1
|
Chan TCL, Yagound B, Brown GP, Eyck HJF, Shine R, Rollins LA. Infection by the Lungworm Rhabdias pseudosphaerocephala Affects the Expression of Immune-Related microRNAs by Its Co-Evolved Host, the Cane Toad Rhinella marina. Mol Ecol 2025; 34:e17587. [PMID: 39544005 DOI: 10.1111/mec.17587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Parasites may suppress the immune function of infected hosts using microRNAs (miRNAs) to prevent protein production. Nonetheless, little is known about the diversity of miRNAs and their mode(s) of action. In this study, we investigated the effects of infection by a parasitic lungworm (Rhabdias pseudosphaerocephala) on miRNA and mRNA expression of its host, the invasive cane toad (Rhinella marina). To investigate the cane toad's innate and adaptive immune response to this parasite, we compared miRNA and mRNA expression in naïve toads that had never been infected by lungworms to toads that were infected with lungworms for the first time in their lives, and toads that were infected the second time in their lives (i.e., had two consecutive infections). In total, we identified 101 known miRNAs and 86 potential novel miRNAs. Compared to uninfected and single-infection toads, multiple-infection animals drastically downregulated three miRNAs. These miRNAs were associated with gene pathways related to the immune response, potentially reflecting the immunosuppression of cane toads by their parasites. Infected hosts did not respond with substantially differential mRNA transcription; only one gene was differentially expressed between control and single-infection hosts. Our study suggests that miRNA may play an important role in mediating host-parasite interactions in a system in which an ongoing range expansion by the host has generated substantial divergence in host-parasite interactions.
Collapse
Affiliation(s)
- Tsering C L Chan
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, UNSW, Sydney, New South Wales, Australia
| | - Boris Yagound
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, UNSW, Sydney, New South Wales, Australia
| | - Gregory P Brown
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Harrison J F Eyck
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, UNSW, Sydney, New South Wales, Australia
| | - Richard Shine
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Lee A Rollins
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, UNSW, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Fisch D, Pfleiderer MM, Anastasakou E, Mackie GM, Wendt F, Liu X, Clough B, Lara-Reyna S, Encheva V, Snijders AP, Bando H, Yamamoto M, Beggs AD, Mercer J, Shenoy AR, Wollscheid B, Maslowski KM, Galej WP, Frickel EM. PIM1 controls GBP1 activity to limit self-damage and to guard against pathogen infection. Science 2023; 382:eadg2253. [PMID: 37797010 PMCID: PMC7615196 DOI: 10.1126/science.adg2253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/23/2023] [Indexed: 10/07/2023]
Abstract
Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-γ (IFN-γ)-inducible antimicrobial factors, such as the guanylate binding proteins (GBPs), promote cell-intrinsic defense by attacking intracellular pathogens and by inducing programmed cell death. Working in human macrophages, we discovered that GBP1 expression in the absence of IFN-γ killed the cells and induced Golgi fragmentation. IFN-γ exposure improved macrophage survival through the activity of the kinase PIM1. PIM1 phosphorylated GBP1, leading to its sequestration by 14-3-3σ, which thereby prevented GBP1 membrane association. During Toxoplasma gondii infection, the virulence protein TgIST interfered with IFN-γ signaling and depleted PIM1, thereby increasing GBP1 activity. Although infected cells can restrain pathogens in a GBP1-dependent manner, this mechanism can protect uninfected bystander cells. Thus, PIM1 can provide a bait for pathogen virulence factors, guarding the integrity of IFN-γ signaling.
Collapse
Affiliation(s)
- Daniel Fisch
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Moritz M Pfleiderer
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Eleni Anastasakou
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Gillian M Mackie
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, UK
| | - Fabian Wendt
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Xiangyang Liu
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Barbara Clough
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Vesela Encheva
- Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, London, UK
| | - Ambrosius P Snijders
- Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, London, UK
- Bruker Nederland BV
| | - Hironori Bando
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
| | - Jason Mercer
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Avinash R Shenoy
- MRC Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Bernd Wollscheid
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Kendle M Maslowski
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Wojtek P Galej
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| |
Collapse
|
3
|
Uno Y, Uehara S, Ushirozako G, Masatani T, Yamazaki H. Chronic Toxoplasma infection affects gene expression of drug-metabolizing enzymes in mouse liver. Xenobiotica 2023; 53:581-586. [PMID: 37991059 DOI: 10.1080/00498254.2023.2286597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023]
Abstract
Toxoplasma gondii is an intracellular protozoan parasite causing toxoplasmosis, an infectious disease affecting warm-blooded vertebrates worldwide. Many drug-metabolizing enzymes are located in the liver, a major organ of drug metabolism, and their function can be affected by pathogen infection.Using next-generation sequencing (RNA-seq) and quantitative polymerase chain reaction (qPCR), changes in the hepatic expressions of drug-metabolizing enzymes were analysed in mice chronically infected with T. gondii. The analysis found that, among drug-metabolizing enzymes, 22 genes were upregulated and 28 genes were downregulated (≥1.5-fold); of these 5 and 17 genes, respectively, were cytochromes P450 (Cyp or P450).Subsequent qPCR analysis showed that six P450 genes were upregulated significantly (≥1.5-fold, p < 0.05), namely, Cyp1b1, Cyp2c29, Cyp2c65, Cyp2d9, Cyp2d12, and Cyp3a59, whereas nine P450 genes were downregulated significantly (≥1.5-fold, p < 0.05), namely, Cyp2c38, Cyp2c39, Cyp2c44, Cyp2c69, Cyp2d40, Cyp2e1, Cyp3a11, Cyp3a41, and Cyp3a44.Moreover, metabolic assays in infected mouse liver using typical P450 substrates revealed that midazolam 1'-hydroxylation and testosterone 2-hydroxylation activities decreased significantly (≥1.5-fold, p < 0.05), whereas testosterone 16-hydroxylation activity increased significantly (≥1.5-fold, p < 0.05).Chronic Toxoplasma infection affects drug metabolism, at least partly, by altering the gene expressions of drug-metabolizing enzymes, including P450s.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Genki Ushirozako
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tatsunori Masatani
- Faculty of Applied Biological Sciences, Laboratory of Zoonotic Diseases, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| |
Collapse
|
4
|
Zhai B, Xie SC, Zhang J, He JJ, Zhu XQ. Dynamic RNA profiles in the small intestinal epithelia of cats after Toxoplasma gondii infection. Infect Dis Poverty 2023; 12:68. [PMID: 37491273 PMCID: PMC10367386 DOI: 10.1186/s40249-023-01121-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Felids are the only definitive hosts of Toxoplasma gondii. However, the biological features of the feline small intestine following T. gondii infection are poorly understood. We investigated the changes in the expression of RNAs (including mRNAs, long non-coding RNAs and circular RNAs) in the small intestinal epithelia of cats following T. gondii infection to improve our understanding of the life cycle of T. gondii and cat responses to T. gondii infection. METHODS Fifteen cats were randomly assigned to five groups, and the infection groups were inoculated with 600 tissue cysts of the T. gondii Pru strain by gavage. The small intestinal epithelia of cats were collected at 6, 10, 14, and 30 days post infection (DPI). Using high-throughput RNA sequencing (RNA-seq), we investigated the changes in RNA expression. The expression levels of differentially expressed (DE) genes and non-coding RNAs (ncRNAs) identified by RNA-seq were validated by quantitative reverse transcription PCR (qRT-PCR). Differential expression was determined using the DESeq R package. RESULTS In total, 207 annotated lncRNAs, 20,552 novel lncRNAs, 3342 novel circRNAs and 19,409 mRNAs were identified. Among these, 70 to 344 DE mRNAs, lncRNAs and circRNAs were detected, and the post-cleavage binding sites between 725 ncRNAs and 2082 miRNAs were predicted. Using the co-location method, we predicted that a total of 235 lncRNAs target 1044 protein-coding genes, while the results of co-expression analysis revealed that 174 lncRNAs target 2097 mRNAs. Pathway enrichment analyses of the genes targeted by ncRNAs suggested that most ncRNAs were significantly enriched in immune or diseases-related pathways. NcRNA regulatory networks revealed that a single ncRNA could be directly or indirectly regulated by multiple genes or ncRNAs that could influence the immune response of cats. Co-expression analysis showed that 242 circRNAs, mainly involved in immune responses, were significantly associated with T. gondii infection. In contrast, 1352 protein coding RNAs, mainly involved in nucleic acid process/repair pathways or oocyte development pathways, were negatively associated with T. gondii infection. CONCLUSIONS This study is the first to reveal the expression profiles of circRNAs, lncRNAs and mRNAs in the cat small intestine following T. gondii infection and will facilitate the elucidation of the role of ncRNAs in the pathogenesis of T. gondii infection in its definitive host, thereby facilitating the development of novel intervention strategies against T. gondii infection in humans and animals.
Collapse
Affiliation(s)
- Bintao Zhai
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, Gansu, People's Republic of China
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Shi-Chen Xie
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, Gansu, People's Republic of China
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
5
|
Illuminating Host-Parasite Interaction at the Cellular and Subcellular Levels with Infrared Microspectroscopy. Cells 2022; 11:cells11050811. [PMID: 35269433 PMCID: PMC8909495 DOI: 10.3390/cells11050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is an opportunistic protozoan that can cause brain infection and other serious health consequences in immuno-compromised individuals. This parasite has a remarkable ability to cross biological barriers and exploit the host cell microenvironment to support its own survival and growth. Recent advances in label-free spectroscopic imaging techniques have made it possible to study biological systems at a high spatial resolution. In this study, we used conventional Fourier-transform infrared (FTIR) microspectroscopy and synchrotron-based FTIR microspectroscopy to analyze the chemical changes that are associated with infection of human brain microvascular endothelial cells (hBMECs) by T. gondii (RH) tachyzoites. Both FTIR microspectroscopic methods showed utility in revealing the chemical alterations in the infected hBMECs. Using a ZnS hemisphere device, to increase the numerical aperture, and the synchrotron source to increase the brightness, we obtained spatially resolved spectra from within a single cell. The spectra extracted from the nucleus and cytosol containing the tachyzoites were clearly distinguished. RNA sequencing analysis of T. gondii-infected and uninfected hBMECs revealed significant changes in the expression of host cell genes and pathways in response to T. gondii infection. These FTIR spectroscopic and transcriptomic findings provide significant insight into the molecular changes that occur in hBMECs during T. gondii infection.
Collapse
|
6
|
Zhang J, Chen J, Lv K, Li B, Yan B, Gai L, Shi C, Wang X, Si H, Zhang J. Myrislignan Induces Redox Imbalance and Activates Autophagy in Toxoplasma gondii. Front Cell Infect Microbiol 2021; 11:730222. [PMID: 34540720 PMCID: PMC8447958 DOI: 10.3389/fcimb.2021.730222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is an important health problem in human and animals, and the highlighting side effects of launched therapeutic chemicals cannot be ignored. Thus, it is urgent to develop new drugs to against the infection. Myrislignan originated from nutmeg exhibited excellent anti-T. gondii activity in vitro and in vivo, and was able to destroy mitochondrial function. However, the exact mechanism of action is still unknown. In this study, combining RNAs deep-sequencing analysis and surface plasmon resonance (SPR) analysis, the differentially expressed genes (DEGs) and high affinity proteins suggested that myrislignan may affect the oxidation-reduction process of T. gondii. Furthermore, the upregulating ROS activity after myrislignan incubation verified that myrislignan destroyed the oxidant-antioxidant homeostasis of tachyzoites. Transmission electron microscopy (TEM) indicated that myrislignan induced the formation of autophagosome-like double-membrane structure. Moreover, monodansyl cadaverine (MDC) staining and western blot further illustrated autophagosome formation. Myrislignan treatment induced a significant reduction in T. gondii by flow cytometry analysis. Together, these findings demonstrated that myrislignan can induce the oxidation-reduction in T. gondii, lead to the autophagy, and cause the death of T. gondii.
Collapse
Affiliation(s)
- Jili Zhang
- Intensive Care Unit, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China.,Ningbo University School of Medicine, Ningbo University, Ningbo, China
| | - Jia Chen
- Ningbo University School of Medicine, Ningbo University, Ningbo, China
| | - Kun Lv
- Ningbo University School of Business, Ningbo University, Ningbo, China
| | - Bing Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Biqing Yan
- Intensive Care Unit, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Lei Gai
- Intensive Care Unit, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Chaolu Shi
- Intensive Care Unit, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Xinnian Wang
- Intensive Care Unit, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Hongfei Si
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiyu Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
7
|
Ma J, He JJ, Wang M, Hou JL, Elsheikha HM, Zhu XQ. Toxoplasma gondii induces metabolic disturbances in the hippocampus of BALB/c mice. Parasitol Res 2021; 120:2805-2818. [PMID: 34219189 DOI: 10.1007/s00436-021-07222-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022]
Abstract
Toxoplasma gondii can cross the blood-brain barrier and infect different regions of the brain including the hippocampus. In the present study, we examined the impact of Toxoplasma gondii infection on the metabolism of the hippocampus of female BALB/c mice compared to control mice using ultra-high-performance liquid chromatography-tandem mass spectrometry. Multivariate analysis revealed significant differences between infected and control hippocampi and identified 25, 82, and 105 differential metabolites (DMs) in the infected hippocampi at 7, 14, and 21 days post-infection (dpi), respectively. One DM (sphingosyl-phosphocholine in the sphingolipid metabolism pathway) and 11 dysregulated pathways were detected at all time points post-infection, suggesting their important roles in the neuropathogenesis of T. gondii infection. These pathways were related to neural activity, such as inflammatory mediator regulation of TRP channels, retrograde endocannabinoid signaling, and arachidonic acid metabolism. Weighted correlation network analysis and receiver operating characteristic analysis identified 33 metabolites significantly associated with T. gondii infection in the hippocampus, and 30 of these were deemed as potential biomarkers for T. gondii infection. This study provides, for the first time, a global view of the metabolic perturbations that occur in the mouse hippocampus during T. gondii infection. The potential relevance of the identified metabolites and pathways to the pathogenesis of cognitive impairment and psychiatric disorders are discussed.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Meng Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China. .,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, People's Republic of China. .,Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, People's Republic of China.
| |
Collapse
|
8
|
Cui LL, Zhou CX, Han B, Wang SS, Li SY, Xie SC, Zhou DH. Urine proteomics for profiling of mouse toxoplasmosis using liquid chromatography tandem mass spectrometry analysis. Parasit Vectors 2021; 14:211. [PMID: 33879238 PMCID: PMC8056516 DOI: 10.1186/s13071-021-04713-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular parasite that causes toxoplasmosis. Urine is an easily obtained clinical sample that has been widely applied for diagnostic purposes. However, changes in the urinary proteome during T. gondii infection have never been investigated. METHODS Twenty four-hour urine samples were obtained from BALB/c mice with acute infection [11 days post infection (DPI)], mice with chronic infection (35 DPI) and healthy controls, and were analyzed using a label-free liquid chromatography tandem mass spectrometry analysis. RESULTS We identified a total of 13,414 peptides on 1802 proteins, of which 169 and 47 proteins were significantly differentially expressed at acute and chronic infection phases, respectively. Clustering analysis revealed obvious differences in proteome profiles among all groups. Gene ontology analysis showed that a large number of differentially expressed proteins (DEPs) detected in acute infection were associated with biological binding activity and single-organism processes. KEGG pathway enrichment analysis showed that the majority of these DEPs were involved in disease-related and metabolic pathways. CONCLUSIONS Our findings revealed global reprogramming of the urine proteome following T. gondii infection, and data obtained in this study will enhance our understanding of the host responses to T. gondii infection and lead to the identification of new diagnostic biomarkers.
Collapse
Affiliation(s)
- Lin-Lin Cui
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chun-Xue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, People's Republic of China.
| | - Bing Han
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Sha-Sha Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Si-Ying Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Shi-Chen Xie
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Dong-Hui Zhou
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
9
|
Menard KL, Bu L, Denkers EY. Transcriptomics analysis of Toxoplasma gondii-infected mouse macrophages reveals coding and noncoding signatures in the presence and absence of MyD88. BMC Genomics 2021; 22:130. [PMID: 33622246 PMCID: PMC7903719 DOI: 10.1186/s12864-021-07437-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is a globally distributed protozoan parasite that establishes life-long asymptomatic infection in humans, often emerging as a life-threatening opportunistic pathogen during immunodeficiency. As an intracellular microbe, Toxoplasma establishes an intimate relationship with its host cell from the outset of infection. Macrophages are targets of infection and they are important in early innate immunity and possibly parasite dissemination throughout the host. Here, we employ an RNA-sequencing approach to identify host and parasite transcriptional responses during infection of mouse bone marrow-derived macrophages (BMDM). We incorporated into our analysis infection with the high virulence Type I RH strain and the low virulence Type II strain PTG. Because the well-known TLR-MyD88 signaling axis is likely of less importance in humans, we examined transcriptional responses in both MyD88+/+ and MyD88-/- BMDM. Long noncoding (lnc) RNA molecules are emerging as key regulators in infection and immunity, and were, therefore, included in our analysis. RESULTS We found significantly more host genes were differentially expressed in response to the highly virulent RH strain rather than with the less virulent PTG strain (335 versus 74 protein coding genes for RH and PTG, respectively). Enriched in these protein coding genes were subsets associated with the immune response as well as cell adhesion and migration. We identified 249 and 83 non-coding RNAs as differentially expressed during infection with RH and PTG strains, respectively. Although the majority of these are of unknown function, one conserved lncRNA termed mir17hg encodes the mir17 microRNA gene cluster that has been implicated in down-regulating host cell apoptosis during T. gondii infection. Only a minimal number of transcripts were differentially expressed between MyD88 knockout and wild type cells. However, several immune genes were among the differences. While transcripts for parasite secretory proteins were amongst the most highly expressed T. gondii genes during infection, no differentially expressed parasite genes were identified when comparing infection in MyD88 knockout and wild type host BMDM. CONCLUSIONS The large dataset presented here lays the groundwork for continued studies on both the MyD88-independent immune response and the function of lncRNAs during Toxoplasma gondii infection.
Collapse
Affiliation(s)
- Kayla L Menard
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Eric Y Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
10
|
Mévélec MN, Lakhrif Z, Dimier-Poisson I. Key Limitations and New Insights Into the Toxoplasma gondii Parasite Stage Switching for Future Vaccine Development in Human, Livestock, and Cats. Front Cell Infect Microbiol 2020; 10:607198. [PMID: 33324583 PMCID: PMC7724089 DOI: 10.3389/fcimb.2020.607198] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a parasitic disease affecting human, livestock and cat. Prophylactic strategies would be ideal to prevent infection. In a One Health vaccination approach, the objectives would be the prevention of congenital disease in both women and livestock, prevention/reduction of T. gondii tissue cysts in food-producing animals; and oocyst shedding in cats. Over the last few years, an explosion of strategies for vaccine development, especially due to the development of genetic-engineering technologies has emerged. The field of vaccinology has been exploring safer vaccines by the generation of recombinant immunogenic proteins, naked DNA vaccines, and viral/bacterial recombinants vectors. These strategies based on single- or few antigens, are less efficacious than recombinant live-attenuated, mostly tachyzoite T. gondii vaccine candidates. Reflections on the development of an anti-Toxoplasma vaccine must focus not only on the appropriate route of administration, capable of inducing efficient immune response, but also on the choice of the antigen (s) of interest and the associated delivery systems. To answer these questions, the choice of the animal model is essential. If mice helped in understanding the protection mechanisms, the data obtained cannot be directly transposed to humans, livestock and cats. Moreover, effectiveness vaccines should elicit strong and protective humoral and cellular immune responses at both local and systemic levels against the different stages of the parasite. Finally, challenge protocols should use the oral route, major natural route of infection, either by feeding tissue cysts or oocysts from different T. gondii strains. Effective Toxoplasma vaccines depend on our understanding of the (1) protective host immune response during T. gondii invasion and infection in the different hosts, (2) manipulation and modulation of host immune response to ensure survival of the parasites able to evade and subvert host immunity, (3) molecular mechanisms that define specific stage development. This review presents an overview of the key limitations for the development of an effective vaccine and highlights the contributions made by recent studies on the mechanisms behind stage switching to offer interesting perspectives for vaccine development.
Collapse
Affiliation(s)
| | - Zineb Lakhrif
- Team BioMAP, Université de Tours, INRAE, ISP, Tours, France
| | | |
Collapse
|