new transplant strategy based on the choice of haploidentical donors for HSCT is questioning the role of HLA compatibility, since the great HLA disparities present do not worsen the overall clinical outcome. Nowadays, NGS has contributed to define at allelic levels the HLA polymorphism and solve potential ambiguities. However, HLA functions and tissue typing probably need to be further investigated in the next future, to understand the reasons why in haploidentical transplants the presence of a whole mismatch haplotype between donors and recipients, both the survival rate and the incidence of acute GvHD or graft rejection are similar to those reported for unrelated HSCTs.
Collapse
Affiliation(s)
- Marco Andreani
- Laboratorio d'Immunogenetica dei Trapianti, Polo di Ricerca di San Paolo, Dipartimento di Onco-Ematologia e Terapia Cellulare e Genica, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Stefania Gaspari
- Dipartimento di Onco-Ematologia e Terapia Cellulare e Genica, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Franco Locatelli
- Dipartimento di Onco-Ematologia e Terapia Cellulare e Genica, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| |
Collapse
|
15
|
Fürst D, Neuchel C, Tsamadou C, Schrezenmeier H, Mytilineos J. HLA Matching in Unrelated Stem Cell Transplantation up to Date. Transfus Med Hemother 2019; 46:326-336. [PMID: 31832058 DOI: 10.1159/000502263] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/13/2019] [Indexed: 12/27/2022] Open
Abstract
Unrelated hematopoietic stem cell transplantation (HSCT) has evolved from an experimental protocol to a potentially curative first-line treatment in certain disease instances. Factors enabling this transformation were the optimization of treatment protocols and supportive care as well as the availability of a large number of donors worldwide along with the higher quality and reliability of HLA typing. The main criterion for donor selection is HLA compatibility. In this review we discuss the current clinical evidence of HLA matching in unrelated HSCT. In this context, we address methodical aspects of transplantation immunobiology research and discuss the impact of locus and resolution of HLA differences. Furthermore, we address special constellations such as unidirectional mismatches or the presence of nonexpressed alleles as well as HLA alloimmunization and describe the perspective for HLA typing and matching strategies in the future, given the implementation of novel complete or near-complete gene typing approaches using next-generation sequencing short read technology, which are now entering the standard of clinical care.
Collapse
Affiliation(s)
- Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Christine Neuchel
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Chrysanthi Tsamadou
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Joannis Mytilineos
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|