1
|
Lughmani H, Patel H, Chakravarti R. Structural Features and Physiological Associations of Human 14-3-3ζ Pseudogenes. Genes (Basel) 2024; 15:399. [PMID: 38674334 PMCID: PMC11049341 DOI: 10.3390/genes15040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
There are about 14,000 pseudogenes that are mutated or truncated sequences resembling functional parent genes. About two-thirds of pseudogenes are processed, while others are duplicated. Although initially thought dead, emerging studies indicate they have functional and regulatory roles. We study 14-3-3ζ, an adaptor protein that regulates cytokine signaling and inflammatory diseases, including rheumatoid arthritis, cancer, and neurological disorders. To understand how 14-3-3ζ (gene symbol YWHAZ) performs diverse functions, we examined the human genome and identified nine YWHAZ pseudogenes spread across many chromosomes. Unlike the 32 kb exon-to-exon sequence in YWHAZ, all pseudogenes are much shorter and lack introns. Out of six, four YWHAZ exons are highly conserved, but the untranslated region (UTR) shows significant diversity. The putative amino acid sequence of pseudogenes is 78-97% homologous, resulting in striking structural similarities with the parent protein. The OMIM and Decipher database searches revealed chromosomal loci containing pseudogenes are associated with human diseases that overlap with the parent gene. To the best of our knowledge, this is the first report on pseudogenes of the 14-3-3 family protein and their implications for human health. This bioinformatics-based study introduces a new insight into the complexity of 14-3-3ζ's functions in biology.
Collapse
Affiliation(s)
| | | | - Ritu Chakravarti
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH 43614, USA; (H.L.); (H.P.)
| |
Collapse
|
2
|
Joseph J, Mathew J, Alexander J. Scaffold Proteins in Autoimmune Disorders. Curr Rheumatol Rev 2024; 20:14-26. [PMID: 37670692 DOI: 10.2174/1573397119666230904151024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023]
Abstract
Cells transmit information to the external environment and within themselves through signaling molecules that modulate cellular activities. Aberrant cell signaling disturbs cellular homeostasis causing a number of different diseases, including autoimmunity. Scaffold proteins, as the name suggests, serve as the anchor for binding and stabilizing signaling proteins at a particular locale, allowing both intra and intercellular signal amplification and effective signal transmission. Scaffold proteins play a critical role in the functioning of tight junctions present at the intersection of two cells. In addition, they also participate in cleavage formation during cytokinesis, and in the organization of neural synapses, and modulate receptor management outcomes. In autoimmune settings such as lupus, scaffold proteins can lower the cell activation threshold resulting in uncontrolled signaling and hyperactivity. Scaffold proteins, through their binding domains, mediate protein- protein interaction and play numerous roles in cellular communication and homeostasis. This review presents an overview of scaffold proteins, their influence on the different signaling pathways, and their role in the pathogenesis of autoimmune and auto inflammatory diseases. Since these proteins participate in many roles and interact with several other signaling pathways, it is necessary to gain a thorough understanding of these proteins and their nuances to facilitate effective target identification and therapeutic design for the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Josna Joseph
- Department of Clinical Immunology & Rheumatology, CMC Vellore, Tamil Nadu, India
| | - John Mathew
- Department of Clinical Immunology & Rheumatology, CMC Vellore, Tamil Nadu, India
| | - Jessy Alexander
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo, New York, USA
| |
Collapse
|
3
|
Li L, Abudureheman Z, Zhong X, Gong H, Yang F, Awuti A, Alimu A, Yilamujiang S, Zheng D, Zou X. Clinical symptoms and immune injury reflected by low CD4/CD8 ratio should increase the suspicion of HIV coinfection with tuberculosis. Heliyon 2023; 9:e14219. [PMID: 36938418 PMCID: PMC10015191 DOI: 10.1016/j.heliyon.2023.e14219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/29/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Background Patients who are coinfected with human immunodeficiency virus 1 (HIV) and Mycobacterium tuberculosis (TB) benefit from timely diagnosis and treatment. In the present study frequencies of CD3+, CD4+, and CD8+ T cells among peripheral blood mononuclear cells (PBMCs) of patients in the Kashi region of China infected with HIV, TB, and both HIV and TB (HIV-TB) were investigated to provide a basis for rapid identification of coinfected patients. Methods A total of 62 patients with HIV, TB, or HIV-TB who were first hospitalized at our institution were included in the study, as were 30 controls. PBMCs were isolated, and the frequencies of CD3+, CD4+, and CD8+ T cells were determined via flow cytometry. Results The frequency of CD4+ T cells and the CD4/CD8 ratio were significantly lower in the HIV-TB group than in the other three groups. In fever patients the frequency of CD4+ T cells and the CD4/CD8 ratio were significantly lower in the HIV-TB group than in the HIV group and the TB group. In patients who exhibited rapid weight loss there were no significant differences in the frequency of CD4+ T cells or the CD4/CD8 ratio between the groups. The results of treatment were compared in the HIV, TB, and HIV-TB groups after 7 days, and there were obvious improvements in the frequency of CD4+ T cells and the CD4/CD8 ratio. Conclusion Clinical symptoms and the degree of immune injury can heighten suspicion for HIV-TB coinfection.
Collapse
Affiliation(s)
- Li Li
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
- Corresponding author. Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, China
| | - Zulipikaer Abudureheman
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, China
| | - XueMei Zhong
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, China
| | - Hui Gong
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, China
| | - Fan Yang
- Department of Infectious Diseases, First People's Hospital of Kashi, Kashi, China
| | - Abuduweili Awuti
- Department of Infectious Diseases, First People's Hospital of Kashi, Kashi, China
| | - Ayiguli Alimu
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, China
| | - Subinuer Yilamujiang
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, China
| | - DaYong Zheng
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, China
- Corresponding author.
| | - XiaoGuang Zou
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, China
- Corresponding author.
| |
Collapse
|
4
|
Immune regulations by 14-3-3: A misty terrain. Immunobiology 2021; 226:152145. [PMID: 34628289 DOI: 10.1016/j.imbio.2021.152145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022]
Abstract
The 14-3-3 proteins are known for their functions related to the cell cycle and play a prominent role in cancer-related diseases. Recent studies show that 14-3-3 proteins are also regulators of immune responses and are involved in the pathogenesis of autoimmune and infectious diseases. This focused review highlights the significant and recent studies on how 14-3-3 proteins influence innate and adaptive immune responses; specifically, their roles as immunogens and cytokine signaling regulators are discussed. These revelations have added numerous questions to the pre-existing list of challenges, including understanding the 14-3-3 proteins' mechanism of immunogenicity to dissecting the isoform-specific immune regulations.
Collapse
|
5
|
Abstract
Inflammatory arthritis (IA) is a common disease that affects millions of individuals worldwide. Proinflammatory events during IA pathogenesis are well studied; however, loss of protective immunity remains underexplored. Earlier, we reported that 14-3-3zeta (ζ) has a role in T-cell polarization and interleukin (IL)-17A signal transduction. Here, we demonstrate that 14-3-3ζ knockout (KO) rats develop early-onset severe arthritis in two independent models of IA, pristane-induced arthritis and collagen-induced arthritis. Arthritic 14-3-3ζ KO animals showed an increase in bone loss and immune cell infiltration in synovial joints. Induction of arthritis coincided with the loss of anti-14-3-3ζ antibodies; however, rescue experiments to supplement the 14-3-3ζ antibody by passive immunization did not suppress arthritis. Instead, 14-3-3ζ immunization during the presymptomatic phase resulted in significant suppression of arthritis in both wild-type and 14-3-3ζ KO animals. Mechanistically, 14-3-3ζ KO rats exhibited elevated inflammatory gene signatures at the messenger RNA and protein levels, particularly for IL-1β. Furthermore, the immunization with recombinant 14-3-3ζ protein suppressed IL-1β levels, significantly increased anti-14-3-3ζ antibody levels and collagen production, and preserved bone quality. The 14-3-3ζ protein increased collagen expression in primary rat mesenchymal cells. Together, our findings indicate that 14-3-3ζ causes immune suppression and extracellular remodeling, which lead to a previously unrecognized IA-suppressive function.
Collapse
|
6
|
Yin SJ, Lee JR, Hahn MJ, Yang JM, Qian GY, Park YD. Tyrosinase-mediated melanogenesis in melanoma cells: Array comparative genome hybridization integrating proteomics and bioinformatics studies. Int J Biol Macromol 2020; 170:150-163. [PMID: 33359255 DOI: 10.1016/j.ijbiomac.2020.12.146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022]
Abstract
We investigated the tyrosinase-associated melanogenesis in melanoma cells by using OMICS techniques. We characterized the chromosome copy numbers, including Chr 11q21 where the tyrosinase gene is located, from several melanoma cell lines (TXM13, G361, and SK-MEL-28) by using array CGH. We revealed that 11q21 is stable in TXM13 cells, which is directly related to a spontaneous high melanin pigment production. Meanwhile, significant loss of copy number of 11q21 was found in G361 and SK-MEL-28. We further profiled the proteome of TXM13 cells by LC-ESI-MSMS and detected more than 900 proteins, then predicted 11 hub proteins (YWHAZ; HSP90AA1; HSPA5; HSPA1L; HSPA9; HSP90B1; HSPA1A; HSPA8; FKSG30; ACTB; DKFZp686DQ972) by using an interactomic algorithm. YWHAZ (25% interaction in the network) is thought to be a most important protein as a linking factor between tyrosinase-triggered melanogenesis and melanoma growth. Bioinformatic tools were further applied for revealing various physiologic mechanisms and functional classification. The results revealed clues for the spontaneous pigmentation capability of TXM13 cells, contrary to G361 and SK-MEL-28 cells, which commonly have depigmentation properties during subculture. Our study comparatively conducted the genome-wide screening and proteomic profiling integrated interactomics prediction for TXM13 cells and suggests new insights for studying both melanogenesis and melanoma.
Collapse
Affiliation(s)
- Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Jae-Rin Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Myong-Joon Hahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jun-Mo Yang
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul 135-710, South Korea
| | - Guo-Ying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China.
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China; Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, PR China; Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, PR China.
| |
Collapse
|
7
|
Wei JCC, Leong PY, Liu GY. Chaperone/scaffolding/adaptor protein 14-3-3η (eta): A diagnostic marker of rheumatoid arthritis. Int J Rheum Dis 2020; 23:1439-1442. [PMID: 33225576 DOI: 10.1111/1756-185x.14004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 11/28/2022]
Affiliation(s)
- James Cheng-Chung Wei
- Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Pui-Ying Leong
- Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Guang-Yaw Liu
- Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Institute of Biochemistry, Microbiology & Immunology, Chung Shan Medical University Taichung, Taichung, Taiwan
| |
Collapse
|
8
|
McGowan J, Peter C, Kim J, Popli S, Veerman B, Saul-McBeth J, Conti H, Pruett-Miller SM, Chattopadhyay S, Chakravarti R. 14-3-3ζ-TRAF5 axis governs interleukin-17A signaling. Proc Natl Acad Sci U S A 2020; 117:25008-25017. [PMID: 32968020 PMCID: PMC7547158 DOI: 10.1073/pnas.2008214117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
IL-17A is a therapeutic target in many autoimmune diseases. Most nonhematopoietic cells express IL-17A receptors and respond to extracellular IL-17A by inducing proinflammatory cytokines. The IL-17A signal transduction triggers two broad, TRAF6- and TRAF5-dependent, intracellular signaling pathways to produce representative cytokines (IL-6) and chemokines (CXCL-1), respectively. Our limited understanding of the cross-talk between these two branches has generated a crucial gap of knowledge, leading to therapeutics indiscriminately blocking IL-17A and global inhibition of its target genes. In previous work, we discovered an elevated expression of 14-3-3 proteins in inflammatory aortic disease, a rare human autoimmune disorder with increased levels of IL-17A. Here we report that 14-3-3ζ is essential for IL-17 signaling by differentially regulating the signal-induced IL-6 and CXCL-1. Using genetically manipulated human and mouse cells, and ex vivo and in vivo rat models, we uncovered a function of 14-3-3ζ. As a part of the molecular mechanism, we show that 14-3-3ζ interacts with several TRAF proteins; in particular, its interaction with TRAF5 and TRAF6 is increased in the presence of IL-17A. In contrast to TRAF6, we found TRAF5 to be an endogenous suppressor of IL-17A-induced IL-6 production, an effect countered by 14-3-3ζ. Furthermore, we observed that 14-3-3ζ interaction with TRAF proteins is required for the IL-17A-induced IL-6 levels. Together, our results show that 14-3-3ζ is an essential component of IL-17A signaling and IL-6 production, an effect that is suppressed by TRAF5. To the best of our knowledge, this report of the 14-3-3ζ-TRAF5 axis, which differentially regulates IL-17A-induced IL-6 and CXCL-1 production, is unique.
Collapse
Affiliation(s)
- Jenna McGowan
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614
| | - Cara Peter
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614
| | - Joshua Kim
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614
| | - Sonam Popli
- Department of Medical Microbiology & Immunology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614
| | - Brent Veerman
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614
| | - Jessica Saul-McBeth
- Department of Biological Sciences, College of Natural Sciences & Mathematics, University of Toledo, Toledo, OH 43614
| | - Heather Conti
- Department of Biological Sciences, College of Natural Sciences & Mathematics, University of Toledo, Toledo, OH 43614
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology & Immunology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614
| | - Ritu Chakravarti
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614;
| |
Collapse
|
9
|
Benhuri B, ELJack A, Kahaleh B, Chakravarti R. Mechanism and biomarkers in aortitis--a review. J Mol Med (Berl) 2019; 98:11-23. [PMID: 31664480 DOI: 10.1007/s00109-019-01838-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 12/26/2022]
Abstract
Aortitis can be the manifestation of an underlying infectious or noninfectious disease process. An autoimmune cause is suggested in a large proportion of noninfectious causes. Similar to other autoimmune diseases, the pathophysiology of aortitis has been investigated in detail, but the etiology remains unknown. Most cases of aortitis often go undetected for a long time and are often identified at late stages of the disease. Recent advances in imaging techniques have significantly improved the diagnosis of aortitis. However, significant challenges associated with the imaging techniques limit their use. Several routine inflammation-based markers, such as erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and inflammatory cytokines, are nonspecific and, therefore, have limited use in the diagnosis of aortitis. The search for more specific serum biomarkers, which can facilitate detection and progression is under progress. Several autoantibodies have been identified, but assigning their role in the pathogenesis as well as their specificity remains a challenge. The current review addresses some of these issues in detail. KEY MESSAGES: • Noninfectious aortitis is an autoimmune disease. • Several biomarkers, including cytokines and autoantibodies, are increased in aortitis. • Imaging techniques, commonly used to detect aortitis, are associated with the high cost and technical challenges. • There is a need to develop low-cost biomarker-based detection tools. • The knowledge of biomarkers in aortitis detection is discussed.
Collapse
Affiliation(s)
- Benjamin Benhuri
- Department of Physiology & Pharmacology, College of Medical & Life Sciences, University of Toledo College of Medicine, 3000 Arlington Ave, Toledo, OH, 43614, USA.,Department of Internal Medicine, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ammar ELJack
- Department of Physiology & Pharmacology, College of Medical & Life Sciences, University of Toledo College of Medicine, 3000 Arlington Ave, Toledo, OH, 43614, USA.,Depatment of Intenal Medicine, Beaumont Hospital, Dearborn, MI, 48124, USA
| | - Bashar Kahaleh
- Division of Rheumatology, University of Toledo College of Medicine, 3000 Arlington Ave, Toledo, OH, 43614, USA
| | - Ritu Chakravarti
- Department of Physiology & Pharmacology, College of Medical & Life Sciences, University of Toledo College of Medicine, 3000 Arlington Ave, Toledo, OH, 43614, USA.
| |
Collapse
|