1
|
Mehanna N, Pradhan A, Kaur R, Kontopoulos T, Rosati B, Carlson D, Cheung NK, Xu H, Bean J, Hsu K, Le Luduec JB, Vorkas CK. Loss of circulating CD8α + NK cells during human Mycobacterium tuberculosis infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.588542. [PMID: 38659858 PMCID: PMC11042275 DOI: 10.1101/2024.04.16.588542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Natural Killer (NK) cells can recognize and kill Mtb-infected cells in vitro, however their role after natural human exposure has not been well-studied. To identify Mtb-responsive NK cell populations, we analyzed the peripheral blood of healthy household contacts of active Tuberculosis (TB) cases and source community donors in an endemic region of Port-au-Prince, Haiti by flow cytometry. We observed higher CD8α expression on NK cells in putative resistors (IGRA- contacts) with a progressive loss of these circulating cells during household-associated latent infection and disease. In vitro assays and CITE-seq analysis of CD8α+ NK cells demonstrated enhanced maturity, cytotoxic gene expression, and response to cytokine stimulation relative to CD8α- NK cells. CD8α+ NK cells also displayed dynamic surface expression dependent on MHC I in contrast to conventional CD8+ T cells. Together, these results support a specialized role for CD8α+ NK cell populations during Mtb infection correlating with disease resistance.
Collapse
Affiliation(s)
- Nezar Mehanna
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - Atul Pradhan
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - Rimanpreet Kaur
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - Theodota Kontopoulos
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Barbara Rosati
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - David Carlson
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - Nai-Kong Cheung
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Hong Xu
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - James Bean
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Katherine Hsu
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jean-Benoit Le Luduec
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Charles Kyriakos Vorkas
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, 11794
| |
Collapse
|
2
|
Sankar P, Mishra BB. Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis. Front Immunol 2023; 14:1260859. [PMID: 37965344 PMCID: PMC10641450 DOI: 10.3389/fimmu.2023.1260859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, claiming the lives of up to 1.5 million individuals annually. TB is caused by the human pathogen Mycobacterium tuberculosis (Mtb), which primarily infects innate immune cells in the lungs. These immune cells play a critical role in the host defense against Mtb infection, influencing the inflammatory environment in the lungs, and facilitating the development of adaptive immunity. However, Mtb exploits and manipulates innate immune cells, using them as favorable niche for replication. Unfortunately, our understanding of the early interactions between Mtb and innate effector cells remains limited. This review underscores the interactions between Mtb and various innate immune cells, such as macrophages, dendritic cells, granulocytes, NK cells, innate lymphocytes-iNKT and ILCs. In addition, the contribution of alveolar epithelial cell and endothelial cells that constitutes the mucosal barrier in TB immunity will be discussed. Gaining insights into the early cellular basis of immune reactions to Mtb infection is crucial for our understanding of Mtb resistance and disease tolerance mechanisms. We argue that a better understanding of the early host-pathogen interactions could inform on future vaccination approaches and devise intervention strategies.
Collapse
Affiliation(s)
| | - Bibhuti Bhusan Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
3
|
Pean P, Madec Y, Nerrienet E, Borand L, Laureillard D, Fernandez M, Marcy O, Scott-Algara D. Natural Killer Repertoire Restoration in TB/HIV Co-Infected Individuals Experienced an Immune Reconstitution Syndrome (CAMELIA Trial, ANRS 12153). Pathogens 2023; 12:1241. [PMID: 37887757 PMCID: PMC10610037 DOI: 10.3390/pathogens12101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
IRIS is a common complication in HIV-infected patients treated for tuberculosis (TB) and cART. Our aim was to evaluate NK cell reconstitution in HIV-infected patients with TB-IRIS compared to those without IRIS. 147 HIV-infected patients with TB from the CAMELIA trial were enrolled. HIV+TB+ patients were followed for 32 weeks. The NK cell repertoire was assessed in whole blood at different time points. As CAMELIA has two arms (early and late cART initiation), we analysed them separately. At enrolment, individuals had low CD4 cell counts (27 cells/mm3) and high plasma viral loads (5.76 and 5.50 log/mL for IRIS and non-IRIS individuals, respectively). Thirty-seven people developed IRIS (in the early and late arms). In the early and late arms, we observed similar proportions of total NK and NK cell subsets in TB-IRIS and non-IRIS individuals during follow-up, except for the CD56dimCD16pos (both arms) and CD56dimCD16neg (late arm only) subsets, which were higher in TB-IRIS and non-IRIS individuals, respectively, after cART. Regarding the repertoire and markers of NK cells, significant differences (lower expression of NKp30, NKG2A (CD159a), NKG2D (CD314) were observed in TB-IRIS compared to non-IRIS individuals after the start of cART. In the late arm, some changes (increased expression of CD69, NKG2C, CD158i) were observed in TB-IRIS compared to non-IRIS individuals, but only before cART initiation (during TB treatment). KIR expression by NK cells (CD158a and CD158i) was similar in both groups. CD69 expression by NK cells decreased in all groups. Expression of the NCR repertoire (NKp30, NKp44, NKp46) has similar kinetics in TB-IRIS subjects compared to non-IRIS subjects regardless of the arm analysed. NK cell reconstitution appeared to be better in TB-IRIS subjects. Although NK cell reconstitution is impaired in HIV infection after cART, as previously reported, it does not appear to be affected by the development of IRIS in HIV and TB-infected individuals.
Collapse
Affiliation(s)
- Polidy Pean
- Immunology Unit, Institute Pasteur du Cambodge, Phnom Pen 12000, Cambodia
| | - Yoann Madec
- Epidemiology of Emerging Diseases, Institut Pasteur, Université de Paris, 75000 Paris, France;
| | | | - Laurence Borand
- Clinical Research Team, Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phom Penh 12000, Cambodia;
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 20600, USA
| | - Didier Laureillard
- Infectious and Tropical Diseases Department, University Hospital, 30900 Nimes, France;
| | | | - Olivier Marcy
- Research Institute for Sustainable Development (IRD) EMR 271, National Institute for Health and Medical Research (INSERM) UMR 1219, University of Bordeaux, 33000 Bordeaux, France;
| | - Daniel Scott-Algara
- Unité de Biologie Cellulaire et Lymphocytes, Institut Pasteur, 75000 Paris, France;
| |
Collapse
|
4
|
Maseko TG, Rambaran S, Ngubane S, Lewis L, Ngcapu S, Hassan-Moosa R, Archary D, Perumal R, Padayatchi N, Naidoo K, Sivro A. NK cell phenotypic profile during active TB in people living with HIV-evolution during TB treatment and implications for bacterial clearance and disease severity. Sci Rep 2023; 13:11726. [PMID: 37474556 PMCID: PMC10359304 DOI: 10.1038/s41598-023-38766-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
Natural killer (NK) cells, key effector cells of the innate immune system, play an important role in the clearance and control of Mycobacterium tuberculosis and HIV infections. Here, we utilized peripheral blood specimens from the Improving Retreatment Success CAPRISA 011 study to characterize NK cell phenotypes during active TB in individuals with or without HIV co-infection. We further assessed the effects of TB treatment on NK cell phenotype, and characterized the effects of NK cell phenotypes during active TB on mycobacterial clearance and TB disease severity measured by the presence of lung cavitation. TB/HIV co-infection led to the expansion of functionally impaired CD56neg NK cell subset. TB treatment completion resulted in restoration of total NK cells, NK cell subset redistribution and downregulation of several NK cell activating and inhibitory receptors. Higher percentage of peripheral CD56bright cells was associated with longer time to culture conversion, while higher expression of NKp46 on CD56dim NK cells was associated with lower odds of lung cavitation in the overall cohort and the TB/HIV co-infected participants. Together these results provide a detailed description of peripheral NK cells in TB and TB/HIV co-infection and yield insights into their role in TB disease pathology.
Collapse
Affiliation(s)
- Thando Glory Maseko
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- South African Medical Research Council (SAMRC)-CAPRISA-TB-HIV Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal Nelson R Mandela School of Medicine, Durban, South Africa
| | - Santhuri Rambaran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Slindile Ngubane
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Lara Lewis
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Razia Hassan-Moosa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- South African Medical Research Council (SAMRC)-CAPRISA-TB-HIV Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal Nelson R Mandela School of Medicine, Durban, South Africa
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- South African Medical Research Council (SAMRC)-CAPRISA-TB-HIV Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal Nelson R Mandela School of Medicine, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- South African Medical Research Council (SAMRC)-CAPRISA-TB-HIV Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal Nelson R Mandela School of Medicine, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- South African Medical Research Council (SAMRC)-CAPRISA-TB-HIV Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal Nelson R Mandela School of Medicine, Durban, South Africa
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa.
- South African Medical Research Council (SAMRC)-CAPRISA-TB-HIV Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal Nelson R Mandela School of Medicine, Durban, South Africa.
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
5
|
de Sá NBR, de Souza NCS, Neira-Goulart M, Ribeiro-Alves M, Da Silva TP, Pilotto JH, Rolla VC, Giacoia-Gripp CBW, de Oliveira Pinto LM, Scott-Algara D, Morgado MG, Teixeira SLM. Inflammasome genetic variants are associated with tuberculosis, HIV-1 infection, and TB/HIV-immune reconstitution inflammatory syndrome outcomes. Front Cell Infect Microbiol 2022; 12:962059. [PMID: 36204643 PMCID: PMC9531132 DOI: 10.3389/fcimb.2022.962059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTuberculosis (TB) and AIDS are the leading causes of infectious diseases death worldwide. Here, we investigated the relationship between from single nucleotide polymorphisms (SNPs) of the NLRP3, CARD8, AIM2, CASP-1, IFI16, and IL-1β inflammasome genes, as well as the profiles of secreted proinflammatory cytokines (e.g., IL-1β, IL-18, IL-33, and IL-6) with the TB clinical profiles, TB-HIV coinfection, and IRIS onset.MethodsThe individuals were divided into four groups: TB-HIV group (n=88; 11 of them with IRIS), HIV-1 group (n=20), TB group (n=24) and healthy volunteers (HC) group (n=10), and were followed up at INI/FIOCRUZ and HGNI (Rio de Janeiro/Brazil) from 2006 to 2016. Real-time PCR was used to determine the genotypes of the Single Nucleotide Polymorphism (SNPs), and ELISA was used to measure the plasma cytokine levels. Unconditional logistic regression models were used to perform risk estimations.ResultsA higher risk for extrapulmonary TB was associated with the TT genotype (aOR=6.76; P=0.026) in the NLRP3 rs4612666 Single Nucleotide Polymorphism (SNP) and the C-C-T-G-C haplotype (aOR=4.99; P= 0.017) in the NLRP3 variants. This same Single Nucleotide Polymorphism (SNP) was associated with lower risk against extrapulmonary TB when the carrier allele C (aOR=0.15; P=0.021) was present. Among those with HIV-1 infections, a higher risk for TB onset was associated with the GA genotype (aOR=5.5; P=0.044) in the IL1-β rs1143634 Single Nucleotide Polymorphism (SNP). In contrast, lower risk against TB onset was associated with the A-G haplotype (aOR=0.17; P= 0.026) in the CARD8 variants. Higher IL-6 and IL-33 levels were observed in individuals with TB. A higher risk for IRIS onset was associated with CD8 counts ≤ 500 cells/mm3 (aOR=12.32; P=0.010), the presence of extrapulmonary TB (aOR=6.6; P=0.038), and the CT genotype (aOR=61.06; P=0.026) or carrier allele T (aOR=61.06; P=0.026) in the AIM2 rs2276405 Single Nucleotide Polymorphism (SNP), whereas lower risk against IRIS onset was associated with the AT genotype (aOR=0.02; P=0.033) or carrier allele T (aOR=0.02; P=0.029) in the CARD8 rs2043211 Single Nucleotide Polymorphism (SNP) and the T-G haplotype (aOR=0.07; P= 0.033) in the CARD8 variants. No other significant associations were observed.ConclusionsOur results depict the involvement of genetic polymorphisms of crucial innate immunity genes and proinflammatory cytokines in the clinical outcomes related to TB-HIV coinfection.
Collapse
Affiliation(s)
- Nathalia Beatriz Ramos de Sá
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- *Correspondence: Mariza Gonçalves Morgado, ; Nathalia Beatriz Ramos de Sá,
| | | | - Milena Neira-Goulart
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Marcelo Ribeiro-Alves
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectious Diseases Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Tatiana Pereira Da Silva
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Jose Henrique Pilotto
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Nova Iguaçu General Hospital, Nova Iguaçu, Rio de Janeiro, Brazil
| | - Valeria Cavalcanti Rolla
- Clinical Research Laboratory on Mycobacteria, National Institute of Infectious Diseases Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | - Daniel Scott-Algara
- Unité de Biologie Cellulaire des Lymphocytes, Institut Pasteur, Paris, France
| | - Mariza Gonçalves Morgado
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- *Correspondence: Mariza Gonçalves Morgado, ; Nathalia Beatriz Ramos de Sá,
| | | |
Collapse
|
6
|
Halvas EK, Joseph KW, Brandt LD, Guo S, Sobolewski MD, Jacobs JL, Tumiotto C, Bui JK, Cyktor JC, Keele BF, Morse GD, Bale MJ, Shao W, Kearney MF, Coffin JM, Rausch JW, Wu X, Hughes SH, Mellors JW. HIV-1 viremia not suppressible by antiretroviral therapy can originate from large T cell clones producing infectious virus. J Clin Invest 2020; 130:5847-5857. [PMID: 33016926 PMCID: PMC7598056 DOI: 10.1172/jci138099] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUNDHIV-1 viremia that is not suppressed by combination antiretroviral therapy (ART) is generally attributed to incomplete medication adherence and/or drug resistance. We evaluated individuals referred by clinicians for nonsuppressible viremia (plasma HIV-1 RNA above 40 copies/mL) despite reported adherence to ART and the absence of drug resistance to the current ART regimen.METHODSSamples were collected from at least 2 time points from 8 donors who had nonsuppressible viremia for more than 6 months. Single templates of HIV-1 RNA obtained from plasma and viral outgrowth of cultured cells and from proviral DNA were amplified by PCR and sequenced for evidence of clones of cells that produced infectious viruses. Clones were confirmed by host-proviral integration site analysis.RESULTSHIV-1 genomic RNA with identical sequences were identified in plasma samples from all 8 donors. The identical viral RNA sequences did not change over time and did not evolve resistance to the ART regimen. In 4 of the donors, viral RNA sequences obtained from plasma matched those sequences from viral outgrowth cultures, indicating that the viruses were replication competent. Integration sites for infectious proviruses from those 4 donors were mapped to the introns of the MATR3, ZNF268, ZNF721/ABCA11P, and ABCA11P genes. The sizes of the clones were estimated to be from 50 million to 350 million cells.CONCLUSIONThese findings show that clones of HIV-1-infected cells producing virus can cause failure of ART to suppress viremia. The mechanisms involved in clonal expansion and persistence need to be defined to effectively target viremia and the HIV-1 reservoir.FUNDINGNational Cancer Institute, NIH; Howard Hughes Medical Research Fellows Program, Howard Hughes Medical Institute; Bill and Melinda Gates Foundation; Office of AIDS Research; American Cancer Society; National Cancer Institute through a Leidos subcontract; National Institute for Allergy and Infectious Diseases, NIH, to the I4C Martin Delaney Collaboratory; University of Rochester Center for AIDS Research and University of Rochester HIV/AIDS Clinical Trials Unit.
Collapse
Affiliation(s)
- Elias K. Halvas
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin W. Joseph
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Leah D. Brandt
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shuang Guo
- Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | | | - Jana L. Jacobs
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Camille Tumiotto
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John K. Bui
- New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Department of Medicine, New York, New York, USA
| | - Joshua C. Cyktor
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Gene D. Morse
- NYS Center of Excellence in Bioinformatics and Life Sciences, Translational Pharmacology Research Core, University at Buffalo, Buffalo, New York, USA
| | - Michael J. Bale
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Wei Shao
- Advanced Biomedical Computing Science, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, Maryland, USA
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - John M. Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Jason W. Rausch
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Xiaolin Wu
- Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - John W. Mellors
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
de Sá NBR, Ribeiro-Alves M, da Silva TP, Pilotto JH, Rolla VC, Giacoia-Gripp CBW, Scott-Algara D, Morgado MG, Teixeira SLM. Clinical and genetic markers associated with tuberculosis, HIV-1 infection, and TB/HIV-immune reconstitution inflammatory syndrome outcomes. BMC Infect Dis 2020; 20:59. [PMID: 31959123 PMCID: PMC6971853 DOI: 10.1186/s12879-020-4786-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 01/09/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) and AIDS are the leading causes of infectious disease death worldwide. In some TB-HIV co-infected individuals treated for both diseases simultaneously, a pathological inflammatory reaction termed immune reconstitution inflammatory syndrome (IRIS) may occur. The risk factors for IRIS are not fully defined. We investigated the association of HLA-B, HLA-C, and KIR genotypes with TB, HIV-1 infection, and IRIS onset. METHODS Patients were divided into four groups: Group 1- TB+/HIV+ (n = 88; 11 of them with IRIS), Group 2- HIV+ (n = 24), Group 3- TB+ (n = 24) and Group 4- healthy volunteers (n = 26). Patients were followed up at INI/FIOCRUZ and HGNI (Rio de Janeiro/Brazil) from 2006 to 2016. The HLA-B and HLA-C loci were typed using SBT, NGS, and KIR genes by PCR-SSP. Unconditional logistic regression models were performed for Protection/risk estimation. RESULTS Among the individuals with TB as the outcome, KIR2DS2 was associated with increased risk for TB onset (aOR = 2.39, P = 0.04), whereas HLA-B*08 and female gender were associated with protection against TB onset (aOR = 0.23, P = 0.03, and aOR = 0.33, P = 0.01, respectively). Not carrying KIR2DL3 (aOR = 0.18, P = 0.03) and carrying HLA-C*07 (aOR = 0.32, P = 0.04) were associated with protection against TB onset among HIV-infected patients. An increased risk for IRIS onset was associated with having a CD8 count ≤500 cells/mm3 (aOR = 18.23, P = 0.016); carrying the KIR2DS2 gene (aOR = 27.22, P = 0.032), the HLA-B*41 allele (aOR = 68.84, P = 0.033), the KIR2DS1 + HLA-C2 pair (aOR = 28.58, P = 0.024); and not carrying the KIR2DL3 + HLA-C1/C2 pair (aOR = 43.04, P = 0.034), and the KIR2DL1 + HLA-C1/C2 pair (aOR = 43.04, P = 0.034), CONCLUSIONS: These results suggest the participation of these genes in the immunopathogenic mechanisms related to the conditions studied. This is the first study demonstrating an association of HLA-B*41, KIR2DS2, and KIR + HLA-C pairs with IRIS onset among TB-HIV co-infected individuals.
Collapse
Affiliation(s)
- Nathalia Beatriz Ramos de Sá
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ. Av. Brasil 4365, Leonidas Deane Building, room 401, Rio de Janeiro, 21040-360, Brazil
| | - Marcelo Ribeiro-Alves
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectious Diseases Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Tatiana Pereira da Silva
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ. Av. Brasil 4365, Leonidas Deane Building, room 401, Rio de Janeiro, 21040-360, Brazil
| | - Jose Henrique Pilotto
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ. Av. Brasil 4365, Leonidas Deane Building, room 401, Rio de Janeiro, 21040-360, Brazil
- Nova Iguaçu General Hospital, Nova Iguaçu, Rio de Janeiro, Brazil
| | - Valeria Cavalcanti Rolla
- Clinical Research Laboratory on Mycobacteria, National Institute of Infectious Diseases Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Carmem B W Giacoia-Gripp
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ. Av. Brasil 4365, Leonidas Deane Building, room 401, Rio de Janeiro, 21040-360, Brazil
| | - Daniel Scott-Algara
- Unité de Biologie Cellulaire des Lymphocytes, Institut Pasteur, Paris, France
| | - Mariza Gonçalves Morgado
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ. Av. Brasil 4365, Leonidas Deane Building, room 401, Rio de Janeiro, 21040-360, Brazil.
| | - Sylvia Lopes Maia Teixeira
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ. Av. Brasil 4365, Leonidas Deane Building, room 401, Rio de Janeiro, 21040-360, Brazil
| |
Collapse
|