1
|
Zhang T, Fan J, Wen X, Duan X. ECSIT: Biological function and involvement in diseases. Int Immunopharmacol 2024; 143:113524. [PMID: 39488037 DOI: 10.1016/j.intimp.2024.113524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/28/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Evolutionary conserved signaling intermediate in Toll pathways (ECSIT), a multi-functional protein, was first identified as a cytosolic adaptor protein in Toll-like receptors (TLRs) signaling-mediated innate immune responses. In the past two decades, studies have expanded the understanding of ECSIT. Nevertheless, there are still large knowledge gaps due to the inadequate number of studies regarding ECSIT, especially an overall review of ECSIT is lacking. Here, we first comprehensively summarize the biological functions of ECSIT with particular focus on innate immune responses and mitochondrial homeostasis. Cumulative studies have reinforced that ECSIT is involved in the regulation of innate immune responses through activating NF-κB signaling and potentiating the Retinoic acid-induced gene Ⅰ (RIG-Ⅰ)/ mitochondrial antiviral- signaling protein (MAVS) pathway-mediated innate antiviral immunity. In addition, ECSIT determines the mitochondrial morphology and function including mitochondrial complex Ⅰ (CⅠ) assembly, mitochondrial reactive oxygen species (mROS) production, mitochondrial membrane potential (MMP) maintenance and mitochondrial quality control. Owing to these distinct functions, ECSIT is involved in the etiology and pathology of human diseases including Alzheimer's disease (AD), cardiac hypertrophy, musculoskeletal disintegration, cancer, extranodal natural killer/T cell lymphoma (ENKTL) and ischemic stroke. Collectively, the roles and mechanisms of ECSIT under physiological and pathological conditions are critically discussed to provide a clearer view of the therapeutic potential of ECSIT.
Collapse
Affiliation(s)
- Tan Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China.
| | - Jingcheng Fan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China
| | - Xin Wen
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China
| | - Xuemei Duan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China
| |
Collapse
|
2
|
Wu Y, Chen Y, Tian X, Shao G, Lin Q, Sun A. Ubiquitination regulates autophagy in cancer: simple modifications, promising targets. J Transl Med 2024; 22:985. [PMID: 39482684 PMCID: PMC11526641 DOI: 10.1186/s12967-024-05565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 11/03/2024] Open
Abstract
Autophagy is an important lysosomal degradation process that digests and recycles bio-molecules, protein or lipid aggregates, organelles, and invaded pathogens. Autophagy plays crucial roles in regulation of metabolic and oxidative stress and multiple pathological processes. In cancer, the role of autophagy is dual and paradoxical. Ubiquitination has been identified as a key regulator of autophagy that can influence various steps in the autophagic process, with autophagy-related proteins being targeted for ubiquitination, thus impacting cancer progression and the effectiveness of therapeutic interventions. This review will concentrate on mechanisms underlying autophagy, ubiquitination, and their interactions in cancer, as well as explore the use of drugs that target the ubiquitin-proteasome system (UPS) and ubiquitination process in autophagy as part of cancer therapy.
Collapse
Affiliation(s)
- Yihui Wu
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yifei Chen
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianyan Tian
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Genbao Shao
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiong Lin
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Aiqin Sun
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
3
|
Ma Q, Yu J, Liu L, Ma X, Zhang J, Zhang J, Wang X, Deng G, Wu X. TRAF6 triggers Mycobacterium-infected host autophagy through Rab7 ubiquitination. Cell Death Discov 2023; 9:427. [PMID: 38016969 PMCID: PMC10684575 DOI: 10.1038/s41420-023-01731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an E3 ubiquitin ligase that is extensively involved in the autophagy process by interacting with diverse autophagy initiation and autophagosome maturation molecules. However, whether TRAF6 interacts with lysosomal proteins to regulate Mycobacterium-induced autophagy has not been completely characterized. Herein, the present study showed that TRAF6 interacted with lysosomal key proteins Rab7 through RING domain which caused Rab7 ubiquitination and subsequently ubiquitinated Rab7 binds to STX17 (syntaxin 17, a SNARE protein that is essential for mature autophagosome), and thus promoted the fusion of autophagosomes and lysosomes. Furthermore, TRAF6 enhanced the initiation and formation of autophagosomes in Mycobacterium-induced autophagy in both BMDMs and RAW264.7 cells, as evidenced by autophagic flux, colocalization of LC3 and BCG, autophagy rates, and autophagy-associated protein expression. Noteworthy to mention, TRAF6 deficiency exacerbated lung injury and promoted BCG survival. Taken together, these results identify novel molecular and cellular mechanisms by which TRAF6 positively regulates Mycobacterium-induced autophagy.
Collapse
Affiliation(s)
- Qinmei Ma
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Jialin Yu
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Li Liu
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Xiaoyan Ma
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Jiaxue Zhang
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Jiamei Zhang
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Xiaoping Wang
- The Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, NingXia, 750021, China
| | - Guangcun Deng
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China.
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China.
| | - Xiaoling Wu
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China.
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China.
| |
Collapse
|
4
|
Chen XX, Tao T, Liu XZ, Wu W, Wang JW, Yue TT, Li XJ, Zhou Y, Gao S, Sheng B, Peng Z, Xu HJ, Ding PF, Wu LY, Zhang DD, Lu Y, Hang CH, Li W. P38-DAPK1 axis regulated LC3-associated phagocytosis (LAP) of microglia in an in vitro subarachnoid hemorrhage model. Cell Commun Signal 2023; 21:175. [PMID: 37480108 PMCID: PMC10362611 DOI: 10.1186/s12964-023-01173-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/22/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The phagocytosis and homeostasis of microglia play an important role in promoting blood clearance and improving prognosis after subarachnoid hemorrhage (SAH). LC3-assocaited phagocytosis (LAP) contributes to the microglial phagocytosis and homeostasis via autophagy-related components. With RNA-seq sequencing, we found potential signal pathways and genes which were important for the LAP of microglia. METHODS We used an in vitro model of oxyhemoglobin exposure as SAH model in the study. RNA-seq sequencing was performed to seek critical signal pathways and genes in regulating LAP. Bioparticles were used to access the phagocytic ability of microglia. Western blot (WB), immunoprecipitation, quantitative polymerase chain reaction (qPCR) and immunofluorescence were performed to detect the expression change of LAP-related components and investigate the potential mechanisms. RESULTS In vitro SAH model, there were increased inflammation and decreased phagocytosis in microglia. At the same time, we found that the LAP of microglia was inhibited in all stages. RNA-seq sequencing revealed the importance of P38 MAPK signal pathway and DAPK1 in regulating microglial LAP. P38 was found to regulate the expression of DAPK1, and P38-DAPK1 axis was identified to regulate the LAP and homeostasis of microglia after SAH. Finally, we found that P38-DAPK1 axis regulated expression of BECN1, which indicated the potential mechanism of P38-DAPK1 axis regulating microglial LAP. CONCLUSION P38-DAPK1 axis regulated the LAP of microglia via BECN1, affecting the phagocytosis and homeostasis of microglia in vitro SAH model. Video Abstract.
Collapse
Affiliation(s)
- Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Tao Tao
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xun-Zhi Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Wei Wu
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jin-Wei Wang
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
| | - Ting-Ting Yue
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiao-Jian Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Bin Sheng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zheng Peng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Hua-Jie Xu
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peng-Fei Ding
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ling-Yun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ding-Ding Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
Kim JY, Shin JH, Kim MJ, Kang Y, Lee JS, Son J, Jeong SK, Kim D, Kim DH, Chun E, Lee KY. β-arrestin 2 negatively regulates lung cancer progression by inhibiting the TRAF6 signaling axis for NF-κB activation and autophagy induced by TLR3 and TLR4. Cell Death Dis 2023; 14:422. [PMID: 37443143 PMCID: PMC10344878 DOI: 10.1038/s41419-023-05945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
β-arrestin 2 (ARRB2) is functionally implicated in cancer progression via various signaling pathways. However, its role in lung cancer remains unclear. To obtain clinical insight on its function in lung cancer, microarray data from lung tumor tissues (LTTs) and matched lung normal tissues (mLNTs) of primary non-small cell lung cancer (NSCLC) patients (n = 37) were utilized. ARRB2 expression levels were markedly decreased in all 37 LTTs compared to those in matched LNTs of NSCLC patients. They were significantly co-related to enrichment gene sets associated with oncogenic and cancer genes. Importantly, Gene Set Enrichment Analysis (GSEA) between three LTTs with highly down-regulated ARRB2 and three LTTs with lowly down-regulated ARRB2 revealed significant enrichments related to toll-like receptor (TLR) signaling and autophagy genes in three LTTs with highly down-regulated ARRB2, suggesting that ARRB2 was negatively involved in TLR-mediated signals for autophagy induction in lung cancer. Biochemical studies for elucidating the molecular mechanism revealed that ARRB2 interacted with TNF receptor-associated factor 6 (TRAF6) and Beclin 1 (BECN1), thereby inhibiting the ubiquitination of TRAF6-TAB2 to activate NF-κB and TRAF6-BECN1 for autophagy stimulated by TLR3 and TLR4, suggesting that ARRB2 could inhibit the TRAF6-TAB2 signaling axis for NF-κB activation and TRAF6-BECN1 signaling axis for autophagy in response to TLR3 and TLR4. Notably, ARRB2-knockout (ARRB2KO) lung cancer cells exhibited marked enhancements of cancer migration, invasion, colony formation, and proliferation in response to TLR3 and TLR4 stimulation. Altogether, our current data suggest that ARRB2 can negatively regulate lung cancer progression by inhibiting TLR3- and TLR4-induced autophagy.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji Hye Shin
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Mi-Jeong Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Yeeun Kang
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji Su Lee
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Juhee Son
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Soo-Kyung Jeong
- R&D Center, CHA Vaccine Institute, Seongnam-si, 13493, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Eunyoung Chun
- R&D Center, CHA Vaccine Institute, Seongnam-si, 13493, Republic of Korea.
| | - Ki-Young Lee
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
6
|
Kim MJ, Kim JY, Shin JH, Kang Y, Lee JS, Son J, Jeong SK, Kim D, Kim DH, Chun E, Lee KY. FFAR2 antagonizes TLR2- and TLR3-induced lung cancer progression via the inhibition of AMPK-TAK1 signaling axis for the activation of NF-κB. Cell Biosci 2023; 13:102. [PMID: 37287005 DOI: 10.1186/s13578-023-01038-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Free fatty acid receptors (FFARs) and toll-like receptors (TLRs) recognize microbial metabolites and conserved microbial products, respectively, and are functionally implicated in inflammation and cancer. However, whether the crosstalk between FFARs and TLRs affects lung cancer progression has never been addressed. METHODS We analyzed the association between FFARs and TLRs using The Cancer Genome Atlas (TCGA) lung cancer data and our cohort of non-small cell lung cancer (NSCLC) patient data (n = 42), and gene set enrichment analysis (GSEA) was performed. For the functional analysis, we generated FFAR2-knockout (FFAR2KO) A549 and FFAR2KO H1299 human lung cancer cells and performed biochemical mechanistic studies and cancer progression assays, including migration, invasion, and colony-formation assays, in response to TLR stimulation. RESULTS The clinical TCGA data showed a significant down-regulation of FFAR2, but not FFAR1, FFAR3, and FFAR4, in lung cancer, and a negative correlation with TLR2 and TLR3. Notably, GSEA showed significant enrichment in gene sets related to the cancer module, the innate signaling pathway, and the cytokine-chemokine signaling pathway in FFAR2DownTLR2UpTLR3Up lung tumor tissues (LTTs) vs. FFAR2upTLR2DownTLR3Down LTTs. Functionally, treatment with propionate (an agonist of FFAR2) significantly inhibited human A549 or H1299 lung cancer migration, invasion, and colony formation induced by TLR2 or TLR3 through the attenuation of the cAMP-AMPK-TAK1 signaling axis for the activation of NF-κB. Moreover, FFAR2KO A549 and FFAR2KO H1299 human lung cancer cells showed marked increases in cell migration, invasion, and colony formation in response to TLR2 or TLR3 stimulation, accompanied by elevations in NF-κB activation, cAMP levels, and the production of C-C motif chemokine ligand (CCL)2, interleukin (IL)-6, and matrix metalloproteinase (MMP) 2 cytokines. CONCLUSION Our results suggest that FFAR2 signaling antagonized TLR2- and TLR3-induced lung cancer progression via the suppression of the cAMP-AMPK-TAK1 signaling axis for the activation of NF-κB, and its agonist might be a potential therapeutic agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- Mi-Jeong Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji Young Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji Hye Shin
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Yeeun Kang
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji Su Lee
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Juhee Son
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Soo-Kyung Jeong
- R&D Center, CHA Vaccine Institute, Seongnam-si, 13493, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Eunyoung Chun
- R&D Center, CHA Vaccine Institute, Seongnam-si, 13493, Republic of Korea.
| | - Ki-Young Lee
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
7
|
Kim MJ, Lee JS, Kim JY, Choi B, Son J, Min Y, Jeong SK, Kim DH, Lee JS, Chun E, Lee KY. CRBN is downregulated in lung cancer and negatively regulates TLR2, 4 and 7 stimulation in lung cancer cells. Clin Transl Med 2022; 12:e1050. [PMID: 36164994 PMCID: PMC9513676 DOI: 10.1002/ctm2.1050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Mi-Jeong Kim
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ji Su Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ji Young Kim
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Bongkum Choi
- Department of Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Juhee Son
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Yoon Min
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Soo-Kyung Jeong
- R&D Center, CHA Vaccine Institute, Seongnam-si, Republic of Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Joo Sang Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Eunyoung Chun
- R&D Center, CHA Vaccine Institute, Seongnam-si, Republic of Korea
| | - Ki-Young Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
8
|
Chaitanya NSN, Tammineni P, Nagaraju GP, Reddy ABM. Pleiotropic roles of evolutionarily conserved signaling intermediate in toll pathway (ECSIT) in pathophysiology. J Cell Physiol 2022; 237:3496-3504. [DOI: 10.1002/jcp.30832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Nyshadham S. N. Chaitanya
- Department of Animal Biology, School of Life Sciences University of Hyderabad Hyderabad Telangana India
| | - Prasad Tammineni
- Department of Animal Biology, School of Life Sciences University of Hyderabad Hyderabad Telangana India
| | | | - Aramati BM Reddy
- Department of Animal Biology, School of Life Sciences University of Hyderabad Hyderabad Telangana India
| |
Collapse
|
9
|
Kim MJ, Min Y, Jeong SK, Son J, Kim JY, Lee JS, Kim DH, Lee JS, Chun E, Lee KY. USP15 negatively regulates lung cancer progression through the TRAF6-BECN1 signaling axis for autophagy induction. Cell Death Dis 2022; 13:348. [PMID: 35422093 PMCID: PMC9010460 DOI: 10.1038/s41419-022-04808-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 12/22/2022]
Abstract
TNF receptor-associated factor 6 (TRAF6)-BECN1 signaling axis plays a pivotal role in autophagy induction through ubiquitination of BECN1, thereby inducing lung cancer migration and invasion in response to toll-like receptor 4 (TLR4) stimulation. Herein, we provide novel molecular and cellular mechanisms involved in the negative effect of ubiquitin-specific peptidase 15 (USP15) on lung cancer progression. Clinical data of the TCGA and primary non-small cell lung cancer (NSCLC) patients (n = 41) revealed that the expression of USP15 was significantly downregulated in lung cancer patients. Importantly, USP15-knockout (USP15KO) A549 and USP15KO H1299 lung cancer cells generated with CRISPR-Cas9 gene-editing technology showed increases in cancer migration and invasion with enhanced autophagy induction in response to TLR4 stimulation. In addition, biochemical studies revealed that USP15 interacted with BECN1, but not with TRAF6, and induced deubiquitination of BECN1, thereby attenuating autophagy induction. Notably, in primary NSCLC patients (n = 4) with low expression of USP15, 10 genes (CCNE1, MMP9, SFN, UBE2C, CCR2, FAM83A, ETV4, MYO7A, MMP11, and GSDMB) known to promote lung cancer progression were significantly upregulated, whereas 10 tumor suppressor genes (FMO2, ZBTB16, FCN3, TCF21, SFTPA1B, HPGD, SOSTDC1, TMEM100, GDF10, and WIF1) were downregulated, providing clinical relevance of the functional role of USP15 in lung cancer progression. Taken together, our data demonstrate that USP15 can negatively regulate the TRAF6-BECN1 signaling axis for autophagy induction. Thus, USP15 is implicated in lung cancer progression.
Collapse
Affiliation(s)
- Mi-Jeong Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Yoon Min
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Soo-Kyung Jeong
- R&D Center, CHA Vaccine Institute, Seongnam-si, 13493, Republic of Korea
| | - Juhee Son
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji Young Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji Su Lee
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Joo Sang Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Eunyoung Chun
- R&D Center, CHA Vaccine Institute, Seongnam-si, 13493, Republic of Korea.
| | - Ki-Young Lee
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
10
|
Zhou L. Caspase-8: Friend or Foe in Bortezomib/Lenalidomide-Based Therapy for Myeloma. Front Oncol 2022; 12:861709. [PMID: 35321428 PMCID: PMC8936587 DOI: 10.3389/fonc.2022.861709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
Antiproliferation and proapoptosis are two major molecular mechanisms of action of drugs used for the treatment of multiple myeloma. Proteasome inhibitors, such as bortezomib (PS-341), and immunomodulatory drugs (IMiDs), such as lenalidomide, are the two drug types approved for the treatment of myeloma. Bortezomib and lenalidomide activate caspase-8 and promote the apoptosis of myeloma cells. However, caspase-8 inhibition potentiated the antiproliferative effect of lenalidomide and bortezomib in myeloma cells, suggesting that caspase-8 could regulate proliferation and apoptosis in the opposite pathway. In this mini-review, I summarized recent advances in determining the molecular mechanisms of caspase-8 in bortezomib–lenalidomide-based therapy for myeloma and explored the possible functions of caspase-8 in the proliferation and apoptosis of myeloma cells. Furthermore, future directions of caspase-8-based therapy for myeloma have been discussed.
Collapse
Affiliation(s)
- Liang Zhou
- *Correspondence: Liang Zhou, ; orcid.org/0000-0003-0820-1520
| |
Collapse
|
11
|
The ubiquitination-dependent and -independent functions of cereblon in cancer and neurological diseases. J Mol Biol 2022; 434:167457. [PMID: 35045330 DOI: 10.1016/j.jmb.2022.167457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022]
Abstract
Cereblon (CRBN) mediates the teratogenic effect of thalidomide in zebrafish, chicken, and humans. It additionally modulates the anti-myeloma effect of the immunomodulatory drugs (IMiDs) thalidomide, lenalidomide, and pomalidomide. IMiDs bind to CRBN and recruit neo-substrates for their ubiquitination and proteasome-mediated degradation, which significantly expands the application of proteolysis-targeting chimeras (PROTACs) for targeted drug discovery. However, the underlying molecular mechanisms by which CRBN mediates the teratogenicity and anti-myeloma effect of IMiDs are not fully elucidated. Furthermore, the normal physiological functions of endogenous CRBN have not been extensively studied, which precludes the thorough assessment of side effects of the CRBN ligand-based PROTACs in the treatment of cancer and neurological diseases. To advance our understanding of the diverse functions of CRBN, in this review, we will survey the ubiquitination-dependent and -independent functions of CRBN, summarize recent advances in the discovery of constitutive and neo-substrates of CRBN, and explore the molecular functions of CRBN in cancer treatment and in the development of neurological diseases. We will also discuss the potential future directions towards the identification of CRBN substrates and interacting proteins, and CRBN-ligand-based drug discovery in the treatment of cancer and neurological diseases.
Collapse
|
12
|
Kim MJ, Choi B, Kim JY, Min Y, Kwon DH, Son J, Lee JS, Lee JS, Chun E, Lee KY. USP8 regulates liver cancer progression via the inhibition of TRAF6-mediated signal for NF-κB activation and autophagy induction by TLR4. Transl Oncol 2022; 15:101250. [PMID: 34688043 PMCID: PMC8546492 DOI: 10.1016/j.tranon.2021.101250] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Herein, we aimed to elucidate the molecular and cellular mechanism in which ubiquitin-specific protease 8 (USP8) is implicated in liver cancer progression via TRAF6-mediated signal. USP8 induces the deubiquitination of TRAF6, TAB2, TAK1, p62, and BECN1, which are pivotal roles for NF-κB activation and autophagy induction. Notably, the LIHC patient with low USP8 mRNA expression showed markedly shorter survival time, whereas there was no significant difference in the other 18-human cancers. Importantly, the TCGA data analysis on LIHC and transcriptome analysis on the USP8 knockout (USP8KO) SK-HEP-1 cells revealed a significant correlation between USP8 and TRAF6, TAB2, TAK1, p62, and BECN1, and enhanced NF-κB-dependent and autophagy-related cancer progression/metastasis-related genes in response to LPS stimulation. Furthermore, USP8KO SK-HEP-1 cells showed an increase in cancer migration and invasion by TLR4 stimulation, and a marked increase of tumorigenicity and metastasis in xenografted NSG mice. The results demonstrate that USP8 is negatively implicated in the LIHC progression through the regulation of TRAF6-mediated signal for the activation of NF-κB activation and autophagy induction. Our findings provide useful insight into the LIHC pathogenesis of cancer progression.
Collapse
Affiliation(s)
- Mi-Jeong Kim
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Bongkum Choi
- Department of Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ji Young Kim
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Yoon Min
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Do Hee Kwon
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Juhee Son
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Ji Su Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Joo Sang Lee
- Department of Precision medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Eunyoung Chun
- CHA Vaccine Institute, 560 Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do 13230, Republic of Korea.
| | - Ki-Young Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Son J, Kim MJ, Lee JS, Kim JY, Chun E, Lee KY. Hepatitis B virus X Protein Promotes Liver Cancer Progression through Autophagy Induction in Response to TLR4 Stimulation. Immune Netw 2021; 21:e37. [PMID: 34796041 PMCID: PMC8568915 DOI: 10.4110/in.2021.21.e37] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus X (HBx) protein has been reported as a key protein regulating the pathogenesis of HBV-induced hepatocellular carcinoma (HCC). Recent evidence has shown that HBx is implicated in the activation of autophagy in hepatic cells. Nevertheless, the precise molecular and cellular mechanism by which HBx induces autophagy is still controversial. Herein, we investigated the molecular and cellular mechanism by which HBx is involved in the TRAF6-BECN1-Bcl-2 signaling for the regulation of autophagy in response to TLR4 stimulation, therefore influencing the HCC progression. HBx interacts with BECN1 (Beclin 1) and inhibits the association of the BECN1-Bcl-2 complex, which is known to prevent the assembly of the pre-autophagosomal structure. Furthermore, HBx enhances the interaction between VPS34 and TRAF6-BECN1 complex, increases the ubiquitination of BECN1, and subsequently enhances autophagy induction in response to LPS stimulation. To verify the functional role of HBx in liver cancer progression, we utilized different HCC cell lines, HepG2, SK-Hep-1, and SNU-761. HBx-expressing HepG2 cells exhibited enhanced cell migration, invasion, and cell mobility in response to LPS stimulation compared to those of control HepG2 cells. These results were consistently observed in HBx-expressed SK-Hep-1 and HBx-expressed SNU-761 cells. Taken together, our findings suggest that HBx positively regulates the induction of autophagy through the inhibition of the BECN1-Bcl-2 complex and enhancement of the TRAF6-BECN1-VPS34 complex, leading to enhance liver cancer migration and invasion.
Collapse
Affiliation(s)
- Juhee Son
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Mi-Jeong Kim
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ji Su Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ji Young Kim
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | | | - Ki-Young Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
14
|
Park S, Kim K, Haam K, Ban HS, Kim JA, Park BC, Park SG, Kim S, Kim JH. Long-term depletion of cereblon induces mitochondrial dysfunction in cancer cells. BMB Rep 2021. [PMID: 33408001 PMCID: PMC8249880 DOI: 10.5483/bmbrep.2021.54.6.218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cereblon (CRBN) is a multi-functional protein that acts as a sub-strate receptor of the E3 ligase complex and a molecular chaperone. While CRBN is proposed to function in mitochondria, its specific roles are yet to be established. Here, we showed that knockdown of CRBN triggers oxidative stress and calcium overload in mitochondria, leading to disruption of mitochondrial membrane potential. Notably, long-term CRBN depletion using PROteolysis TArgeting Chimera (PROTAC) induced irreversible mitochondrial dysfunction, resulting in cell death. Our collective findings indicate that CRBN is required for mitochondrial homeostasis in cells.
Collapse
Affiliation(s)
- Seulki Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Kidae Kim
- Division of Biomedical Informatics, Center for Genome Science, National Institute of Health, KCDC, Cheongju 28159, Korea
| | - Keeok Haam
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hyun Seung Ban
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jung-Ae Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Byoung Chul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Sunhong Kim
- Drug Discovery Center, LG Chem, Seoul 07796, Korea
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
15
|
Shin HJ, Lee KJ, Gil M. Multiomic Analysis of Cereblon Expression and Its Prognostic Value in Kidney Renal Clear Cell Carcinoma, Lung Adenocarcinoma, and Skin Cutaneous Melanoma. J Pers Med 2021; 11:jpm11040263. [PMID: 33916291 PMCID: PMC8065640 DOI: 10.3390/jpm11040263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 03/30/2021] [Indexed: 02/03/2023] Open
Abstract
Cereblon (CRBN) is a component of the E3 ubiquitin ligase complex that plays crucial roles in various cellular processes. However, no systematic studies on the expression and functions of CRBN in solid tumors have been conducted to date. Here, we analyzed CRBN expression and its clinical value using several bioinformatic databases. CRBN mRNA expression was downregulated in various cancer types compared to normal cells. Survival analysis demonstrated that overall survival was significantly positively correlated with CRBN expression in some cancer types including lung adenocarcinoma (LUAD), kidney renal clear cell carcinoma (KIRC), and skin cutaneous melanoma (SKCM). CRBN expression was downregulated regardless of clinicopathological characteristics in LUAD and KIRC. Analysis of genes that are commonly correlated with CRBN expression among KIRC, LUAD, and SKCM samples elucidated the potential CRBN-associated mechanisms of cancer progression. Overall, this study revealed the prognostic value of CRBN and its potential associated mechanisms, which may facilitate the development of anti-cancer therapeutic agents.
Collapse
Affiliation(s)
- Hyo Jae Shin
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea;
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Kyung Jin Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
- Department of Life Science, Hanyang University, Seoul 04763, Korea
- Correspondence: (K.J.L.); (M.G.)
| | - Minchan Gil
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Correspondence: (K.J.L.); (M.G.)
| |
Collapse
|
16
|
A Destiny for Degradation: Interplay between Cullin-RING E3 Ligases and Autophagy. Trends Cell Biol 2021; 31:432-444. [PMID: 33573849 DOI: 10.1016/j.tcb.2021.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
Autophagy and the ubiquitin-proteasome system (UPS) are two major pathways for protein degradation. The cullin-RING E3 ligases (CRLs) are the largest E3 ligase family and have key biological functions in maintaining protein homeostasis. We provide an updated review of the interactions between CRLs and autophagy, focusing on the regulatory effects of CRLs on the core autophagy machinery that consists of several autophagy-related protein (ATG) complexes and their key upstream signaling pathways. The involvement of such functional interactions in health and disease is also discussed. Understanding the role of CRLs in autophagy is helpful for the development of therapeutic strategies for diseases in which CRLs and autophagy are dysregulated, such as cancer and neurodegenerative conditions.
Collapse
|
17
|
AMPKα1 Regulates Lung and Breast Cancer Progression by Regulating TLR4-Mediated TRAF6-BECN1 Signaling Axis. Cancers (Basel) 2020; 12:cancers12113289. [PMID: 33172060 PMCID: PMC7694660 DOI: 10.3390/cancers12113289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary TRAF6-BECN1 signaling axis in TLR4 signal plays an essential role for the autophagy induction, thereby it regulates cancer migration and invasion. Here we show that AMPKα1, one of the isoforms of AMPK, is functionally involved in autophagy induction by regulating the TRAF6-BECN1 signaling axis. In this context, AMPKα1-knockout lung or breast cancer cells exhibited the attenuation of cancer cell migration and invasion induced by TLR4 simulation. Additionally, we could find that the expression of AMPKα1 is positively associated with gene expressions related to autophagy, migration, and metastasis of cancer cells in primary non-small cell lung cancers (NSCLCs). These findings demonstrate that AMPKα1 plays a pivotal role in cancer progression by regulating the TRAF6-BECN1 signaling axis for autophagy induction. Abstract TRAF6-BECN1 signaling axis is critical for autophagy induction and functionally implicated in cancer progression. Here, we report that AMP-activated protein kinase alpha 1 (AMPKα1, PRKAA1) is positively involved in autophagy induction and cancer progression by regulating TRAF6-BECN1 signaling axis. Mechanistically, AMPKα1 interacted with TRAF6 and BECN1. It also enhanced ubiquitination of BECN1 and autophagy induction. AMPKα1-knockout (AMPKα1KO) HEK293T or AMPKα1-knockdown (AMPKα1KD) THP-1 cells showed impaired autophagy induced by serum starvation or TLR4 (Toll-like receptor 4) stimulation. Additionally, AMPKα1KD THP-1 cells showed decreases of autophagy-related and autophagosome-related genes induced by TLR4. AMPKα1KO A549 cells exhibited attenuation of cancer migration and invasion induced by TLR4. Moreover, primary non-small cell lung cancers (NSCLCs, n = 6) with low AMPKαl levels showed markedly decreased expression of genes related to autophagy, cell migration and adhesion/metastasis, inflammation, and TLRs whereas these genes were significantly upregulated in NSCLCs (n = 5) with high AMPKαl levels. Consistently, attenuation of cancer migration and invasion could be observed in AMPKα1KO MDA-MB-231 and AMPKα1KO MCF-7 human breast cancer cells. These results suggest that AMPKα1 plays a pivotal role in cancer progression by regulating the TRAF6-BECN1 signaling axis for autophagy induction.
Collapse
|
18
|
Lescouzères L, Bomont P. E3 Ubiquitin Ligases in Neurological Diseases: Focus on Gigaxonin and Autophagy. Front Physiol 2020; 11:1022. [PMID: 33192535 PMCID: PMC7642974 DOI: 10.3389/fphys.2020.01022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is a dynamic post-translational modification that regulates the fate of proteins and therefore modulates a myriad of cellular functions. At the last step of this sophisticated enzymatic cascade, E3 ubiquitin ligases selectively direct ubiquitin attachment to specific substrates. Altogether, the ∼800 distinct E3 ligases, combined to the exquisite variety of ubiquitin chains and types that can be formed at multiple sites on thousands of different substrates confer to ubiquitination versatility and infinite possibilities to control biological functions. E3 ubiquitin ligases have been shown to regulate behaviors of proteins, from their activation, trafficking, subcellular distribution, interaction with other proteins, to their final degradation. Largely known for tagging proteins for their degradation by the proteasome, E3 ligases also direct ubiquitinated proteins and more largely cellular content (organelles, ribosomes, etc.) to destruction by autophagy. This multi-step machinery involves the creation of double membrane autophagosomes in which engulfed material is degraded after fusion with lysosomes. Cooperating in sustaining homeostasis, actors of ubiquitination, proteasome and autophagy pathways are impaired or mutated in wide range of human diseases. From initial discovery of pathogenic mutations in the E3 ligase encoding for E6-AP in Angelman syndrome and Parkin in juvenile forms of Parkinson disease, the number of E3 ligases identified as causal gene for neurological diseases has considerably increased within the last years. In this review, we provide an overview of these diseases, by classifying the E3 ubiquitin ligase types and categorizing the neurological signs. We focus on the Gigaxonin-E3 ligase, mutated in giant axonal neuropathy and present a comprehensive analysis of the spectrum of mutations and the recent biological models that permitted to uncover novel mechanisms of action. Then, we discuss the common functions shared by Gigaxonin and the other E3 ligases in cytoskeleton architecture, cell signaling and autophagy. In particular, we emphasize their pivotal roles in controlling multiple steps of the autophagy pathway. In light of the various targets and extending functions sustained by a single E3 ligase, we finally discuss the challenge in understanding the complex pathological cascade underlying disease and in designing therapeutic approaches that can apprehend this complexity.
Collapse
Affiliation(s)
- Léa Lescouzères
- ATIP-Avenir Team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Pascale Bomont
- ATIP-Avenir Team, INM, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
19
|
Montenegro-Venegas C, Fienko S, Anni D, Pina-Fernández E, Frischknecht R, Fejtova A. Bassoon inhibits proteasome activity via interaction with PSMB4. Cell Mol Life Sci 2020; 78:1545-1563. [PMID: 32651614 PMCID: PMC7904567 DOI: 10.1007/s00018-020-03590-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 01/06/2023]
Abstract
Abstract Proteasomes are protein complexes that mediate controlled degradation of damaged or unneeded cellular proteins. In neurons, proteasome regulates synaptic function and its dysfunction has been linked to neurodegeneration and neuronal cell death. However, endogenous mechanisms controlling proteasomal activity are insufficiently understood. Here, we describe a novel interaction between presynaptic scaffolding protein bassoon and PSMB4, a β subunit of the 20S core proteasome. Expression of bassoon fragments that interact with PSMB4 in cell lines or in primary neurons attenuates all endopeptidase activities of cellular proteasome and induces accumulation of several classes of ubiquitinated and non-ubiquitinated substrates of the proteasome. Importantly, these effects are distinct from the previously reported impact of bassoon on ubiquitination and autophagy and might rely on a steric interference with the assembly of the 20S proteasome core. In line with a negative regulatory role of bassoon on endogenous proteasome we found increased proteasomal activity in the synaptic fractions prepared from brains of bassoon knock-out mice. Finally, increased activity of proteasome and lower expression levels of synaptic substrates of proteasome could be largely normalized upon expression of PSMB4-interacting fragments of bassoon in neurons derived from bassoon deficient mice. Collectively, we propose that bassoon interacts directly with proteasome to control its activity at presynapse and thereby it contributes to a compartment-specific regulation of neuronal protein homeostasis. These findings provide a mechanistic explanation for the recently described link of bassoon to human diseases associated with pathological protein aggregation. Graphic Abstract Presynaptic cytomatrix protein bassoon (Bsn) interacts with PSMB4, the β7 subunit of 20S core proteasome, via three independent interaction interfaces. Bsn inhibits proteasomal proteolytic activity and degradation of different classes of proteasomal substrates presumably due to steric interference with the assembly of 20S core of proteasome. Upon Bsn deletion in neurons, presynaptic substrates of the proteasome are depleted, which can be reversed upon expression of PSMB4-interacting interfaces of Bsn. Taken together, bsn controls the degree of proteasome degradation within the presynaptic compartment and thus, contributes to the regulation of synaptic proteome![]() Electronic supplementary material The online version of this article (10.1007/s00018-020-03590-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolina Montenegro-Venegas
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University and Center for Behavior Brain Sciences (CBBS), Magdeburg, Germany
| | - Sandra Fienko
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Daniela Anni
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Eneko Pina-Fernández
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander University of Erlangen- Nürnberg, Erlangen, Germany
| | - Anna Fejtova
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
20
|
p62 is Negatively Implicated in the TRAF6-BECN1 Signaling Axis for Autophagy Activation and Cancer Progression by Toll-Like Receptor 4 (TLR4). Cells 2020; 9:cells9051142. [PMID: 32384667 PMCID: PMC7290749 DOI: 10.3390/cells9051142] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) induce the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and autophagy through the TNF (Tumor necrosis factor) receptor-associated factor 6 (TRAF6)-evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) and TRAF6-BECN1 signaling axes, respectively. Having shown that p62 negatively regulates Toll-like receptor 4 (TLR4)-mediated signaling via TRAF6-ECSIT signaling axis, we herein investigated whether p62 is functionally implicated in the TRAF6-BECN1 signaling axis, thereby regulating cancer cell migration and invasion. p62 interacted with TRAF6 and BECN1, to interrupt the functional associations required for TRAF6-BECN1 complex formation, leading to inhibitions of BECN1 ubiquitination and autophagy activation. Importantly, p62-deficient cancer cells, such as p62-knockdown (p62KD) SK-HEP-1, p62KD MDA-MB-231, and p62-knockout (p62KO) A549 cells, showed increased activation of autophagy induced by TLR4 stimulation, suggesting that p62 negatively regulates autophagy activation. Moreover, these p62-deficient cancer cells exhibited marked increases in cell migration and invasion in response to TLR4 stimulation. Collectively, these results suggest that p62 is negatively implicated in the TRAF6-BECN1 signaling axis, thereby inhibiting cancer cell migration and invasion regulated by autophagy activation in response to TLR4 stimulation.
Collapse
|