1
|
Wang J, Yang C, Zhang R, Hu W, Yang P, Jiang Y, Hong W, Shan R, Jiang Y. Development and validation of a predictive model for stroke associated pneumonia in patients after thrombectomy for acute ischemic stroke. Front Med (Lausanne) 2024; 11:1370986. [PMID: 38504915 PMCID: PMC10948544 DOI: 10.3389/fmed.2024.1370986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Objective This study aims to identify the risk factors associated with stroke-associated pneumonia (SAP) in patients who have undergone thrombectomy for acute ischemic stroke and to develop a nomogram chart model for predicting the occurrence of pneumonia. Methods Consecutive patients who underwent thrombectomy for acute ischemic stroke were enrolled from three hospitals at Taizhou Enze Medical Center. They were randomly divided into a training group and a validation group in a 7:3 ratio. The training group data was used to screen for effective predictive factors using LASSO regression. Multiple logistic regression was then conducted to determine the predictive factors and construct a nomogram chart. The model was evaluated using the validation group, analyzing its discrimination, calibration, and clinical decision curve. Finally, the newly constructed model was compared with the AIS-APS, A2DS2, ISAN, and PANTHERIS scores for acute ischemic stroke-associated pneumonia. Results Out of 913 patients who underwent thrombectomy, 762 were included for analysis, consisting of 473 males and 289 females. The incidence rate of SAP was 45.8%. The new predictive model was constructed based on three main influencing factors: NIHSS ≥16, postoperative LMR, and difficulty swallowing. The model demonstrated good discrimination and calibration. When applying the nomogram chart to threshold probabilities between 7 and 90%, net returns were increased. Furthermore, the AUC was higher compared to other scoring systems. Conclusion The constructed nomogram chart in this study outperformed the AIS-APS, A2DS2 score, ISAN score, and PANTHERIS score in predicting the risk of stroke-associated pneumonia in patients with acute ischemic stroke after thrombectomy. It can be utilized for clinical risk prediction of stroke-associated pneumonia in patients after thrombectomy for acute ischemic stroke.
Collapse
Affiliation(s)
- Jingying Wang
- Department of Emergency Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Chao Yang
- Department of Emergency Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Ruihai Zhang
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Wei Hu
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Peng Yang
- Department of Emergency Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Yiqing Jiang
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Weijun Hong
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Renfei Shan
- Department of Emergency Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Yongpo Jiang
- Department of Emergency Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| |
Collapse
|
2
|
Zhang LM, Liang XL, Xiong GF, Xing XL, Zhang QJ, Zhang BR, Liu MW. Analysis and identification of oxidative stress-ferroptosis related biomarkers in ischemic stroke. Sci Rep 2024; 14:3803. [PMID: 38360841 PMCID: PMC10869843 DOI: 10.1038/s41598-024-54555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/14/2024] [Indexed: 02/17/2024] Open
Abstract
Studies have shown that a series of molecular events caused by oxidative stress is associated with ferroptosis and oxidation after ischemic stroke (IS). Differential analysis was performed to identify differentially expressed mRNA (DEmRNAs) between IS and control groups. Critical module genes were identified using weighted gene co-expression network analysis (WGCNA). DEmRNAs, critical module genes, oxidative stress-related genes (ORGs), and ferroptosis-related genes (FRGs) were crossed to screen for intersection mRNAs. Candidate mRNAs were screened based on the protein-protein interaction (PPI) network and the MCODE plug-in. Biomarkers were identified based on two types of machine learning algorithms, and the intersection was obtained. Functional items and related pathways of the biomarkers were identified using gene set enrichment analysis (GSEA). Finally, single-sample GSEA (ssGSEA) and Wilcoxon tests were used to identify differential immune cells. An miRNA-mRNA-TF network was created. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to verify the expression levels of biomarkers in the IS and control groups. There were 8287 DE mRNAs between the IS and control groups. The genes in the turquoise module were selected as critical module genes for IS. Thirty intersecting mRNAs were screened for overlaps. Seventeen candidate mRNAs were also identified. Four biomarkers (CDKN1A, GPX4, PRDX1, and PRDX6) were identified using two types of machine-learning algorithms. GSEA results indicated that the biomarkers were associated with steroid biosynthesis. Nine types of immune cells (activated B cells and neutrophils) were markedly different between the IS and control groups. We identified 3747 miRNA-mRNA-TF regulatory pairs in the miRNA-mRNA-TF regulatory network, including hsa-miR-4469-CDKN1A-BACH2 and hsa-miR-188-3p-GPX4-ATF2. CDKN1A, PRDX1, and PRDX6 were upregulated in IS samples compared with control samples. This study suggests that four biomarkers (CDKN1A, GPX4, PRDX1, and PRDX6) are significantly associated with IS. This study provides a new reference for the diagnosis and treatment of IS.
Collapse
Affiliation(s)
- Lin-Ming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xing-Ling Liang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Gui-Fei Xiong
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xuan-Lin Xing
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Qiu-Juan Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Bing-Ran Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Ming-Wei Liu
- Department of Emergency, People's Hospital of Dali Bai Autonomous Prefecture, No. 35 Renmin South Road, Xiaguan Street, Dalí, 671000, Yunnan, China.
| |
Collapse
|
3
|
Shen X, Li M, Shao K, Li Y, Ge Z. Post-ischemic inflammatory response in the brain: Targeting immune cell in ischemic stroke therapy. Front Mol Neurosci 2023; 16:1076016. [PMID: 37078089 PMCID: PMC10106693 DOI: 10.3389/fnmol.2023.1076016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
An ischemic stroke occurs when the blood supply is obstructed to the vascular basin, causing the death of nerve cells and forming the ischemic core. Subsequently, the brain enters the stage of reconstruction and repair. The whole process includes cellular brain damage, inflammatory reaction, blood–brain barrier destruction, and nerve repair. During this process, the proportion and function of neurons, immune cells, glial cells, endothelial cells, and other cells change. Identifying potential differences in gene expression between cell types or heterogeneity between cells of the same type helps to understand the cellular changes that occur in the brain and the context of disease. The recent emergence of single-cell sequencing technology has promoted the exploration of single-cell diversity and the elucidation of the molecular mechanism of ischemic stroke, thus providing new ideas and directions for the diagnosis and clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xueyang Shen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Mingming Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Gansu Provincial Neurology Clinical Medical Research Center, The Second Hospital of Lanzhou University, Lanzhou, China
- Expert Workstation of Academician Wang Longde, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Kangmei Shao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Yongnan Li,
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Gansu Provincial Neurology Clinical Medical Research Center, The Second Hospital of Lanzhou University, Lanzhou, China
- Expert Workstation of Academician Wang Longde, The Second Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Zhaoming Ge,
| |
Collapse
|
4
|
Zhang YP, Yang Q, Li YA, Yu MH, He GW, Zhu YX, Liu ZG, Liu XC. Inhibition of the Activating Transcription Factor 6 Branch of Endoplasmic Reticulum Stress Ameliorates Brain Injury after Deep Hypothermic Circulatory Arrest. J Clin Med 2023; 12:jcm12030814. [PMID: 36769462 PMCID: PMC9917384 DOI: 10.3390/jcm12030814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Neurological dysfunction is a common complication of deep hypothermic circulatory arrest (DHCA). Endoplasmic reticulum (ER) stress plays a role in neuronal ischemia-reperfusion injury; however, it is unknown whether it contributes to DHCA-induced brain injury. Here, we aimed to investigate the role of ER stress in a rat DHCA model and cell hypothermic oxygen-glucose deprivation reoxygenation (OGD/R) model. ER stress and apoptosis-related protein expression were identified using Western blot analysis. Cell counting assay-8 and flow cytometry were used to determine cell viability and apoptosis, respectively. Brain injury was evaluated using modified neurological severity scores, whereas brain injury markers were detected through histological examinations and immunoassays. We observed significant ER stress molecule upregulation in the DHCA rat hippocampus and in hypothermic OGD/R PC-12 cells. In vivo and in vitro experiments showed that ER stress or activating transcription factor 6 (ATF6) inhibition alleviated rat DHCA-induced brain injury, increased cell viability, and decreased apoptosis accompanied by C/EBP homologous protein (CHOP). ER stress is involved in DHCA-induced brain injury, and the inhibition of the ATF6 branch of ER stress may ameliorate this injury by inhibiting CHOP-mediated apoptosis. This study establishes a scientific foundation for identifying new therapeutic targets for perioperative brain protection in clinical DHCA.
Collapse
Affiliation(s)
- You-Peng Zhang
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Qin Yang
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Yi-Ai Li
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Ming-Huan Yu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Guo-Wei He
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
- Department of Cardiac Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310027, China
- School of Pharmacy, Wannan Medical College, Wuhu 241001, China
- Department of Surgery, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yu-Xiang Zhu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Zhi-Gang Liu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
- Correspondence: (Z.-G.L.); (X.-C.L.); Tel.: +86-18822686088 (Z.-G.L.); +86-13821359285 (X.-C.L.)
| | - Xiao-Cheng Liu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
- Correspondence: (Z.-G.L.); (X.-C.L.); Tel.: +86-18822686088 (Z.-G.L.); +86-13821359285 (X.-C.L.)
| |
Collapse
|
5
|
Jia K, Xia W, Su Q, Yang S, Zhang Y, Ni X, Su Z, Meng D. RNA methylation pattern and immune microenvironment characteristics mediated by m6A regulator in ischemic stroke. Front Genet 2023; 14:1148510. [PMID: 37139237 PMCID: PMC10150022 DOI: 10.3389/fgene.2023.1148510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
Background: Ischemic stroke (IS) is a highly heterogeneous disease. Recent studies have shown that epigenetic variables affect the immune response. However, only a few studies have examined the relationship between IS and m6A immunoregulation. Therefore, we aim to explore the methylation of RNA mediated by m6A regulatory factor and the immune microenvironment characteristics of IS. Methods: Differentially expressed m6A regulators were detected in IS microarray datasets GSE22255 and GSE58294. We used a series of machine learning algorithms to identify key IS-related m6A regulators and validated them on blood samples of IS patients, oxygen-glucose deprivation/reoxygenation (OGD/R) microglia and GSE198710 independent data sets. Different m6A modification modes were determined and the patients were classified. In addition, we systematically associate these modification patterns with the characteristics of immune microenvironment, including infiltrating immune cells, immune function genes and immune response genes. Then we developed a model of m6A score to quantify the m6A modification in IS samples. Results: Through the analysis of the differences between the control group and IS patients, METTL16, LRPPRC, and RBM15 showed strong diagnostic significance in three independent data sets. In addition, qRT-PCR and Western blotting also confirmed that the expression of METTL16 and LRPPRC was downregulated and the expression of RBM15 was upregulated after ischemia. Two m6A modification modes and two m6A gene modification modes were also identified. m6A gene cluster A (high m6A value group) was positively correlated with acquired immunity, while m6A gene cluster B (low m6A value group) was positively correlated with innate immunity. Similarly, five immune-related hub genes were significantly associated with m6Acore (CD28, IFNG, LTF, LCN2, and MMP9). Conclusion: The modification of m6A is closely related to the immune microenvironment. The evaluation of individual m6A modification pattern may be helpful for future immunomodulatory therapy of anti-ischemic response.
Collapse
Affiliation(s)
- Kejuan Jia
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Wenbo Xia
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Qian Su
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Shiqi Yang
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanli Zhang
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xunran Ni
- Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Zhiqiang Su
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Delong Meng, ; Zhiqiang Su,
| | - Delong Meng
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Delong Meng, ; Zhiqiang Su,
| |
Collapse
|
6
|
Leptin alleviates endoplasmic reticulum stress induced by cerebral ischemia/reperfusion injury via the PI3K/Akt signaling pathway. Biosci Rep 2022; 42:232083. [PMID: 36367210 PMCID: PMC9744719 DOI: 10.1042/bsr20221443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cerebral ischemic/reperfusion injury (CIRI) is a key factor for the prognosis of ischemic stroke (IS), the leading disease in terms of global disability and fatality rates. Recent studies have shown that endoplasmic reticulum stress (ERS) may be a target against CIRI and that leptin, a peptide hormone, has neuroprotective activity to mitigate CIRI. METHODS An in vitro CIRI model was induced in primary cortical neurons by oxygen-glucose deprivation and reoxygenation (OGD/R) after pretreatment with LY294002 (10 µmol/L) and/or leptin (0.4 mg/L), and cell viability, neuronal morphology and endoplasmic reticulum (ER) dysfunction were evaluated. An in vivo CIRI model was established in rats by middle cerebral artery occlusion and reperfusion (MCAO/R) after the injection of LY294002 (10 μmol/L) and/or leptin (1 mg/kg), and neurological function, infarct volume, cerebral pathological changes, the expression of ERS-related proteins and cell apoptosis were examined. RESULTS In vitro, leptin treatment improved the cell survival rate, ameliorated neuronal pathological morphology and alleviated OGD/R-induced ERS. In vivo, administration of leptin significantly reduced the infarct volume, neurological deficit scores and neuronal apoptosis as well as pathological alterations. In addition, leptin suppressed MCAO/R-induced ERS and may decrease apoptosis by inhibiting ERS-related death and caspase 3 activation. It also regulated expression of the antiapoptotic protein Bcl-2 and the proapoptotic protein Bax in the cortex. Furthermore, the inhibitory effect of leptin on ERS was significantly decreased by the effective phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. CONCLUSIONS These results confirm that ERS plays an important role in CIRI and that leptin can inhibit the activation of ERS through the PI3K/Akt pathway, thereby alleviating CIRI. These findings provide novel therapeutic targets for IS.
Collapse
|
7
|
Chen R, Yan L, Xie P, Tian J, Zhao Y, Liu Y, Xu J, Wang Y, Zhao L. Use of Diterpene Ginkgolides Meglumine Injection to Regulate Plasma Levels of PAI-1 and t-PA in Patients With Acute Atherosclerotic Cerebral Infarction. Neurologist 2022; 27:299-303. [PMID: 34855657 DOI: 10.1097/nrl.0000000000000399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND To: (i) explore the effect of diterpene ginkgolides meglumine injection (DGMI) on neurological deficit symptoms in acute atherosclerotic cerebral infarction (AACI) patients; (ii) measure the level of plasma plasminogen activator inhibitor (PAI)-1 and tissue plasminogen activator (t-PA). METHODS Eighty AACI patients were divided equally and randomly into the DGMI group and control group. In addition to basic treatment, the DGMI group was treated with DGMI (25 mg/d) for 14 days. The control group had basic treatment without DGMI. Before and after treatment, the degree of neurological deficit was assessed, thromboelastography undertaken, and plasma levels of PAI-1 and t-PA measured. RESULTS The National Institutes of Health Stroke Scale score of patients in the DGMI group after treatment was lower than that in the control group, and the Barthel Index was higher than that in the control group ( P <0.05). Thromboelastography revealed that, in the DGMI group, the R value and K value after treatment were higher than before treatment, the angle and maximum amplitude value were lower than before treatment, and both were significant ( P <0.05). Compared with the control group, the plasma PAI-1 level of patients in the DGMI group was lower than that in the control group, and the t-PA level was higher than that in the control group ( P <0.05) after 14 days of treatment. CONCLUSIONS DGMI may affect the activity of the blood coagulation and fibrinolysis system by regulating the plasma level of PAI-1 and t-PA, and improving neurological deficit symptoms. DGMI is important for improving the prognosis of patients with AACI.
Collapse
Affiliation(s)
| | | | | | | | | | - Yue Liu
- Intensive Care Unit, The Second People's Hospital of Huai'an and The Affiliated Huai'an Hospital of Xuzhou Medical University
| | - Jie Xu
- Department of General Surgery, Huai'an First People's Hospital and The Affiliated Huai'an First People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | | | | |
Collapse
|
8
|
Zhang WJ, Hu DX, Lin SJ, Fang XQ, Ye ZF. Contribution of P2X purinergic receptor in cerebral ischemia injury. Brain Res Bull 2022; 190:42-49. [PMID: 36113681 DOI: 10.1016/j.brainresbull.2022.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
The development of cerebral ischemia involves brain damage and abnormal changes in brain function, which can cause neurosensory and motor dysfunction, and bring serious consequences to patients. P2X purinergic receptors are expressed in nerve cells and immune cells, and are mainly expressed in microglia. The P2X4 and P2X7 receptors in the P2X purinergic receptors play a significant role in regulating the activity of microglia. Moreover, ATP-P2X purine information transmission is involved in the progression of neurological diseases, including the release of pro-inflammatory factors, driving factors and cytokines after cerebral ischemia injury, inducing inflammation, and aggravating cerebral ischemia injury. P2X receptors activation can mediate the information exchange between microglia and neurons, induce neuronal apoptosis, and aggravate neurological dysfunction after cerebral ischemia. However, inhibiting the activation of P2X receptors, reducing their expression, inhibiting the activation of microglia, and has the effect of protecting nerve function. In this paper, we discussed the relationship between P2X receptors and nervous system function and the role of microglia activation inducing cerebral ischemia injury. Additionally, we explored the potential role of P2X receptors in the progression of cerebral ischemic injury and their potential pharmacological targets for the treatment of cerebral ischemic injury.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Si-Jian Lin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Xiao-Qun Fang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Zhen-Feng Ye
- Department of Urology, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
9
|
Xia W, Xu Y, Gong Y, Cheng X, Yu T, Yu G. Microglia Involves in the Immune Inflammatory Response of Poststroke Depression: A Review of Evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2049371. [PMID: 35958023 PMCID: PMC9363171 DOI: 10.1155/2022/2049371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022]
Abstract
Poststroke depression (PSD) does not exist before and occurs after the stroke. PSD can appear shortly after the onset of stroke or be observed in the weeks and months after the acute or subacute phase of stroke. The pathogenesis of PSD is unclear, resulting in poor treatment effects. With research advancement, immunoactive cells in the central nervous system, particularly microglia, play a role in the occurrence and development of PSD. Microglia affects the homeostasis of the central nervous system through various factors, leading to the occurrence of depression. The research progress of microglia in PSD has been summarized to review the evidence regarding the pathogenesis and treatment target of PSD in the future.
Collapse
Affiliation(s)
- Weili Xia
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Yong Xu
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Yuandong Gong
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Xiaojing Cheng
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Tiangui Yu
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Gongchang Yu
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| |
Collapse
|
10
|
Wlodarek L, Alibhai FJ, Wu J, Li SH, Li RK. Stroke-Induced Neurological Dysfunction in Aged Mice Is Attenuated by Preconditioning with Young Sca-1+ Stem Cells. Stem Cells 2022; 40:564-576. [PMID: 35291015 PMCID: PMC9216491 DOI: 10.1093/stmcls/sxac019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022]
Abstract
AIMS To date, stroke remains one of the leading causes of death and disability worldwide. Nearly three-quarters of all strokes occur in the elderly (>65 years old), and a vast majority of these individuals develop debilitating cognitive impairments that can later progress into dementia. Currently, there are no therapies capable of reversing the cognitive complications which arise following a stroke. Instead, current treatment options focus on preventing secondary injuries, as opposed to improving functional recovery. METHODS We reconstituted aged (20-month old) mice with Sca-1+ bone marrow (BM) hematopoietic stem cells isolated from aged or young (2-month old) EGFP+ donor mice. Three months later the chimeric aged mice underwent cerebral ischemia/reperfusion by bilateral common carotid artery occlusion (BCCAO), after which cognitive function was evaluated. Immunohistochemical analysis was performed to evaluate host and recipient cells in the brain following BCCAO. RESULTS Young Sca-1+ cells migrate to the aged brain and give rise to beneficial microglial-like cells that ameliorate stroke-induced loss of cognitive function on tasks targeting the hippocampus and cerebellum. We also found that young Sca-1+ cell-derived microglial-like cells possess neuroprotective properties as they do not undergo microgliosis upon migrating to the ischemic hippocampus, whereas the cells originating from old Sca-1+ cells proliferate extensively and skew toward a pro-inflammatory phenotype following injury. CONCLUSIONS This study provides a proof-of-principle demonstrating that young BM Sca-1+ cells play a pivotal role in reversing stroke-induced cognitive impairments and protect the aged brain against secondary injury by attenuating the host cell response to injury.
Collapse
Affiliation(s)
- Lukasz Wlodarek
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Faculty of Medicine, Department weof Physiology, University of Toronto, Toronto, ON, Canada
| | - Faisal J Alibhai
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jun Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Shu-Hong Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Faculty of Medicine, Department weof Physiology, University of Toronto, Toronto, ON, Canada.,Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Liu T, Deng R, Wang X, Liu P, Xiao QX, Liu Q, Zhang Y. Mechanisms of hypoxia in the hippocampal CA3 region in postoperative cognitive dysfunction after cardiopulmonary bypass. J Cardiothorac Surg 2022; 17:106. [PMID: 35526011 PMCID: PMC9077938 DOI: 10.1186/s13019-022-01865-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 04/17/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a complication with high morbidity and mortality, commonly observed in the elderly who underwent anesthesia and surgery. The incidence is much higher in cardiac surgery. However, the reason and the mechanism of POCD remains unclear, but cerebral hypoxia is a common neurological complication after cardiac surgery. This study aims to investigate what role cerebral hypoxia plays in the pathogenesis of POCD. METHODS The POCD model was established using cardiopulmonary bypass (CPB) surgery. Cognitive function was detected using Y maze and Morris water maze. The hypoxia in central nervous system was assessed using HE staining, western blot, and immunofluorescence. Inflammatory factors in hippocampus and plasma were detected by enzyme-linked immunosorbent assay. Evans blue was used to detect destruction of the blood brain barrier (BBB). RESULTS Cognitive impairment markedly occurred to rats underwent 2-h CPB operation. Cerebral thrombosis and hypoxia occurred in the hippocampal CA3 region of rats after surgery. In addition, microglia in hippocampal was activated and the expression of inflammatory factors such as IL-1β, IL-6 and TNF-α was upregulated. Moreover, the permeability of BBB increased in rats after CPB. CONCLUSION Hypoxia in hippocampal CA3 region was involved in the occurrence and the mechanism may be associated with neuroinflammation and the damage of BBB.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Rui Deng
- Department of Anesthesiology, People's Hospital of Deyang City, Deyang, 618000, China
| | - Xin Wang
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Ping Liu
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Qiu-Xia Xiao
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qing Liu
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Ying Zhang
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
12
|
Fan F, Lei M. Mechanisms Underlying Curcumin-Induced Neuroprotection in Cerebral Ischemia. Front Pharmacol 2022; 13:893118. [PMID: 35559238 PMCID: PMC9090137 DOI: 10.3389/fphar.2022.893118] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is the leading cause of death and disability worldwide, and restoring the blood flow to ischemic brain tissues is currently the main therapeutic strategy. However, reperfusion after brain ischemia leads to excessive reactive oxygen species production, inflammatory cell recruitment, the release of inflammatory mediators, cell death, mitochondrial dysfunction, endoplasmic reticulum stress, and blood-brain barrier damage; these pathological mechanisms will further aggravate brain tissue injury, ultimately affecting the recovery of neurological functions. It has attracted the attention of researchers to develop drugs with multitarget intervention effects for individuals with cerebral ischemia. A large number of studies have established that curcumin plays a significant neuroprotective role in cerebral ischemia via various mechanisms, including antioxidation, anti-inflammation, anti-apoptosis, protection of the blood-brain barrier, and restoration of mitochondrial function and structure, restoring cerebral circulation, reducing infarct volume, improving brain edema, promoting blood-brain barrier repair, and improving the neurological functions. Therefore, summarizing the results from the latest literature and identifying the potential mechanisms of action of curcumin in cerebral ischemia will serve as a basis and guidance for the clinical applications of curcumin in the future.
Collapse
Affiliation(s)
- Feng Fan
- Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Lei
- Department of Neurology, The Third People’s Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
13
|
Identifying Key Biomarkers and Immune Infiltration in Female Patients with Ischemic Stroke Based on Weighted Gene Co-Expression Network Analysis. Neural Plast 2022; 2022:5379876. [PMID: 35432523 PMCID: PMC9012649 DOI: 10.1155/2022/5379876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 01/02/2023] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. Evidence shows that ischemic stroke (IS) accounts for nearly 80 percent of all strokes and that the etiology, risk factors, and prognosis of this disease differ by gender. Female patients may bear a greater burden than male patients. The immune system may play an important role in the pathophysiology of females with IS. Therefore, it is critical to investigate the key biomarkers and immune infiltration of female IS patients to develop effective treatment methods. Herein, we used weighted gene co-expression network analysis (WGCNA) to determine the key modules and core genes in female IS patients using the GSE22255, GSE37587, and GSE16561 datasets from the GEO database. Subsequently, we performed functional enrichment analysis and built a protein-protein interaction (PPI) network. Ten genes were selected as the true central genes for further investigation. After that, we explored the specific molecular and biological functions of these hub genes to gain a better understanding of the underlying pathogenesis of female IS patients. Moreover, the “Cell type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT)” was used to examine the distribution pattern of immune subtypes in female patients with IS and normal controls, revealing a new potential target for clinical treatment of the disease.
Collapse
|
14
|
Zhu Y, Sun Y, Hu J, Pan Z. Insight Into the Mechanism of Exercise Preconditioning in Ischemic Stroke. Front Pharmacol 2022; 13:866360. [PMID: 35350755 PMCID: PMC8957886 DOI: 10.3389/fphar.2022.866360] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 01/07/2023] Open
Abstract
Exercise preconditioning has attracted extensive attention to induce endogenous neuroprotection and has become the hotspot in neurotherapy. The training exercise is given multiple times before cerebral ischemia, effectively inducing ischemic tolerance and alleviating secondary brain damage post-stroke. Compared with other preconditioning methods, the main advantages of exercise include easy clinical operation and being readily accepted by patients. However, the specific mechanism behind exercise preconditioning to ameliorate brain injury is complex. It involves multi-pathway and multi-target regulation, including regulation of inflammatory response, oxidative stress, apoptosis inhibition, and neurogenesis promotion. The current review summarizes the recent studies on the mechanism of neuroprotection induced by exercise, providing the theoretical basis of applying exercise therapy to prevent and treat ischemic stroke. In addition, we highlight the various limitations and future challenges of translational medicine from fundamental study to clinical application.
Collapse
Affiliation(s)
- Yuanhan Zhu
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yulin Sun
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Jichao Hu
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Zhuoer Pan
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
15
|
Cho YE, Lee H, Bae HR, Kim H, Yun S, Vorn R, Cashion A, Rucker MJ, Afzal M, Latour L, Gill J. Circulating immune cell landscape in patients who had mild ischaemic stroke. Stroke Vasc Neurol 2022; 7:319-327. [PMID: 35264400 PMCID: PMC9453838 DOI: 10.1136/svn-2021-001224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/05/2022] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Patients who had a mild ischaemic stroke who present with subtle or resolving symptoms sometimes go undiagnosed, are excluded from treatment and in some cases clinically worsen. Circulating immune cells are potential biomarkers that can assist with diagnosis in ischaemic stroke. Understanding the transcriptomic changes of each cell population caused by ischaemic stroke is critical because they work closely in a complicated relationship. In this study, we investigated peripheral blood mononuclear cells (PBMCs) transcriptomics of patients who had a stroke using a single-cell RNA sequencing to understand peripheral immune response after mild stroke based on the gene expression in an unbiased way. METHODS Transcriptomes of PBMCsfrom 10 patients who had an acute ischaemic stroke within 24 hours after stroke onset were compared with 9 race-matched/age-matched/gender-matched controls. Individual PBMCs were prepared with ddSeqTM (Illumina-BioRad) and sequenced on the Illumina NovaSeq 6000 platform. RESULTS Notable population changes were observed in patients who had a stroke, especially in NK cells and CD14+ monocytes. The number of NK cells was increased, which was further confirmed by flow cytometry. Functional analysis implied that the activity of NK cells also is enhanced in patients who had a stroke. CD14+ monocytes were clustered into two groups; dendritic cell-related CD14+ monocytes and NK cell-related CD14+ monocytes. We found CD14+ monocyte subclusters were dramatically reduced in patients who had a stroke. DISCUSSION This is the first study demonstrating the increased number of NK cells and new monocyte subclusters of mild ischaemic stroke based on the transcriptomic analysis. Our findings provide the dynamics of circulating immune response that could assist diagnosis and potential therapeutic development of mild ischaemic stroke.
Collapse
Affiliation(s)
- Young-Eun Cho
- College of Nursing, The University of Iowa, Iowa City, Iowa, USA .,National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Hyangkyu Lee
- Mo-Im Kim Nursing Research Institute, College of Nursing, Yonsei University, Seoul, South Korea
| | - Heekyong R Bae
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hyungsuk Kim
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Sijung Yun
- Predictiv Care, Inc, Sunnyvale, California, USA
| | - Rany Vorn
- School of Nursing, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ann Cashion
- College of Nursing, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | - Mariam Afzal
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Lawrence Latour
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jessica Gill
- School of Nursing, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Peripheral immune cells and perinatal brain injury: a double-edged sword? Pediatr Res 2022; 91:392-403. [PMID: 34750522 PMCID: PMC8816729 DOI: 10.1038/s41390-021-01818-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023]
Abstract
Perinatal brain injury is the leading cause of neurological mortality and morbidity in childhood ranging from motor and cognitive impairment to behavioural and neuropsychiatric disorders. Various noxious stimuli, including perinatal inflammation, chronic and acute hypoxia, hyperoxia, stress and drug exposure contribute to the pathogenesis. Among a variety of pathological phenomena, the unique developing immune system plays an important role in the understanding of mechanisms of injury to the immature brain. Neuroinflammation following a perinatal insult largely contributes to evolution of damage to resident brain cells, but may also be beneficial for repair activities. The present review will focus on the role of peripheral immune cells and discuss processes involved in neuroinflammation under two frequent perinatal conditions, systemic infection/inflammation associated with encephalopathy of prematurity (EoP) and hypoxia/ischaemia in the context of neonatal encephalopathy (NE) and stroke at term. Different immune cell subsets in perinatal brain injury including their infiltration routes will be reviewed and critical aspects such as sex differences and maturational stage will be discussed. Interactions with existing regenerative therapies such as stem cells and also potentials to develop novel immunomodulatory targets are considered. IMPACT: Comprehensive summary of current knowledge on the role of different immune cell subsets in perinatal brain injury including discussion of critical aspects to be considered for development of immunomodulatory therapies.
Collapse
|
17
|
Han Y, Yuan M, Guo YS, Shen XY, Gao ZK, Bi X. Mechanism of Endoplasmic Reticulum Stress in Cerebral Ischemia. Front Cell Neurosci 2021; 15:704334. [PMID: 34408630 PMCID: PMC8365026 DOI: 10.3389/fncel.2021.704334] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Endoplasmic reticulum (ER) is the main organelle for protein synthesis, trafficking and maintaining intracellular Ca2+ homeostasis. The stress response of ER results from the disruption of ER homeostasis in neurological disorders. Among these disorders, cerebral ischemia is a prevalent reason of death and disability in the world. ER stress stemed from ischemic injury initiates unfolded protein response (UPR) regarded as a protection mechanism. Important, disruption of Ca2+ homeostasis resulted from cytosolic Ca2+ overload and depletion of Ca2+ in the lumen of the ER could be a trigger of ER stress and the misfolded protein synthesis. Brain cells including neurons, glial cells and endothelial cells are involved in the complex pathophysiology of ischemic stroke. This is generally important for protein underfolding, but even more for cytosolic Ca2+ overload. Mild ER stress promotes cells to break away from danger signals and enter the adaptive procedure with the activation of pro-survival mechanism to rescue ischemic injury, while chronic ER stress generally serves as a detrimental role on nerve cells via triggering diverse pro-apoptotic mechanism. What’s more, the determination of some proteins in UPR during cerebral ischemia to cell fate may have two diametrically opposed results which involves in a specialized set of inflammatory and apoptotic signaling pathways. A reasonable understanding and exploration of the underlying molecular mechanism related to ER stress and cerebral ischemia is a prerequisite for a major breakthrough in stroke treatment in the future. This review focuses on recent findings of the ER stress as well as the progress research of mechanism in ischemic stroke prognosis provide a new treatment idea for recovery of cerebral ischemia.
Collapse
Affiliation(s)
- Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Mei Yuan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yi-Sha Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
18
|
Jin Z, Hao D, Song Y, Zhuang L, Wang Q, Yu X. Systemic inflammatory response index as an independent risk factor for ischemic stroke in patients with rheumatoid arthritis: a retrospective study based on propensity score matching. Clin Rheumatol 2021; 40:3919-3927. [PMID: 33966169 DOI: 10.1007/s10067-021-05762-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/02/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the relationship between systemic inflammatory response index (SIRI) and ischemic stroke (IS) in rheumatoid arthritis (RA) patients. METHODS Fifty-two RA patients with IS, who were admitted to Wujin Hospital Affiliated with Jiangsu University between 2015 and 2019, were selected as the study group, and 236 RA patients without IS were selected as the control group. Propensity score matching (PSM) function of SPSS 26.0 was used to carry out 1:1 propensity score matching for gender, age, blood pressure, blood glucose, blood lipid, and smoking history of patients in the two groups, and the caliper value was set as 0.02 to obtain covariate balanced samples between groups. When performing blood tests, the following are determined: rheumatoid factor (RF), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), mean platelet volume (MPV), calculated SIRI = (neutrophil × monocyte)/lymphocyte, and completed 28-joint disease activity score (DAS28-CRP). The differences in inflammatory markers between the two groups were compared, the independent risk factors were analyzed by logistic regression, and the auxiliary diagnostic value was evaluated by the receiver operating characteristic (ROC) curve. RESULTS A total of 48 pairs of patients were successfully matched. SIRI in the study group was higher than that in the control group (p < 0.05), and the mean platelet volume (MPV) was lower in the study group than in the control group (p < 0.05). SIRI, DAS28-CRP (r = 0.508, p < 0.01), ESR (r = 0.359, p < 0.05), and CRP (r = 0.473, p < 0.01) were positively correlated. Logistic regression analysis showed that SIRI was an independent IS risk factor in RA patients (odds ratio, 1.30; 95% confidence interval, approximately 1.008-1.678). The optimal threshold for SIRI-assisted diagnosis of patients with RA and IS was 1.62, the area under the ROC curve was 0.721 (p < 0.01), sensitivity was 54.17%, and specificity was 83.33%. CONCLUSION SIRI was independently associated with the occurrence of ischemic stroke in patients with RA. Thus, RA patients with elevated SIRI should be closely monitored. Key points • RA patients with IS had fewer traditional risk factors such as hypertension and diabetes, while inflammatory indicators were significantly increased. • The SIRI have drawn attention in recent years as novel non-specific inflammatory markers. However, only a few studies have been conducted to investigate their value in RA. • This study completes the gaps in the research on the relationship between SIRI and the risk of IS occurrence in RA patients.
Collapse
Affiliation(s)
- Zihan Jin
- Department of Clinical Laboratory, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Dongli Hao
- Department of Neurology, Wujin Hospital Affiliated with Jiangsu University, Changzhou City, Jiangsu Province, China
| | - Yuanjian Song
- School of Basic Medicine, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Lin Zhuang
- Department of Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou City, Jiangsu Province, China
| | - Qiang Wang
- Department of Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou City, Jiangsu Province, China
| | - Xiaolong Yu
- Science and Education Section, Wujin Hospital Affiliated with Jiangsu University, Changzhou City, Jiangsu Province, China. .,Department of Ultrasonics, The Wujin Clinical College of Xuzhou Medical University, Changzhou City, Jiangsu Province, China. .,Jiangsu Key Laboratory of Immunology and Metabolism (Xuzhou Medical University), Xuzhou City, Jiangsu Province, China.
| |
Collapse
|
19
|
Wang H, Zhou Y, Sun Q, Zhou C, Hu S, Lenahan C, Xu W, Deng Y, Li G, Tao S. Update on Nanoparticle-Based Drug Delivery System for Anti-inflammatory Treatment. Front Bioeng Biotechnol 2021; 9:630352. [PMID: 33681167 PMCID: PMC7925417 DOI: 10.3389/fbioe.2021.630352] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Nanobiotechnology plays an important role in drug delivery, and various kinds of nanoparticles have demonstrated new properties, which may provide opportunities in clinical treatment. Nanoparticle-mediated drug delivery systems have been used in anti-inflammatory therapies. Diseases, such as inflammatory bowel disease, rheumatoid arthritis, and osteoarthritis have been widely impacted by the pathogenesis of inflammation. Efficient delivery of anti-inflammatory drugs can reduce medical dosage and improve therapeutic effect. In this review, we discuss nanoparticles with potential anti-inflammatory activity, and we present a future perspective regarding the application of nanomedicine in inflammatory diseases.
Collapse
Affiliation(s)
- Huailan Wang
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qunan Sun
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenghao Zhou
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiyao Hu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sifeng Tao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Liu WQ, Li WL, Ma SM, Liang L, Kou ZY, Yang J. Discovery of core gene families associated with liver metastasis in colorectal cancer and regulatory roles in tumor cell immune infiltration. Transl Oncol 2021; 14:101011. [PMID: 33450702 PMCID: PMC7810789 DOI: 10.1016/j.tranon.2021.101011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 01/21/2023] Open
Abstract
In this study, we aimed to uncover genes that drive the pathogenesis of liver metastasis in colorectal cancer (CRC), and identify effective genes that could serve as potential therapeutic targets for treating with colorectal liver metastasis patients based on two GEO datasets. Several bioinformatics approaches were implemented. First, differential expression analysis screened out key differentially expressed genes (DEGs) across the two GEO datasets. Based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, we identified the enrichment functions and pathways of the DEGs that were associated with liver metastasis in CRC. Second, immune infiltration analysis identified key immune signature gene sets associated with CRC liver metastasis, among which two key immune gene families (CD and CCL) identified as key DEGs were filtered by protein-protein interaction (PPI) network. Some of the members in these gene families were associated with disease free survival (DFS) or overall survival (OS) in two subtypes of CRC, namely COAD and READ. Finally, functional enrichment analysis of the two gene families and their neighboring genes revealed that they were closely associated with cytokine, leukocyte proliferation and chemotaxis. These results are valuable in comprehending the pathogenesis of liver metastasis in CRC, and are of seminal importance in understanding the role of immune tumor infiltration in CRC. Our study also identified potentially effective therapeutic targets for liver metastasis in CRC including CCL20, CCL24 and CD70.
Collapse
Affiliation(s)
- Wei-Qing Liu
- Department of Internal Medicine-Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, PR China
| | - Wen-Liang Li
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China
| | - Shu-Min Ma
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China
| | - Lei Liang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China
| | - Zhi-Yong Kou
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China
| | - Jun Yang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
21
|
Spellicy SE, Scheulin KM, Baker EW, Jurgielewicz BJ, Kinder HA, Waters ES, Grimes JA, Stice SL, West FD. Semi-Automated Cell and Tissue Analyses Reveal Regionally Specific Morphological Alterations of Immune and Neural Cells in a Porcine Middle Cerebral Artery Occlusion Model of Stroke. Front Cell Neurosci 2021; 14:600441. [PMID: 33551749 PMCID: PMC7862775 DOI: 10.3389/fncel.2020.600441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Histopathological analysis of cellular changes in the stroked brain provides critical information pertaining to inflammation, cell death, glial scarring, and other dynamic injury and recovery responses. However, commonly used manual approaches are hindered by limitations in speed, accuracy, bias, and the breadth of morphological information that can be obtained. Here, a semi-automated high-content imaging (HCI) and CellProfiler histological analysis method was developed and used in a Yucatan miniature pig permanent middle cerebral artery occlusion (pMCAO) model of ischemic stroke to overcome these limitations. Evaluation of 19 morphological parameters in IBA1+ microglia/macrophages, GFAP+ astrocytes, NeuN+ neuronal, FactorVIII+ vascular endothelial, and DCX+ neuroblast cell areas was conducted on porcine brain tissue 4 weeks post pMCAO. Out of 19 morphological parameters assessed in the stroke perilesional and ipsilateral hemisphere regions (38 parameters), a significant change in 3838 measured IBA1+ parameters, 3438 GFAP+ parameters, 3238 NeuN+ parameters, 3138 FactorVIII+ parameters, and 2838 DCX+ parameters were observed in stroked vs. non-stroked animals. Principal component analysis (PCA) and correlation analyses demonstrated that stroke-induced significant and predictable morphological changes that demonstrated strong relationships between IBA1+, GFAP+, and NeuN+ areas. Ultimately, this unbiased, semi-automated HCI and CellProfiler histopathological analysis approach revealed regional and cell specific morphological signatures of immune and neural cells after stroke in a highly translational porcine model. These identified features can provide information of disease pathogenesis and evolution with high resolution, as well as be used in therapeutic screening applications.
Collapse
Affiliation(s)
- Samantha E Spellicy
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Medical College of Georgia, University System of Georgia MD/Ph.D. Program, Augusta, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | | | - Brian J Jurgielewicz
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Elizabeth S Waters
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Janet A Grimes
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States.,Aruna Bio Inc., Athens, GA, United States
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
22
|
Zhang Y, Wang Z, Peng J, Gerner ST, Yin S, Jiang Y. Gut microbiota-brain interaction: An emerging immunotherapy for traumatic brain injury. Exp Neurol 2020; 337:113585. [PMID: 33370556 DOI: 10.1016/j.expneurol.2020.113585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Individuals suffering from traumatic brain injury (TBI) often experience the activation of the immune system, resulting in declines in cognitive and neurological function after brain injury. Despite decades of efforts, approaches for clinically effective treatment are sparse. Evidence on the association between current therapeutic strategies and clinical outcomes after TBI is limited to poorly understood mechanisms. For decades, an increasing number of studies suggest that the gut-brain axis (GBA), a bidirectional communication system between the central nervous system (CNS) and the gastrointestinal tract, plays a critical role in systemic immune response following neurological diseases. In this review, we detail current knowledge of the immune pathologies of GBA after TBI. These processes may provide a new therapeutic target and rehabilitation strategy developed and used in clinical treatment of TBI patients.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhaoyang Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Stefan T Gerner
- Department of Neurology, University Hospital Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
23
|
Shoaib M, Becker LB. A walk through the progression of resuscitation medicine. Ann N Y Acad Sci 2020; 1507:23-36. [PMID: 33040363 DOI: 10.1111/nyas.14507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 01/11/2023]
Abstract
Cardiac arrest (CA) is a sudden and devastating disease process resulting in more deaths in the United States than many cancers, metabolic diseases, and even car accidents. Despite such a heavy mortality burden, effective treatments have remained elusive. The past century has been productive in establishing the guidelines for resuscitation, known as cardiopulmonary resuscitation (CPR), as well as developing a scientific field whose aim is to elucidate the underlying mechanisms of CA and develop therapies to save lives. CPR has been successful in reinitiating the heart after arrest, enabling a survival rate of approximately 10% in out-of-hospital CA. Although current advanced resuscitation methods, including hypothermia and extracorporeal membrane oxygenation, have improved survival in some patients, they are unlikely to significantly improve the national survival rate any further without a paradigm shift. Such a change is possible with sustained efforts in the basic and clinical sciences of resuscitation and their implementation. This review seeks to discuss the current landscape in resuscitation medicine-how we got here and where we are going.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York.,The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Lance B Becker
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York.,The Feinstein Institutes for Medical Research, Manhasset, New York.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, New York
| |
Collapse
|
24
|
Runtsch MC, Ferrara G, Angiari S. Metabolic determinants of leukocyte pathogenicity in neurological diseases. J Neurochem 2020; 158:36-58. [PMID: 32880969 DOI: 10.1111/jnc.15169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Neuroinflammatory and neurodegenerative diseases are characterized by the recruitment of circulating blood-borne innate and adaptive immune cells into the central nervous system (CNS). These leukocytes sustain the detrimental response in the CNS by releasing pro-inflammatory mediators that induce activation of local glial cells, blood-brain barrier (BBB) dysfunction, and neural cell death. However, infiltrating peripheral immune cells could also dampen CNS inflammation and support tissue repair. Recent advances in the field of immunometabolism demonstrate the importance of metabolic reprogramming for the activation and functionality of such innate and adaptive immune cell populations. In particular, an increasing body of evidence suggests that the activity of metabolites and metabolic enzymes could influence the pathogenic potential of immune cells during neuroinflammatory and neurodegenerative disorders. In this review, we discuss the role of intracellular metabolic cues in regulating leukocyte-mediated CNS damage in Alzheimer's and Parkinson's disease, multiple sclerosis and stroke, highlighting the therapeutic potential of drugs targeting metabolic pathways for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Marah C Runtsch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | - Stefano Angiari
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Stanley N, Stelzer IA, Tsai AS, Fallahzadeh R, Ganio E, Becker M, Phongpreecha T, Nassar H, Ghaemi S, Maric I, Culos A, Chang AL, Xenochristou M, Han X, Espinosa C, Rumer K, Peterson L, Verdonk F, Gaudilliere D, Tsai E, Feyaerts D, Einhaus J, Ando K, Wong RJ, Obermoser G, Shaw GM, Stevenson DK, Angst MS, Gaudilliere B, Aghaeepour N. VoPo leverages cellular heterogeneity for predictive modeling of single-cell data. Nat Commun 2020; 11:3738. [PMID: 32719375 PMCID: PMC7385162 DOI: 10.1038/s41467-020-17569-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/03/2020] [Indexed: 12/29/2022] Open
Abstract
High-throughput single-cell analysis technologies produce an abundance of data that is critical for profiling the heterogeneity of cellular systems. We introduce VoPo (https://github.com/stanleyn/VoPo), a machine learning algorithm for predictive modeling and comprehensive visualization of the heterogeneity captured in large single-cell datasets. In three mass cytometry datasets, with the largest measuring hundreds of millions of cells over hundreds of samples, VoPo defines phenotypically and functionally homogeneous cell populations. VoPo further outperforms state-of-the-art machine learning algorithms in classification tasks, and identified immune-correlates of clinically-relevant parameters.
Collapse
Affiliation(s)
- Natalie Stanley
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Biomedical Data Science, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Ina A Stelzer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
| | - Ramin Fallahzadeh
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Biomedical Data Science, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Edward Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Martin Becker
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Biomedical Data Science, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Thanaphong Phongpreecha
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Biomedical Data Science, Stanford University, Stanford, USA
- Department of Pathology, Stanford University, Stanford, USA
| | - Huda Nassar
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Biomedical Data Science, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Sajjad Ghaemi
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Biomedical Data Science, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
- Digital Technologies Research Centre, National Research Council Canada, Toronto, ON, Canada
| | - Ivana Maric
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Anthony Culos
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Biomedical Data Science, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Alan L Chang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Biomedical Data Science, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Maria Xenochristou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Biomedical Data Science, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Xiaoyuan Han
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Camilo Espinosa
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Biomedical Data Science, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Kristen Rumer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Laura Peterson
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Franck Verdonk
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Dyani Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
- Department of Plastic Surgery, Stanford University, Stanford, USA
| | - Eileen Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Jakob Einhaus
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Kazuo Ando
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Ronald J Wong
- Department of Pediatrics, Stanford University, Stanford, USA
| | | | - Gary M Shaw
- Department of Pediatrics, Stanford University, Stanford, USA
| | | | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, USA.
- Department of Pediatrics, Stanford University, Stanford, USA.
| |
Collapse
|
26
|
Banks WA. The Blood-Brain Barrier Interface in Diabetes Mellitus: Dysfunctions, Mechanisms and Approaches to Treatment. Curr Pharm Des 2020; 26:1438-1447. [DOI: 10.2174/1381612826666200325110014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus (DM) is one of the most common diseases in the world. Among its effects are an increase in the risk of cognitive impairment, including Alzheimer’s disease, and blood-brain barrier (BBB) dysfunction. DM is characterized by high blood glucose levels that are caused by either lack of insulin (Type I) or resistance to the actions of insulin (Type II). The phenotypes of these two types are dramatically different, with Type I animals being thin, with low levels of leptin as well as insulin, whereas Type II animals are often obese with high levels of both leptin and insulin. The best characterized change in BBB dysfunction is that of disruption. The brain regions that are disrupted, however, vary between Type I vs Type II DM, suggesting that factors other than hyperglycemia, perhaps hormonal factors such as leptin and insulin, play a regionally diverse role in BBB vulnerability or protection. Some BBB transporters are also altered in DM, including P-glycoprotein, lowdensity lipoprotein receptor-related protein 1, and the insulin transporter as other functions of the BBB, such as brain endothelial cell (BEC) expression of matrix metalloproteinases (MMPs) and immune cell trafficking. Pericyte loss secondary to the increased oxidative stress of processing excess glucose through the Krebs cycle is one mechanism that has shown to result in BBB disruption. Vascular endothelial growth factor (VEGF) induced by advanced glycation endproducts can increase the production of matrix metalloproteinases, which in turn affects tight junction proteins, providing another mechanism for BBB disruption as well as effects on P-glycoprotein. Through the enhanced expression of the redox-related mitochondrial transporter ABCB10, redox-sensitive transcription factor NF-E2 related factor-2 (Nrf2) inhibits BEC-monocyte adhesion. Several potential therapies, in addition to those of restoring euglycemia, can prevent some aspects of BBB dysfunction. Carbonic anhydrase inhibition decreases glucose metabolism and so reduces oxidative stress, preserving pericytes and blocking or reversing BBB disruption. Statins or N-acetylcysteine can reverse the BBB opening in some models of DM, fibroblast growth factor-21 improves BBB permeability through an Nrf2-dependent pathway, and nifedipine or VEGF improves memory in DM models. In summary, DM alters various aspects of BBB function through a number of mechanisms. A variety of treatments based on those mechanisms, as well as restoration of euglycemia, may be able to restore BBB functions., including reversal of BBB disruption.
Collapse
Affiliation(s)
- William A. Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, United States
| |
Collapse
|
27
|
Pan J, Yang GY. Response by Pan and Yang to Letter Regarding Article, "MicroRNA-126-3p/-5p Overexpression Attenuates Blood-Brain Barrier Disruption in a Mouse Model of Middle Cerebral Artery Occlusion". Stroke 2020; 51:e67. [PMID: 32106774 DOI: 10.1161/strokeaha.120.028935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jiaji Pan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, China
| |
Collapse
|