1
|
Li S, Duan Y, Luo S, Zhou F, Wu Q, Lu Z. Short-chain fatty acids and cancer. Trends Cancer 2024:S2405-8033(24)00255-3. [PMID: 39638744 DOI: 10.1016/j.trecan.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Short-chain fatty acids (SCFAs), derived from the diet and the microbiota, serve as crucial links between the diet, gut microbiota, metabolism, immunity, and cancer. They function as energy sources through β-oxidation and regulate macromolecular synthesis, G protein-coupled receptor (GPCR) and histone deacetylase (HDAC) activities, protein modifications, signaling pathways, and gene expression in cells within the tumor microenvironment, particularly in tumor and immune cells. The critical role of SCFAs in maintaining normal homeostasis and influencing tumor progression highlights the potential of targeting SCFA-mediated cellular processes for cancer prevention and treatment.
Collapse
Affiliation(s)
- Shan Li
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Yixin Duan
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Shudi Luo
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Fangxin Zhou
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Qingang Wu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Zhimin Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
2
|
Liu Y, Huang Y, Yang W, Hu W, Wu Z, Wu T, Pu Y, Jiang Y, Zhu H, Zhang J, Cheng F, Feng S. Aspartame enhances the scavenging activity of mice to low-dose Escherichia coli infection via strengthening macrophage phagocytosis caused by sweet taste receptor activation. FASEB J 2024; 38:e70170. [PMID: 39535424 DOI: 10.1096/fj.202401396rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Aspartame is the most common artificial sweetener and a famous sweet-taste receptor agonist. Macrophages are essential in the antibacterial system to maintain the stability of the intestinal environment. Recently, the sweet taste receptor has been found in macrophages. However, the effects of aspartame on macrophage phagocytosis in the gastrointestinal tract are little known. The current study sought to assess the influence of aspartame intake on the scavenging activity of mice to low-dose Escherichia coli infection and related mechanisms. Firstly, no inflammatory response or pathological injury was observed in the intestines of mice after oral administration of aspartame (25-100 mg/kg, i.g.) for 2 weeks. Subsequently, aspartame intake was found to enhance the scavenging activity of mice to low-dose E. coli infection. Similarly, aspartame dose-dependent strengthened the ability of RAW264.7 cells to phagocytose GFP-E.coli J96. Further mechanism evaluation reflected that aspartame could enhance macrophage phagocytosis, migration, and rearrangement via PLCβ-2/Ca2+/PKCβ/Rho A/ROCK1 pathway caused by sweet taste receptor activation. In conclusion, the present study, for the first time, demonstrated that aspartame could enhance the scavenging activity of mice to low-dose E. coli infection via strengthening macrophage phagocytic function through activating sweet taste receptor. It is then suggested that aspartame may affect the antibacterial activity of human gastrointestinal macrophages, and further studies need to validate these effects.
Collapse
Affiliation(s)
- Yulin Liu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Yilin Huang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Wei Yang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Weiqing Hu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Zhizhongbin Wu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Tianyue Wu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Yu Pu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Yunbin Jiang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Huifeng Zhu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Jifen Zhang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Fang Cheng
- The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Shan Feng
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Hamaguchi R, Isowa M, Narui R, Morikawa H, Okamoto T, Wada H. How Does Cancer Occur? How Should It Be Treated? Treatment from the Perspective of Alkalization Therapy Based on Science-Based Medicine. Biomedicines 2024; 12:2197. [PMID: 39457509 PMCID: PMC11504456 DOI: 10.3390/biomedicines12102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
This review article investigates the relationship between mitochondrial dysfunction and cancer progression, emphasizing the metabolic shifts that promote tumor growth. Mitochondria are crucial for cellular energy production, but they also play a significant role in cancer progression by promoting glycolysis even under oxygen-rich conditions, a phenomenon known as the Warburg effect. This metabolic reprogramming enables cancer cells to maintain an alkaline internal pH and an acidic external environment, which are critical for their proliferation and survival in hypoxic conditions. The article also explores the acidic tumor microenvironment (TME), a consequence of intensive glycolytic activity and proton production by cancer cells. This acidic milieu enhances the invasiveness and metastatic potential of cancer cells and contributes to increased resistance to chemotherapy. Alkalization therapy, which involves neutralizing this acidity through dietary modifications and the administration of alkalizing agents such as sodium bicarbonate, is highlighted as an effective strategy to counteract these adverse conditions and impede cancer progression. Integrating insights from science-based medicine, the review evaluates the effectiveness of alkalization therapy across various cancer types through clinical assessments. Science-based medicine, which utilizes inductive reasoning from observed clinical outcomes, lends support to the hypothesis of metabolic reprogramming in cancer treatment. By addressing both metabolic and environmental disruptions, this review suggests that considering cancer as primarily a metabolic disorder could lead to more targeted and effective treatment strategies, potentially improving outcomes for patients with advanced-stage cancers.
Collapse
Affiliation(s)
- Reo Hamaguchi
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| | - Masahide Isowa
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| | - Ryoko Narui
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| | - Hiromasa Morikawa
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| | - Toshihiro Okamoto
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Hiromi Wada
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| |
Collapse
|
4
|
Ye Y, Li L, Kang H, Wan Z, Zhang M, Gang B, Liu J, Liu G, Gu W. LAMP1 controls CXCL10-CXCR3 axis mediated inflammatory regulation of macrophage polarization during inflammatory stimulation. Int Immunopharmacol 2024; 132:111929. [PMID: 38555817 DOI: 10.1016/j.intimp.2024.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Increased expression of CXCL10 and its receptor CXCR3 represents an inflammatory response in cells and tissues. Macrophage polarization and autophagy are major functions in inflammatory macrophages; however, the cellular functions of the CXCL10-CXCR3 axis in macrophages are not well understood. Here, we examined the role of CXCL10-CXCR3-axis-regulated autophagy in macrophage polarization. First, in non-inflammatory macrophages, whereas CXCL10 promotes M2 polarization and inhibits M1 polarization, CXCR3 antagonist AMG487 induces the opposite macrophage polarization. Next, CXCL10 promotes the expression of autophagy proteins (Atg5-Atg12 complex, p62, LC3-II, and LAMP1) and AMG487 inhibits their expression. Knockdown of LAMP1 by short interfering RNA switches the CXCL10-induced polarization from M2 to M1 in non-inflammatory macrophages. Furthermore, in inflammatory macrophages stimulated by poly(I:C), CXCL10 induces M1 polarization and AMG487 induces M2 polarization in association with a decrease in LAMP1. Finally, AMG487 alleviates lung injury after poly(I:C) treatment in mice. In conclusion, CXCL10-CXCR3 axis differentially directs macrophage polarization in inflammatory and non-inflammatory states, and autophagy protein LAMP1 acts as the switch controlling the direction of macrophage polarization by CXCL10-CXCR3.
Collapse
Affiliation(s)
- Yingying Ye
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233030, China; Reproduction Medicine Center, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233030, China
| | - Lexing Li
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hu Kang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233030, China
| | - Ziyu Wan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233030, China
| | - Mengjie Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233030, China
| | - Baocai Gang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233030, China
| | - Jie Liu
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Guoquan Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Wei Gu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| |
Collapse
|
5
|
Li M, Wang M, Wen Y, Zhang H, Zhao G, Gao Q. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e349. [PMID: 37706196 PMCID: PMC10495745 DOI: 10.1002/mco2.349] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Macrophages play diverse roles in development, homeostasis, and immunity. Accordingly, the dysfunction of macrophages is involved in the occurrence and progression of various diseases, such as coronavirus disease 2019 and atherosclerosis. The protective or pathogenic effect that macrophages exert in different conditions largely depends on their functional plasticity, which is regulated via signal transduction such as Janus kinase-signal transducer and activator of transcription, Wnt and Notch pathways, stimulated by environmental cues. Over the past few decades, the molecular mechanisms of signaling pathways in macrophages have been gradually elucidated, providing more alternative therapeutic targets for diseases treatment. Here, we provide an overview of the basic physiology of macrophages and expound the regulatory pathways within them. We also address the crucial role macrophages play in the pathogenesis of diseases, including autoimmune, neurodegenerative, metabolic, infectious diseases, and cancer, with a focus on advances in macrophage-targeted strategies exploring modulation of components and regulators of signaling pathways. Last, we discuss the challenges and possible solutions of macrophage-targeted therapy in clinical applications. We hope that this comprehensive review will provide directions for further research on therapeutic strategies targeting macrophage signaling pathways, which are promising to improve the efficacy of disease treatment.
Collapse
Affiliation(s)
- Ming Li
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mengjie Wang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanjia Wen
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongfei Zhang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guang‐Nian Zhao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
6
|
Park J, Luo Y, Park JW, Kim SH, Hong YJ, Lim Y, Seo YJ, Bae J, Seo SB. Downregulation of DNA methylation enhances differentiation of THP-1 cells and induces M1 polarization of differentiated macrophages. Sci Rep 2023; 13:13132. [PMID: 37573395 PMCID: PMC10423279 DOI: 10.1038/s41598-023-40362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023] Open
Abstract
DNA methylation is an epigenetic modification that regulates gene expression and plays an essential role in hematopoiesis. UHRF1 and DNMT1 are both crucial for regulating genome-wide maintenance of DNA methylation. Specifically, it is well known that hypermethylation is crucial characteristic of acute myeloid leukemia (AML). However, the mechanism underlying how DNA methylation regulates the differentiation of AML cells, including THP-1 is not fully elucidated. In this study, we report that UHRF1 or DNMT1 depletion enhances the phorbol-12-myristate-13-acetate (PMA)-induced differentiation of THP-1 cells. Transcriptome analysis and genome-wide methylation array results showed that depleting UHRF1 or DNMT1 induced changes that made THP-1 cells highly sensitive to PMA. Furthermore, knockdown of UHRF1 or DNMT1 impeded solid tumor formation in xenograft mouse model. These findings suggest that UHRF1 and DNMT1 play a pivotal role in regulating differentiation and proliferation of THP-1 cells and targeting these proteins may improve the efficiency of differentiation therapy in AML patients.
Collapse
Affiliation(s)
- Junyoung Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yongyang Luo
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Song Hyun Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ye Joo Hong
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Younghyun Lim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeehyeon Bae
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
7
|
Chda A, Bencheikh R. Flavonoids as G Protein-coupled Receptors Ligands: New Potential Therapeutic Natural Drugs. Curr Drug Targets 2023; 24:1346-1363. [PMID: 38037994 DOI: 10.2174/0113894501268871231127105219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
G protein coupled receptors (GPCRs) are among the largest family of cell surface receptors found in the human genome. They govern a wide range of physiological responses in both health and diseases, making them one of the potential targeted surface receptors for pharmaceuticals. Flavonoids can modulate GPCRs activity by acting as allosteric ligands. They can either enhance or reduce the GPCR's effect. Emerging research shows that individual flavonoids or mixtures of flavonoids from plant extracts can have relevant pharmacological effects against a number of diseases, particularly by influencing GPCRs. In the present review, we are considering to give a comprehensive overview of flavonoids and related compounds that exhibit GPCRs activity and to further explore which beneficial structural features. Molecular docking was used to strengthen experimental evidence and describe flavonoid-GPCRs interactions at molecular level.
Collapse
Affiliation(s)
- Alae Chda
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LM2BM), Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Road of Immouzer, PO Box 2202, Fez, Morocco
- Higher Institute of Nursing and Health Techniques - Fez. Ministry of Health and Social Protection, Fez, Morocco
| | - Rachid Bencheikh
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LM2BM), Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Road of Immouzer, PO Box 2202, Fez, Morocco
| |
Collapse
|
8
|
Bajgar A, Krejčová G. On the origin of the functional versatility of macrophages. Front Physiol 2023; 14:1128984. [PMID: 36909237 PMCID: PMC9998073 DOI: 10.3389/fphys.2023.1128984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Macrophages represent the most functionally versatile cells in the animal body. In addition to recognizing and destroying pathogens, macrophages remove senescent and exhausted cells, promote wound healing, and govern tissue and metabolic homeostasis. In addition, many specialized populations of tissue-resident macrophages exhibit highly specialized functions essential for the function of specific organs. Sometimes, however, macrophages cease to perform their protective function and their seemingly incomprehensible response to certain stimuli leads to pathology. In this study, we address the question of the origin of the functional versatility of macrophages. To this end, we have searched for the evolutionary origin of macrophages themselves and for the emergence of their characteristic properties. We hypothesize that many of the characteristic features of proinflammatory macrophages evolved in the unicellular ancestors of animals, and that the functional repertoire of macrophage-like amoebocytes further expanded with the evolution of multicellularity and the increasing complexity of tissues and organ systems. We suggest that the entire repertoire of macrophage functions evolved by repurposing and diversification of basic functions that evolved early in the evolution of metazoans under conditions barely comparable to that in tissues of multicellular organisms. We believe that by applying this perspective, we may find an explanation for the otherwise counterintuitive behavior of macrophages in many human pathologies.
Collapse
Affiliation(s)
- Adam Bajgar
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia.,Biology Centre, Institute of Entomology, Academy of Sciences, Ceske Budejovice, Czechia
| | - Gabriela Krejčová
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia.,Biology Centre, Institute of Entomology, Academy of Sciences, Ceske Budejovice, Czechia
| |
Collapse
|
9
|
Kerneur C, Cano CE, Olive D. Major pathways involved in macrophage polarization in cancer. Front Immunol 2022; 13:1026954. [PMID: 36325334 PMCID: PMC9618889 DOI: 10.3389/fimmu.2022.1026954] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages play an important role in tissue homeostasis, tissue remodeling, immune response, and progression of cancer. Consequently, macrophages exhibit significant plasticity and change their transcriptional profile and function in response to environmental, tissue, and inflammatory stimuli resulting in pro- and anti-tumor effects. Furthermore, the categorization of tissue macrophages in inflammatory situations remains difficult; however, there is an agreement that macrophages are predominantly polarized into two different subtypes with pro- and anti-inflammatory properties, the so-called M1-like and M2-like macrophages, respectively. These two macrophage classes can be considered as the extreme borders of a continuum of many intermediate subsets. On one end, M1 are pro-inflammatory macrophages that initiate an immunological response, damage tissue integrity, and dampen tumor progression by fostering robust T and natural killer (NK) cell anti-tumoral responses. On the other end, M2 are anti-inflammatory macrophages involved in tissue remodeling and tumor growth, that promote cancer cell proliferation, invasion, tumor metastasis, angiogenesis and that participate to immune suppression. These decisive roles in tumor progression occur through the secretion of cytokines, chemokines, growth factors, and matrix metalloproteases, as well as by the expression of immune checkpoint receptors in the case of M2 macrophages. Moreover, macrophage plasticity is supported by stimuli from the Tumor Microenvironment (TME) that are relayed to the nucleus through membrane receptors and signaling pathways that result in gene expression reprogramming in macrophages, thus giving rise to different macrophage polarization outcomes. In this review, we will focus on the main signaling pathways involved in macrophage polarization that are activated upon ligand-receptor recognition and in the presence of other immunomodulatory molecules in cancer.
Collapse
Affiliation(s)
- Clément Kerneur
- ImCheck Therapeutics, Marseille, France
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli Calmettes, Marseille, France
- *Correspondence: Clément Kerneur, ; Carla E. Cano, ; Daniel Olive,
| | - Carla E. Cano
- ImCheck Therapeutics, Marseille, France
- *Correspondence: Clément Kerneur, ; Carla E. Cano, ; Daniel Olive,
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli Calmettes, Marseille, France
- *Correspondence: Clément Kerneur, ; Carla E. Cano, ; Daniel Olive,
| |
Collapse
|
10
|
Chimeric GPCRs mimic distinct signaling pathways and modulate microglia responses. Nat Commun 2022; 13:4728. [PMID: 35970889 PMCID: PMC9378622 DOI: 10.1038/s41467-022-32390-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate processes ranging from immune responses to neuronal signaling. However, ligands for many GPCRs remain unknown, suffer from off-target effects or have poor bioavailability. Additionally, dissecting cell type-specific responses is challenging when the same GPCR is expressed on different cells within a tissue. Here, we overcome these limitations by engineering DREADD-based GPCR chimeras that bind clozapine-N-oxide and mimic a GPCR-of-interest. We show that chimeric DREADD-β2AR triggers responses comparable to β2AR on second messenger and kinase activity, post-translational modifications, and protein-protein interactions. Moreover, we successfully recapitulate β2AR-mediated filopodia formation in microglia, an immune cell capable of driving central nervous system inflammation. When dissecting microglial inflammation, we included two additional DREADD-based chimeras mimicking microglia-enriched GPR65 and GPR109A. DREADD-β2AR and DREADD-GPR65 modulate the inflammatory response with high similarity to endogenous β2AR, while DREADD-GPR109A shows no impact. Our DREADD-based approach allows investigation of cell type-dependent pathways without known endogenous ligands. Understanding the function of GPCRs requires stimulation with their specific ligands. Here, the authors design chemogenetic G-protein coupled receptors that allows for the study of receptors without knowing the immediate ligand, and demonstrate its use for the β2-adrenergic receptor in microglia.
Collapse
|
11
|
Orphan GPR26 Counteracts Early Phases of Hyperglycemia-Mediated Monocyte Activation and Is Suppressed in Diabetic Patients. Biomedicines 2022; 10:biomedicines10071736. [PMID: 35885041 PMCID: PMC9312814 DOI: 10.3390/biomedicines10071736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetes is the ninth leading cause of death, with an estimated 1.5 million deaths worldwide. Type 2 diabetes (T2D) results from the body’s ineffective use of insulin and is largely the result of excess body weight and physical inactivity. T2D increases the risk of cardiovascular diseases, retinopathy, and kidney failure by two-to three-fold. Hyperglycemia, as a hallmark of diabetes, acts as a potent stimulator of inflammatory condition by activating endothelial cells and by dysregulating monocyte activation. G-protein couple receptors (GPCRs) can both exacerbate and promote inflammatory resolution. Genome-wide association studies (GWAS) indicate that GPCRs are differentially regulated in inflammatory and vessel cells from diabetic patients. However, most of these GPCRs are orphan receptors, for which the mechanism of action in diabetes is unknown. Our data indicated that orphan GPCR26 is downregulated in the PBMC isolated from T2D patients. In contrast, GPR26 was initially upregulated in human monocytes and PBMC treated with high glucose (HG) levels and then decreased upon chronic and prolonged HG exposure. GPR26 levels were decreased in T2D patients treated with insulin compared to non-insulin treated patients. Moreover, GPR26 inversely correlated with the BMI and the HbA1c of diabetic compared to non-diabetic patients. Knockdown of GPR26 enhanced monocyte ROS production, MAPK signaling, pro-inflammatory activation, monocyte adhesion to ECs, and enhanced the activity of Caspase 3, a pro-apoptotic molecule. The same mechanisms were activated by HG and exacerbated when GPR26 was knocked down. Hence, our data indicated that GPR26 is initially activated to protect monocytes from HG and is inhibited under chronic hyperglycemic conditions.
Collapse
|
12
|
Wada H, Hamaguchi R, Narui R, Morikawa H. Meaning and Significance of “Alkalization Therapy for Cancer”. Front Oncol 2022; 12:920843. [PMID: 35965526 PMCID: PMC9364696 DOI: 10.3389/fonc.2022.920843] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives of the Study Our research aims to answer the following questions. Can cancer progression be stopped by changing the body condition of person with cancer? Can cancer be cured?If cancer progression can be stopped, what is the underlying mechanism? Theoretical Rationale for Alkalization Therapy Almost 70 years ago, Goldblatt H. & Cameron G. reported on the idea of alkalization therapy. Before that, Otto Warburg had been studying the metabolism of cancer and had discovered the essential nature of cancer. He published a review in Science in 1956 under the title “On the origin of cancer cells”. From his phenomena described above, we established the theoretical rationale for alkalization therapy, based on the question of “How does cancer form and what is its nature”? Limitations of Deductive Methods and Inductive Approaches In this paper, we describe a method to reconstruct the limitations and weaknesses of modern cancer medicine as Science-based Medicine using an inductive method, and to present a new vision of cancer therapy. How should we treat cancer? (Case presentation): Using a specific clinical case, we present patients in whom were successfully treated with no or few anticancer drugs. Summary The biggest weakness of current cancer treatments is that they only treat the cancer and not the actual patient. The “alkalization therapy” that we advocate does not compete with any of the current standard treatments, but improves the effectiveness of standard treatments, reduces side effects, and lowers medical costs.
Collapse
|
13
|
Park Y, Zhang Q, Fernandes JMO, Wiegertjes GF, Kiron V. Macrophage Heterogeneity in the Intestinal Cells of Salmon: Hints From Transcriptomic and Imaging Data. Front Immunol 2021; 12:798156. [PMID: 35003123 PMCID: PMC8733388 DOI: 10.3389/fimmu.2021.798156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
The intestine has many types of cells that are present mostly in the epithelium and lamina propria. The importance of the intestinal cells for the mammalian mucosal immune system is well-established. However, there is no in-depth information about many of the intestinal cells in teleosts. In our previous study, we reported that adherent intestinal cells (AIC) predominantly express macrophage-related genes. To gather further evidence that AIC include macrophage-like cells, we compared their phagocytic activity and morphology with those of adherent head kidney cells (AKC), previously characterized as macrophage-like cells. We also compared equally abundant as well as differentially expressed mRNAs and miRNAs between AIC and AKC. AIC had lower phagocytic activity and were larger and more circular than macrophage-like AKC. RNA-Seq data revealed that there were 18309 mRNAs, with 59 miRNAs that were equally abundant between AIC and AKC. Integrative analysis of the mRNA and miRNA transcriptomes revealed macrophage heterogeneity in both AIC and AKC. In addition, analysis of AIC and AKC transcriptomes revealed functional characteristics of mucosal and systemic macrophages. Five pairs with significant negative correlations between miRNA and mRNAs were linked to macrophages and epithelial cells and their interaction could be pointing to macrophage activation and differentiation. The potential macrophage markers suggested in this study should be investigated under different immune conditions to understand the exact macrophage phenotypes.
Collapse
Affiliation(s)
- Youngjin Park
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Qirui Zhang
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Geert F. Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
14
|
Abstract
Bovine tuberculosis, caused by Mycobacterium tuberculosis var. bovis (M. bovis), is an important enzootic disease affecting mainly cattle, worldwide. Despite the implementation of national campaigns to eliminate the disease, bovine tuberculosis remains recalcitrant to eradication in several countries. Characterizing the host response to M. bovis infection is crucial for understanding the immunopathogenesis of the disease and for developing better control strategies. To profile the host responses to M. bovis infection, we analyzed the transcriptome of whole blood cells collected from experimentally infected calves with a virulent strain of M. bovis using RNA transcriptome sequencing (RNAseq). Comparative analysis of calf transcriptomes at early (8 weeks) vs. late (20 weeks) aerosol infection with M. bovis revealed divergent and unique profile for each stage of infection. Notably, at the early time point, transcriptional upregulation was observed among several of the top-ranking canonical pathways involved in T-cell chemotaxis. At the late time point, enrichment in the cell mediated cytotoxicity (e.g. Granzyme B) was the predominant host response. These results showed significant change in bovine transcriptional profiles and identified networks of chemokine receptors and monocyte chemoattractant protein (CCL) co-regulated genes that underline the host-mycobacterial interactions during progression of bovine tuberculosis in cattle. Further analysis of the transcriptomic profiles identified potential biomarker targets for early and late phases of tuberculosis in cattle. Overall, the identified profiles better characterized identified novel immunomodulatory mechanisms and provided a list of targets for further development of potential diagnostics for tuberculosis in cattle.
Collapse
|
15
|
Williamson M, Moustaid-Moussa N, Gollahon L. The Molecular Effects of Dietary Acid Load on Metabolic Disease (The Cellular PasaDoble: The Fast-Paced Dance of pH Regulation). FRONTIERS IN MOLECULAR MEDICINE 2021; 1:777088. [PMID: 39087082 PMCID: PMC11285710 DOI: 10.3389/fmmed.2021.777088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 08/02/2024]
Abstract
Metabolic diseases are becoming more common and more severe in populations adhering to western lifestyle. Since metabolic conditions are highly diet and lifestyle dependent, it is suggested that certain diets are the cause for a wide range of metabolic dysfunctions. Oxidative stress, excess calcium excretion, inflammation, and metabolic acidosis are common features in the origins of most metabolic disease. These primary manifestations of "metabolic syndrome" can lead to insulin resistance, diabetes, obesity, and hypertension. Further complications of the conditions involve kidney disease, cardiovascular disease, osteoporosis, and cancers. Dietary analysis shows that a modern "Western-style" diet may facilitate a disruption in pH homeostasis and drive disease progression through high consumption of exogenous acids. Because so many physiological and cellular functions rely on acid-base reactions and pH equilibrium, prolonged exposure of the body to more acids than can effectively be buffered, by chronic adherence to poor diet, may result in metabolic stress followed by disease. This review addresses relevant molecular pathways in mammalian cells discovered to be sensitive to acid - base equilibria, their cellular effects, and how they can cascade into an organism-level manifestation of Metabolic Syndromes. We will also discuss potential ways to help mitigate this digestive disruption of pH and metabolic homeostasis through dietary change.
Collapse
Affiliation(s)
- Morgan Williamson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Naima Moustaid-Moussa
- Department of Nutrition Sciences, Texas Tech University, Lubbock, TX, United States
- Obesity Research Institute, Texas Tech University, Lubbock, TX, United States
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
- Department of Nutrition Sciences, Texas Tech University, Lubbock, TX, United States
- Obesity Research Institute, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
16
|
Kwon Y, Park C, Lee J, Park DH, Jeong S, Yun CH, Park OJ, Han SH. Regulation of Bone Cell Differentiation and Activation by Microbe-Associated Molecular Patterns. Int J Mol Sci 2021; 22:ijms22115805. [PMID: 34071605 PMCID: PMC8197933 DOI: 10.3390/ijms22115805] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota has emerged as an important regulator of bone homeostasis. In particular, the modulation of innate immunity and bone homeostasis is mediated through the interaction between microbe-associated molecular patterns (MAMPs) and the host pattern recognition receptors including Toll-like receptors and nucleotide-binding oligomerization domains. Pathogenic bacteria such as Porphyromonas gingivalis and Staphylococcus aureus tend to induce bone destruction and cause various inflammatory bone diseases including periodontal diseases, osteomyelitis, and septic arthritis. On the other hand, probiotic bacteria such as Lactobacillus and Bifidobacterium species can prevent bone loss. In addition, bacterial metabolites and various secretory molecules such as short chain fatty acids and cyclic nucleotides can also affect bone homeostasis. This review focuses on the regulation of osteoclast and osteoblast by MAMPs including cell wall components and secretory microbial molecules under in vitro and in vivo conditions. MAMPs could be used as potential molecular targets for treating bone-related diseases such as osteoporosis and periodontal diseases.
Collapse
Affiliation(s)
- Yeongkag Kwon
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Chaeyeon Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Jueun Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Dong Hyun Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Sungho Jeong
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
- Correspondence: (O.-J.P.); (S.H.H.); Tel.: +82-2-880-2312 (O.-J.P.); +82-2-880-2310 (S.H.H.)
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
- Correspondence: (O.-J.P.); (S.H.H.); Tel.: +82-2-880-2312 (O.-J.P.); +82-2-880-2310 (S.H.H.)
| |
Collapse
|
17
|
Tøndell A, Subbannayya Y, Wahl SGF, Flatberg A, Sørhaug S, Børset M, Haug M. Analysis of Intra-Tumoral Macrophages and T Cells in Non-Small Cell Lung Cancer (NSCLC) Indicates a Role for Immune Checkpoint and CD200-CD200R Interactions. Cancers (Basel) 2021; 13:1788. [PMID: 33918618 PMCID: PMC8069596 DOI: 10.3390/cancers13081788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is one of the most commonly diagnosed cancers and a leading cause of cancer-related deaths. Immunotherapy with immune checkpoint inhibitors shows beneficial responses, but only in a proportion of patients. To improve immunotherapy in NSCLC, we need to map the immune checkpoints that contribute immunosuppression in NSCLC-associated immune cells and to identify novel pathways that regulate immunosuppression. Here, we investigated the gene expression profiles of intra-tumoral immune cells isolated from NSCLC patients and compared them to the expression profiles of their counterparts in adjacent healthy tissue. Transcriptome analysis was performed on macrophages, CD4+ and CD8+ T cells. The data was subjected to Gene Ontology (GO) term enrichment and weighted correlation network analysis in order to identify mediators of immunosuppression in the tumor microenvironment in NSCLC. Immune cells from NSCLC revealed a consistent differential expression of genes involved in interactions between myeloid cells and lymphocytes. We further identified several immunosuppressive molecules and pathways that may be activated in tumor-associated macrophages in NSCLC. Importantly, we report novel data on immune cell expression of the newly described CD200/CD200R1 pathway, and the leukocyte immunoglobulin-like receptors (LILRs), which may represent novel innate immune checkpoints, dampening the anti-tumor T cell immune response in NSCLC. Our study substantiates the importance of tumor-associated macrophages as a mediator of immunosuppression and a promising target for immunotherapy.
Collapse
Affiliation(s)
- Anders Tøndell
- Department of Thoracic Medicine, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Yashwanth Subbannayya
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Sissel Gyrid Freim Wahl
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Arnar Flatberg
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Central Administration, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Sveinung Sørhaug
- Department of Thoracic Medicine, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Magne Børset
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Immunology and Transfusion Medicine, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Markus Haug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Infectious Diseases, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| |
Collapse
|
18
|
The Role of Formyl Peptide Receptors in Permanent and Low-Grade Inflammation: Helicobacter pylori Infection as a Model. Int J Mol Sci 2021; 22:ijms22073706. [PMID: 33918194 PMCID: PMC8038163 DOI: 10.3390/ijms22073706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Formyl peptide receptors (FPRs) are cell surface pattern recognition receptors (PRRs), belonging to the chemoattractant G protein-coupled receptors (GPCRs) family. They play a key role in the innate immune system, regulating both the initiation and the resolution of the inflammatory response. FPRs were originally identified as receptors with high binding affinity for bacteria or mitochondria N-formylated peptides. However, they can also bind a variety of structurally different ligands. Among FPRs, formyl peptide receptor-like 1 (FPRL1) is the most versatile, recognizing N-formyl peptides, non-formylated peptides, and synthetic molecules. In addition, according to the ligand nature, FPRL1 can mediate either pro- or anti-inflammatory responses. Hp(2-20), a Helicobacter pylori-derived, non-formylated peptide, is a potent FPRL1 agonist, participating in Helicobacter pylori-induced gastric inflammation, thus contributing to the related site or not-site specific diseases. The aim of this review is to provide insights into the role of FPRs in H. pylori-associated chronic inflammation, which suggests this receptor as potential target to mitigate both microbial and sterile inflammatory diseases.
Collapse
|
19
|
Lu L, Wei R, Prats-Ejarque G, Goetz M, Wang G, Torrent M, Boix E. Human RNase3 immune modulation by catalytic-dependent and independent modes in a macrophage-cell line infection model. Cell Mol Life Sci 2021; 78:2963-2985. [PMID: 33226440 PMCID: PMC8004517 DOI: 10.1007/s00018-020-03695-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/21/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
The human RNase3 is a member of the RNaseA superfamily involved in host immunity. RNase3 is expressed by leukocytes and shows broad-spectrum antimicrobial activity. Together with a direct antimicrobial action, RNase3 exhibits immunomodulatory properties. Here, we have analysed the transcriptome of macrophages exposed to the wild-type protein and a catalytic-defective mutant (RNase3-H15A). The analysis of differently expressed genes (DEGs) in treated THP1-derived macrophages highlighted a common pro-inflammatory "core-response" independent of the protein ribonucleolytic activity. Network analysis identified the epidermal growth factor receptor (EGFR) as the main central regulatory protein. Expression of selected DEGs and MAPK phosphorylation were inhibited by an anti-EGFR antibody. Structural analysis suggested that RNase3 activates the EGFR pathway by direct interaction with the receptor. Besides, we identified a subset of DEGs related to the protein ribonucleolytic activity, characteristic of virus infection response. Transcriptome analysis revealed an early pro-inflammatory response, not associated to the protein catalytic activity, followed by a late activation in a ribonucleolytic-dependent manner. Next, we demonstrated that overexpression of macrophage endogenous RNase3 protects the cells against infection by Mycobacterium aurum and the human respiratory syncytial virus. Comparison of cell infection profiles in the presence of Erlotinib, an EGFR inhibitor, revealed that the receptor activation is required for the antibacterial but not for the antiviral protein action. Moreover, the DEGs related and unrelated to the protein catalytic activity are associated to the immune response to bacterial and viral infection, respectively. We conclude that RNase3 modulates the macrophage defence against infection in both catalytic-dependent and independent manners.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Vallès, Spain
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - RanLei Wei
- Center of Precision Medicine and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria Goetz
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Gang Wang
- Center of Precision Medicine and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Marc Torrent
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
20
|
Wang X, Tu J, Jiang J, Zhang Q, Liu Q, Körner H, Wu J, Wu H, Wei W. Angiotensin II Type 2 Receptor Modulates Synovial Macrophage Polarization by Inhibiting GRK2 Membrane Translocation in a Rat Model of Collagen-Induced Arthritis. THE JOURNAL OF IMMUNOLOGY 2020; 205:3141-3153. [PMID: 33148713 DOI: 10.4049/jimmunol.2000561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/23/2020] [Indexed: 01/15/2023]
Abstract
The chronic inflammatory autoimmune disease rheumatoid arthritis (RA) is characterized by an infiltration of activated proinflammatory immune cells into the joint that is accompanied by an overproduction of various mediators, leading to destruction of cartilage and bone erosion. Angiotensin II type 2 receptor (AT2R) is involved in antioxidative, anti-inflammatory, and antifibrotic responses. Synovial macrophages (SMs) are a type of tissue macrophages that are derived from bone marrow cells. SMs plays a central role in synovial regional immunization, which is significantly increased in both collagen-induced mice with arthritis mice and RA patients. AT2R activation caused a reversal of the polarization of SMs in the joint from the proinflammatory M1 SM to the tolerogenic, benign M2 SM. In consequence, this switch resulted in an attenuated form of the joint pathology in a rat model of collagen-induced arthritis. These results were mechanistically linked to the observation that GRK2 was translocated into cytoplasm, and ERK1/2 and NF-κB activation were inhibited. These findings open the way to a new therapeutic approach using an activation of AT2R to subvert joint inflammation in RA.
Collapse
Affiliation(s)
- Xinming Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China; and.,Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China; and
| | - Ji Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China; and
| | - Qiaolin Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China; and
| | - Qi Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China; and
| | - Heinrich Körner
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China; and
| | - Jingjing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China; and
| | - Huaxun Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China; and
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China; and
| |
Collapse
|
21
|
Yang X, Chatterjee V, Ma Y, Zheng E, Yuan SY. Protein Palmitoylation in Leukocyte Signaling and Function. Front Cell Dev Biol 2020; 8:600368. [PMID: 33195285 PMCID: PMC7655920 DOI: 10.3389/fcell.2020.600368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Palmitoylation is a post-translational modification (PTM) based on thioester-linkage between palmitic acid and the cysteine residue of a protein. This covalent attachment of palmitate is reversibly and dynamically regulated by two opposing sets of enzymes: palmitoyl acyltransferases containing a zinc finger aspartate-histidine-histidine-cysteine motif (PAT-DHHCs) and thioesterases. The reversible nature of palmitoylation enables fine-tuned regulation of protein conformation, stability, and ability to interact with other proteins. More importantly, the proper function of many surface receptors and signaling proteins requires palmitoylation-meditated partitioning into lipid rafts. A growing number of leukocyte proteins have been reported to undergo palmitoylation, including cytokine/chemokine receptors, adhesion molecules, pattern recognition receptors, scavenger receptors, T cell co-receptors, transmembrane adaptor proteins, and signaling effectors including the Src family of protein kinases. This review provides the latest findings of palmitoylated proteins in leukocytes and focuses on the functional impact of palmitoylation in leukocyte function related to adhesion, transmigration, chemotaxis, phagocytosis, pathogen recognition, signaling activation, cytotoxicity, and cytokine production.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
22
|
TLR4 signaling and macrophage inflammatory responses are dampened by GIV/Girdin. Proc Natl Acad Sci U S A 2020; 117:26895-26906. [PMID: 33055214 DOI: 10.1073/pnas.2011667117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sensing of pathogens by Toll-like receptor 4 (TLR4) induces an inflammatory response; controlled responses confer immunity but uncontrolled responses cause harm. Here we define how a multimodular scaffold, GIV (a.k.a. Girdin), titrates such inflammatory response in macrophages. Upon challenge with either live microbes or microbe-derived lipopolysaccharides (a ligand for TLR4), macrophages with GIV mount a more tolerant (hypo-reactive) transcriptional response and suppress proinflammatory cytokines and signaling pathways (i.e., NFkB and CREB) downstream of TLR4 compared to their GIV-depleted counterparts. Myeloid-specific gene-depletion studies confirmed that the presence of GIV ameliorates dextran sodium sulfate-induced colitis and sepsis-induced death. The antiinflammatory actions of GIV are mediated via its C-terminally located TIR-like BB-loop (TILL) motif which binds the cytoplasmic TIR modules of TLR4 in a manner that precludes receptor dimerization; such dimerization is a prerequisite for proinflammatory signaling. Binding of GIV's TILL motif to TIR modules inhibits proinflammatory signaling via other TLRs, suggesting a convergent paradigm for fine-tuning macrophage inflammatory responses.
Collapse
|
23
|
Guo F, Long L, Wang J, Wang Y, Liu Y, Wang L, Luo F. Insights on CXC chemokine receptor 2 in breast cancer: An emerging target for oncotherapy. Oncol Lett 2019; 18:5699-5708. [PMID: 31788042 PMCID: PMC6865047 DOI: 10.3892/ol.2019.10957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most common malignant neoplasm in women worldwide, and the treatment regimens currently available are far from optimal. Targeted therapy, based on molecular typing of breast cancer, is the most precise form of treatment, and CXC chemokine receptor 2 (CXCR2) is one of the molecular markers used in targeted therapies. As a member of the seven transmembrane G-protein-coupled receptor family, CXCR2 and its associated ligands have been increasingly implicated in tumor-associated processes. These processes include proliferation, angiogenesis, invasion, metastasis, chemoresistance, and stemness and phenotypic maintenance of cancer stem cells. Thus, the inhibition of CXCR2 or its downstream signaling pathways could significantly attenuate tumor progression. Therefore, studies on the biological functions of CXCR2 and its association with neoplasia may help improve the prognosis of breast cancer. Furthermore, the targeting of CXCR2 could supplement the present clinical approaches of breast cancer treatment strategies. The present review discusses the structures and mechanisms of CXCR2 and its ligands. Additionally, the contribution of CXCR2 to the development of breast cancer and its potential therapeutic benefits are also discussed.
Collapse
Affiliation(s)
- Fengzhu Guo
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lang Long
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiantao Wang
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuyi Wang
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanyang Liu
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Wang
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Luo
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|