1
|
Barman P, Joshi S, Sharma S, Preet S, Sharma S, Saini A. Strategic Approaches to Improvise Peptide Drugs as Next Generation Therapeutics. Int J Pept Res Ther 2023; 29:61. [PMID: 37251528 PMCID: PMC10206374 DOI: 10.1007/s10989-023-10524-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/31/2023]
Abstract
In recent years, the occurrence of a wide variety of drug-resistant diseases has led to an increase in interest in alternate therapies. Peptide-based drugs as an alternate therapy hold researchers' attention in various therapeutic fields such as neurology, dermatology, oncology, metabolic diseases, etc. Previously, they had been overlooked by pharmaceutical companies due to certain limitations such as proteolytic degradation, poor membrane permeability, low oral bioavailability, shorter half-life, and poor target specificity. Over the last two decades, these limitations have been countered by introducing various modification strategies such as backbone and side-chain modifications, amino acid substitution, etc. which improve their functionality. This has led to a substantial interest of researchers and pharmaceutical companies, moving the next generation of these therapeutics from fundamental research to the market. Various chemical and computational approaches are aiding the production of more stable and long-lasting peptides guiding the formulation of novel and advanced therapeutic agents. However, there is not a single article that talks about various peptide design approaches i.e., in-silico and in-vitro along with their applications and strategies to improve their efficacy. In this review, we try to bring different aspects of peptide-based therapeutics under one article with a clear focus to cover the missing links in the literature. This review draws emphasis on various in-silico approaches and modification-based peptide design strategies. It also highlights the recent progress made in peptide delivery methods important for their enhanced clinical efficacy. The article would provide a bird's-eye view to researchers aiming to develop peptides with therapeutic applications. Graphical Abstract
Collapse
Affiliation(s)
- Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Shubhi Joshi
- Energy Research Centre, Panjab University, Sector 14, Chandigarh, 160014 India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Simran Preet
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Shweta Sharma
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| |
Collapse
|
2
|
Guryanova SV, Kataeva A. Inflammation Regulation by Bacterial Molecular Patterns. Biomedicines 2023; 11:biomedicines11010183. [PMID: 36672691 PMCID: PMC9855958 DOI: 10.3390/biomedicines11010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Stimulation of innate immunity by bacterial molecular patterns can induce an enhanced cellular immune response to pathogens that are associated with innate immune memory shaped by epigenetic changes. Immunological memory can be expressed in the acceleration/intensification of inflammation, as well as in the exact opposite-to maintain tolerance and non-response to a repeated stimulus. Tolerance is one of the central concepts of immunity and is ensured by the consistency of all parts of the immune response. The severe consequences of inflammation force researchers to study in detail all stages of the downstream pathways that are activated after exposure to a stimulus, while the formation of non-response to a pro-inflammatory stimulus has not yet received a detailed description. Elucidation of the mechanism of tolerance is an urgent task for the prevention and treatment of inflammatory diseases. The aim of this investigation was to study the dynamic changes in the gene expression of A20 and ATF3, the inflammation suppressors, against the background of the expression of the genes of the innate immunity receptors TLR4 and NOD2 and the pro-inflammatory cytokine TNF-α under the influence of TLR4 and NOD2 agonists, lipopolysaccharide (LPS) and glucosaminylmuramyl dipeptide (GMDP). The mechanism of inflammation regulation by bioregulators of bacterial origin-LPS and GMDP-was evaluated in vitro in human peripheral blood mononuclear cells and in vivo after i.p. administration of LPS and GMDP to mice. Gene expression was assessed by RT-PCR. Innate immune receptors and the pro-inflammatory cytokine TNF-α were found to develop early in response to LPS and GMDP, both in vitro and in vivo. Genes of cytosolic proteins controlling inflammation (A20 and ATF3) were expressed later. Prior exposure of the innate immune system to LPS and muramyl peptides may modulate host defense against acute inflammation. As a result of the study, new data were obtained on dynamic changes in deubiquitinase A20 and the transcription factor ATF3, which are involved in the limitation and suppression of inflammatory reactions caused by fragments of bacterial cell walls-LPS and GMDP. Thus, bioregulators of bacterial origin LPS and GMDP, along with pro-inflammatory factors, activate the expression of genes that suppress inflammation, which should be considered when analyzing data from studies of the pro-inflammatory properties of LPS and GMDP and when developing drugs based on them.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Ministry of Science and Higher Education of the Russian Federation, 117997 Moscow, Russia
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University) of the Ministry of Science and Higher Education of the Russian Federation, 117198 Moscow, Russia
- Correspondence: ; Tel.: +7-9153150073
| | | |
Collapse
|
3
|
Liangxue Xiaoban decoction and its disassembled prescriptions ameliorate psoriasis-like skin lesions induced by imiquimod in mice via T cell regulation. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
4
|
Innate Immunity Mechanisms in Marine Multicellular Organisms. Mar Drugs 2022; 20:md20090549. [PMID: 36135738 PMCID: PMC9505182 DOI: 10.3390/md20090549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022] Open
Abstract
The innate immune system provides an adequate response to stress factors and pathogens through pattern recognition receptors (PRRs), located on the surface of cell membranes and in the cytoplasm. Generally, the structures of PRRs are formed by several domains that are evolutionarily conserved, with a fairly high degree of homology in representatives of different species. The orthologs of TLRs, NLRs, RLRs and CLRs are widely represented, not only in marine chordates, but also in invertebrates. Study of the interactions of the most ancient marine multicellular organisms with microorganisms gives us an idea of the evolution of molecular mechanisms of protection against pathogens and reveals new functions of already known proteins in ensuring the body’s homeostasis. The review discusses innate immunity mechanisms of protection of marine invertebrate organisms against infections, using the examples of ancient multicellular hydroids, tunicates, echinoderms, and marine worms in the context of searching for analogies with vertebrate innate immunity. Due to the fact that mucous membranes first arose in marine invertebrates that have existed for several hundred million years, study of their innate immune system is both of fundamental importance in terms of understanding molecular mechanisms of host defense, and of practical application, including the search of new antimicrobial agents for subsequent use in medicine, veterinary and biotechnology.
Collapse
|
5
|
Balak D, Perez-Chada LM, Guo LN, Mita C, Armstrong AW, Bell SJ, Gondo GC, Liao W, Merola JF. Definitions of Remission in Psoriasis: A Systematic Literature Review from the National Psoriasis Foundation. J Eur Acad Dermatol Venereol 2022; 36:2291-2300. [PMID: 35924437 DOI: 10.1111/jdv.18477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Psoriasis studies increasingly employ outcomes that indicate complete disease resolution, yet remission and cure are poorly defined for psoriasis. We conducted a systematic literature review to identify definitions of psoriasis remission and cure reported in the literature. Medline, EMBASE, and The Cochrane Central Register of Controlled Trials databases were searched on July 22, 2020 for full-text studies providing definitions for psoriasis remission/cure. Definitions were analyzed descriptively for endpoint, time-frame, on/off treatment, patient-reported outcomes, and disease domains. We identified 106 studies that provided 41 unique remission definitions. Most definitions included endpoints based on Psoriasis Area and Severity Index (PASI), such as PASI75 (n=16 studies), PASI90 (n=10), PASI100 (n=10), and PASI of 0 (n=3), and descriptive endpoints related to 'skin clearance' (n=18). Few definitions specified time-frame, on/off treatment or other psoriasis-related disease domains. One small consensus-initiative defined drug-free remission for plaque psoriasis by BSA of 0 without any therapy for at least 12 months. While there is no cure for psoriasis, seven studies defined psoriasis cure using similar endpoints to those used to define remission. We identified a variety of definitions of psoriasis remission. These results will inform the development of consensus-based definitions for psoriasis remission to support efforts to improve research and clinical outcomes.
Collapse
Affiliation(s)
- Dmw Balak
- Department of Dermatology, LangeLand Hospital, Zoetermeer, the Netherlands.,Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - L M Perez-Chada
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - L N Guo
- Harvard Medical School, Boston, MA, USA
| | - C Mita
- Countway Library of Medicine, Harvard University, Boston, Massachusetts, USA
| | - A W Armstrong
- Department of Dermatology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - S J Bell
- National Psoriasis Foundation, Portland, OR, USA
| | - G C Gondo
- National Psoriasis Foundation, Portland, OR, USA
| | - W Liao
- Department of Dermatology, University of California, San Francisco, CA, USA
| | - J F Merola
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Division of Rheumatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Guryanova SV. Regulation of Immune Homeostasis via Muramyl Peptides-Low Molecular Weight Bioregulators of Bacterial Origin. Microorganisms 2022; 10:1526. [PMID: 36013944 PMCID: PMC9413341 DOI: 10.3390/microorganisms10081526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Metabolites and fragments of bacterial cells play an important role in the formation of immune homeostasis. Formed in the course of evolution, symbiotic relationships between microorganisms and a macroorganism are manifested, in particular, in the regulation of numerous physiological functions of the human body by the innate immunity receptors. Low molecular weight bioregulators of bacterial origin have recently attracted more and more attention as drugs in the prevention and composition of complex therapy for a wide range of diseases of bacterial and viral etiology. Signaling networks show cascades of causal relationships of deterministic phenomena that support the homeostasis of multicellular organisms at different levels. To create networks, data from numerous biomedical and clinical research databases were used to prepare expert systems for use in pharmacological and biomedical research with an emphasis on muramyl dipeptides. Muramyl peptides are the fragments of the cell wall of Gram-positive and Gram-negative bacteria. Binding of muramyl peptides with intracellular NOD2 receptors is crucial for an immune response on pathogens. Depending on the microenvironment and duration of action, muramyl peptides possess positive or negative regulation of inflammation. Other factors, such as genetic, pollutions, method of application and stress also contribute and should be taken into account. A system biology approach should be used in order to systemize all experimental data for rigorous analysis, with the aim of understanding intrinsic pathways of homeostasis, in order to define precise medicine therapy and drug design.
Collapse
Affiliation(s)
- Svetlana V Guryanova
- Medical Institute, Peoples' Friendship University of Russia (RUDN University) of the Ministry of Science and Higher Education of the Russian Federation, 117198 Moscow, Russia
| |
Collapse
|
7
|
Guryanova SV, Finkina EI, Melnikova DN, Bogdanov IV, Bohle B, Ovchinnikova TV. How Do Pollen Allergens Sensitize? Front Mol Biosci 2022; 9:900533. [PMID: 35782860 PMCID: PMC9245541 DOI: 10.3389/fmolb.2022.900533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Plant pollen is one of the main sources of allergens causing allergic diseases such as allergic rhinitis and asthma. Several allergens in plant pollen are panallergens which are also present in other allergen sources. As a result, sensitized individuals may also experience food allergies. The mechanism of sensitization and development of allergic inflammation is a consequence of the interaction of allergens with a large number of molecular factors that often are acting in a complex with other compounds, for example low-molecular-mass ligands, which contribute to the induction a type 2-driven response of immune system. In this review, special attention is paid not only to properties of allergens but also to an important role of their interaction with lipids and other hydrophobic molecules in pollen sensitization. The reactions of epithelial cells lining the nasal and bronchial mucosa and of other immunocompetent cells will also be considered, in particular the mechanisms of the activation of B and T lymphocytes and the formation of allergen-specific antibody responses.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
- Medical Institute, Peoples’ Friendship University of Russia, The Ministry of Science and Higher Education of the Russian Federation, Moscow, Russia
| | - Ekaterina I. Finkina
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Daria N. Melnikova
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Ivan V. Bogdanov
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Tatiana V. Ovchinnikova
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- *Correspondence: Tatiana V. Ovchinnikova,
| |
Collapse
|
8
|
Guryanova SV, Gigani OB, Gudima GO, Kataeva AM, Kolesnikova NV. Dual Effect of Low-Molecular-Weight Bioregulators of Bacterial Origin in Experimental Model of Asthma. Life (Basel) 2022; 12:192. [PMID: 35207480 PMCID: PMC8879587 DOI: 10.3390/life12020192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Asthma is one of the most common noncommunicable diseases, affecting over 200 million people. A large number of drugs control asthma attacks, but there is no effective therapy. Identification of reasons for asthma and preventing this disease is a relevant task. The influence of bacterial components is necessary for the normal development of the immune system and the formation of an adequate immune response to antigens. In the absence of microorganisms or their insufficient exposure, the prerequisites are formed for excessive reactivity to harmless antigens. In the present study, we analyzed cellular and humoral factors in a standard mouse model of OVA-induced asthma modified by 5-fold intraperitoneal injection of bacterial cell wall fragments of glucosaminylmuramyl dipeptide (GMDP) 5 μg/animal or 1 μg lipopolysaccharide (LPS) per animal for 5 days before sensitization by ovalbumin (OVA). Preliminary administration of LPS or GMDP to animals significantly reduced goblet cells as well as the number of neutrophils, lymphocytes, and eosinophils in bronchoalveolar lavage, wherein GMDP corrected neutrophilia to a 2-fold degree, and LPS reduced the severity of eosinophilia by 1.9 times. With OVA administration of GMDP or LPS at the sensitization stage, an increase in the total number of bronchoalveolar lavage cells due to neutrophils, macrophages, lymphocytes, and eosinophils in relation to the group with asthma without GMDP or LPS was observed. The administration of GMDP or LPS to normal mice without asthma for 5 days had no statistically significant effect on the change in the number and population composition of cells in bronchoalveolar lavage in comparison with the control group receiving PBS. As a result of a study in a mouse model of asthma, a dual effect of LPS and GMDP was established: the introduction of LPS or GMDP before sensitization reduces neutrophilia and eosinophilia, while the introduction of LPS or GMDP together with an allergen significantly increases neutrophilia and eosinophilia. The study of the immunoglobulin status shows that in normal-asthma mice, GMDP and LPS slightly increase IgA in bronchoalveolar lavage; at the same time, in the asthma model, injections of GMDP or LPS before sensitization contribute to a significant decrease in IgA (2.6 times and 2.1 times, respectively) in BALF and IgE (2.2 times and 2.0 times, respectively) in blood serum. In an experimental model of asthma, the effect of GMDP and LPS was multidirectional: when they are repeatedly administered before sensitization, the bacterial components significantly reduce the severity of the allergic process, while in the case of a joint injection with an allergen, they increase the influx of macrophages, lymphocytes, and neutrophils into the lungs, which can aggravate the course of pathological process. Thus, the insufficient effect of antigens of a bacterial nature, in particular, with prolonged use of antibiotics can be compensated for by substances based on low-molecular-weight bioregulators of bacterial origin to establish the missing signals for innate immunity receptors, whose constant activation at a certain level is necessary to maintain homeostasis.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Ministry of Science and Higher Education of the Russian Federation, 117997 Moscow, Russia
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Ministry of Science and Higher Education of the Russian Federation, 117198 Moscow, Russia; (O.B.G.); (A.M.K.)
| | - Olga B. Gigani
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Ministry of Science and Higher Education of the Russian Federation, 117198 Moscow, Russia; (O.B.G.); (A.M.K.)
| | - Georgii O. Gudima
- National Research Center-Institute of Immunology of the Federal Medico-Biological Agency, 115522 Moscow, Russia;
| | - Anastasiya M. Kataeva
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Ministry of Science and Higher Education of the Russian Federation, 117198 Moscow, Russia; (O.B.G.); (A.M.K.)
| | - Natalya V. Kolesnikova
- Department of Clinical Immunology, Kuban State Medical University, Ministry of Health of the Russian Federation, 350063 Krasnodar, Russia;
| |
Collapse
|
9
|
Guryanova SV, Kudryashova NA, Kataeva AA, Orozbekova BT, Kolesnikova NV, Chuchalin AG. Novel approaches to increase resistance to acute respiratory infections. RUDN JOURNAL OF MEDICINE 2021. [DOI: 10.22363/2313-0245-2021-25-3-181-195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Relevance . Respiratory infections are the most common in the world. In order to prevent epidemics, there is a need to improve the strategies for organizing medical care and develop new approaches in order to increase the nonspecific resistance, mobilize innate immunity. Objective . The aim of this study was to investigate the effect of glucosaminylmuramyldipeptide (GMDP) on the level of expression of markers of differentiation and activation of functionally significant subpopulations of dendritic cells in peripheral blood mononuclear cells of healthy donors,the second aim was to assess the effectiveness of GMDP in the prevention of acute respiratory infections in an unfavorable epidemiological period of the COVID-19 pandemic. Materials and Methods . An open comparative study included 309 apparently healthy participants, aged 19-22 years. At the first stage of the study, 42 participants (22 female and 20 male) took the drug Licopid 1 mg for 10 days according to the instructions, 1 tablet 3 times a day in order to prevent acute respiratory infections. Peripheral blood sampling was performed before taking the drug (day 0) and the next day after the last dose of the drug (day 12). Evaluation of the expression of markers of differentiation and activation of dendritic cell subpopulations HLA-DR, CD11c, CD123, CD80, CD83, CCR7, CD3, CD14, CD20 was assessed by flow cytometry. At the same time, mRNA was isolated from mononuclear cells of perfusion blood and, after reverse transcription, the level of gene expression was determined by RT PCR. At the next stage, the effectiveness of the prophylactic use of the drug Licopid in 267 students of the Institute of Physical Culture was assessed in order to prevent acute respiratory infections in an unfavorable epidemiological period; the observation period was 12 months. Results and Discussion . A study of the relative quantitative composition of DCs in the peripheral blood of healthy donors by flow cytometry revealed the possibility of an increase in their total number, as well as subpopulations of MDC and PDC under the influence of GMDP. There was a statistically significant increase in the receptors for the chemokine CCR7, which is responsible for the recruitment of DCs to the secondary lymphoid organs. Analysis of the levels of expression of genes XCR1, CD11b , and CD103 showed a statistically significant effect of GMDP on an increase in their expression compared to the baseline level (before GMDP intake), with the mean value being higher in participants undergoing moderate exercise. It was found that the use of the drug Licopid 1mg for the purpose of preventing and reducing the seasonal incidence of acute respiratory infections at the stage of basic training of students of the Institute of Physical Culture contributed to a decrease in the incidence of acute respiratory infections within 12 months of observation after taking the drug. The number of episodes of acute respiratory infections decreased 3.7 times, while the group with 3 or more episodes of acute respiratory infections during the year, which constituted 14.5 % of participants, completely disappeared. The maximum efficiency of GMDP was observed in the track and field command, in which the number of participants who had no episodes of acute respiratory infections during the year increased by 7 times. Conclusion . Our data complement the modern understanding of the molecular mechanism of action of GMDP and substantiate the possibility of its experimental and clinical use in order to develop new strategies for organizing medical care in order to increase the nonspecific resistance of the organism.
Collapse
|
10
|
Wang L, Xie X, Ke B, Huang W, Jiang X, He G. Recent advances on endogenous gasotransmitters in inflammatory dermatological disorders. J Adv Res 2021; 38:261-274. [PMID: 35572410 PMCID: PMC9091779 DOI: 10.1016/j.jare.2021.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Endogenous gasotransmitters nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and potential candidates sulfur dioxide (SO2), methane (CH4), hydrogen gas (H2), ammonia (NH3) and carbon dioxide (CO2), are generated within the human body. Endogenous and potential gasotransmitters regulate inflammation, vasodilation, and oxidation in inflammatory dermatological disorders. Endogenous and potential gasotransmitters play potential roles in psoriasis, atopic dermatitis, acne, and chronic skin ulcers. Further research should explore the function of these gases and gas donors and inhibitors in inflammatory dermatological disorders.
Background Endogenous gasotransmitters are small gaseous mediators that can be generated endogenously by mammalian organisms. The dysregulation of the gasotransmitter system is associated with numerous disorders ranging from inflammatory diseases to cancers. However, the relevance of these endogenous gasotransmitters, prodrug donors and inhibitors in inflammatory dermatological disorders has not yet been thoroughly reviewed and discussed. Aim of review This review discusses the recent progress and will provide perspectives on endogenous gasotransmitters in the context of inflammatory dermatological disorders. Key scientific concepts of review Endogenous gasotransmitters nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are signaling molecules that regulate several physiological and pathological processes. In addition, sulfur dioxide (SO₂), methane (CH4), hydrogen gas (H2), ammonia (NH3), and carbon dioxide (CO2) can also be generated endogenously and may take part in physiological and pathological processes. These signaling molecules regulate inflammation, vasodilation, and oxidative stress, offering therapeutic potential and attracting interest in the field of inflammatory dermatological disorders including psoriasis, atopic dermatitis, acne, rosacea, and chronic skin ulcers. The development of effective gas donors and inhibitors is a promising alternative to treat inflammatory dermatological disorders with controllable and precise delivery in the future.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bowen Ke
- Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| | - Wei Huang
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| |
Collapse
|
11
|
Nod-Like Receptors in Host Defence and Disease at the Epidermal Barrier. Int J Mol Sci 2021; 22:ijms22094677. [PMID: 33925158 PMCID: PMC8124564 DOI: 10.3390/ijms22094677] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
The nucleotide-binding domain and leucine-rich-repeat-containing family (NLRs) (sometimes called the NOD-like receptors, though the family contains few bona fide receptors) are a superfamily of multidomain-containing proteins that detect cellular stress and microbial infection. They constitute a critical arm of the innate immune response, though their functions are not restricted to pathogen recognition and members engage in controlling inflammasome activation, antigen-presentation, transcriptional regulation, cell death and also embryogenesis. NLRs are found from basal metazoans to plants, to zebrafish, mice and humans though functions of individual members can vary from species to species. NLRs also display highly wide-ranging tissue expression. Here, we discuss the importance of NLRs to the immune response at the epidermal barrier and summarise the known role of individual family members in the pathogenesis of skin disease.
Collapse
|
12
|
Guryanova SV, Khaitov RM. Strategies for Using Muramyl Peptides - Modulators of Innate Immunity of Bacterial Origin - in Medicine. Front Immunol 2021; 12:607178. [PMID: 33959120 PMCID: PMC8093441 DOI: 10.3389/fimmu.2021.607178] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
The spread of infectious diseases is rampant. The emergence of new infections, the irrational use of antibiotics in medicine and their widespread use in agriculture contribute to the emergence of microorganisms that are resistant to antimicrobial drugs. By 2050, mortality from antibiotic-resistant strains of bacteria is projected to increase up to 10 million people per year, which will exceed mortality from cancer. Mutations in bacteria and viruses are occurring faster than new drugs and vaccines are being introduced to the market. In search of effective protection against infections, new strategies and approaches are being developed, one of which is the use of innate immunity activators in combination with etiotropic chemotherapy drugs. Muramyl peptides, which are part of peptidoglycan of cell walls of all known bacteria, regularly formed in the body during the breakdown of microflora and considered to be natural regulators of immunity. Their interaction with intracellular receptors launches a sequence of processes that ultimately leads to the increased expression of genes of MHC molecules, pro-inflammatory mediators, cytokines and their soluble and membrane-associated receptors. As a result, all subpopulations of immunocompetent cells are activated: macrophages and dendritic cells, neutrophils, T-, B- lymphocytes and natural killer cells for an adequate response to foreign or transformed antigens, manifested both in the regulation of the inflammatory response and in providing immunological tolerance. Muramyl peptides take part in the process of hematopoiesis, stimulating production of colony-stimulating factors, which is the basis for their use in the treatment of oncological diseases. In this review we highlight clinical trials of drugs based on muramyl peptides, as well as clinical efficacy of drugs mifamurtide, lycopid, liasten and polimuramil. Such a multifactorial effect of muramyl peptides and a well-known mechanism of activity make them promising drugs in the treatment and preventing of infectious, allergic and oncological diseases, and in the composition of vaccines.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Biology and General Genetics, Medical Institute, RUDN University, Moscow, Russia
| | - Rahim M. Khaitov
- National Research Center – Institute of Immunology of Federal Medico-Biological Agency, Moscow, Russia
- Department of Immunology, Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
13
|
Ushkalova EA, Zyryanov SK, Zatolochina KE. [Muramyldipeptide - based compounds in current medicine: focus on glucosaminylmuramyl dipeptide]. TERAPEVT ARKH 2019; 91:122-127. [PMID: 32598599 DOI: 10.26442/00403660.2019.12.000471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
The role of immune mechanisms in the pathogenesis of almost all human diseases shown in recent decades, increase in antibiotic resistance and secondary immunodeficiency, aging of the population and widespread use of immunosuppressive drugs and procedures suggest a wider use of immunomodulators in current clinical practice, but the use of most of them limits the lack of knowledge. The most promising compounds for the development as immunomodulating agents and adjuvants for a wide range of vaccines are low molecular weight fragments of peptidoglycan - muramylpeptides. The article describes the mechanisms of action of muramylpeptides, their biological effects and properties of medicines developed on their basis. Special emphasis is placed to glucosaminylmuramyl dipeptide registered in the Russian Federation under the trade name Likopid, which is currently the best - studied drug in its group. The results of Likopid studies when used as a prophylactic and therapeutic agent for infections of various localization in adults and children, for oncological diseases and complications of chemotherapy and radiation therapy, psoriasis, atopic and other diseases are presented. It is emphasized that in diseases associated with human papillomavirus and plaque psoriasis, according to current criteria of evidence - based medicine, Likopid should be classified as drug with level A efficacy (high efficiency in 80-100% of patients). High safety of Likopid in adults and children, including newborns, is noted.
Collapse
Affiliation(s)
- E A Ushkalova
- Peoples' Friendship University of Russia (RUDN University)
| | - S K Zyryanov
- Peoples' Friendship University of Russia (RUDN University).,City Clinical Hospital No. 24
| | | |
Collapse
|