1
|
Fazazi MR, Doss PMIA, Pereira R, Fudge N, Regmi A, Joly-Beauparlant C, Akbar I, Yeola AP, Mailhot B, Baillargeon J, Grenier P, Bertrand N, Lacroix S, Droit A, Moore CS, Rojas OL, Rangachari M. Myelin-reactive B cells exacerbate CD4 + T cell-driven CNS autoimmunity in an IL-23-dependent manner. Nat Commun 2024; 15:5404. [PMID: 38926356 PMCID: PMC11208426 DOI: 10.1038/s41467-024-49259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
B cells and T cells collaborate in multiple sclerosis (MS) pathogenesis. IgH[MOG] mice possess a B cell repertoire skewed to recognize myelin oligodendrocyte glycoprotein (MOG). Here, we show that upon immunization with the T cell-obligate autoantigen, MOG[35-55], IgH[MOG] mice develop rapid and exacerbated experimental autoimmune encephalomyelitis (EAE) relative to wildtype (WT) counterparts, characterized by aggregation of T and B cells in the IgH[MOG] meninges and by CD4+ T helper 17 (Th17) cells in the CNS. Production of the Th17 maintenance factor IL-23 is observed from IgH[MOG] CNS-infiltrating and meningeal B cells, and in vivo blockade of IL-23p19 attenuates disease severity in IgH[MOG] mice. In the CNS parenchyma and dura mater of IgH[MOG] mice, we observe an increased frequency of CD4+PD-1+CXCR5- T cells that share numerous characteristics with the recently described T peripheral helper (Tph) cell subset. Further, CNS-infiltrating B and Tph cells from IgH[MOG] mice show increased reactive oxygen species (ROS) production. Meningeal inflammation, Tph-like cell accumulation in the CNS and B/Tph cell production of ROS were all reduced upon p19 blockade. Altogether, MOG-specific B cells promote autoimmune inflammation of the CNS parenchyma and meninges in an IL-23-dependent manner.
Collapse
Affiliation(s)
- Mohamed Reda Fazazi
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Prenitha Mercy Ignatius Arokia Doss
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Resel Pereira
- Krembil Research Institute, University Health Network, Toronto, M5T 0S8, ON, Canada
| | - Neva Fudge
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
- Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Aryan Regmi
- Krembil Research Institute, University Health Network, Toronto, M5T 0S8, ON, Canada
- Department of Immunology, University of Toronto, Toronto, M5S 1A1, ON, Canada
| | - Charles Joly-Beauparlant
- axe Endocrinologie et nephrologie, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Irshad Akbar
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Asmita Pradeep Yeola
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Benoit Mailhot
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Joanie Baillargeon
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Philippe Grenier
- axe Endocrinologie et nephrologie, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Nicolas Bertrand
- axe Endocrinologie et nephrologie, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, QC, G1V 4G2, Canada
- Faculty of Pharmacy, Laval University, 1050 ave de la Médecine, Quebec City, QC, G1V 4G2, Canada
| | - Steve Lacroix
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, 1050 ave de la Médecine, Quebec City, QC, G1V 4G2, Canada
| | - Arnaud Droit
- axe Endocrinologie et nephrologie, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, QC, G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, 1050 ave de la Médecine, Quebec City, QC, G1V 4G2, Canada
| | - Craig S Moore
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
- Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Olga L Rojas
- Krembil Research Institute, University Health Network, Toronto, M5T 0S8, ON, Canada
- Department of Immunology, University of Toronto, Toronto, M5S 1A1, ON, Canada
| | - Manu Rangachari
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada.
- Department of Molecular Medicine, Faculty of Medicine, Laval University, 1050 ave de la Médecine, Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
2
|
Peng Y, Zhang X, Tang Y, He S, Rao G, Chen Q, Xue Y, Jin H, Liu S, Zhou Z, Xiang Y. Role of autoreactive Tc17 cells in the pathogenesis of experimental autoimmune encephalomyelitis. NEUROPROTECTION 2024; 2:49-59. [DOI: 10.1002/nep3.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 07/04/2024]
Abstract
AbstractBackgroundThe pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE—an animal model of MS) is primarily mediated by T cells. However, recent studies have only focused on interleukin (IL)‐17‐secreting CD4+ T‐helper cells, also known as Th17 cells. This study aimed to compare Th17 cells and IL‐17‐secreting CD8+ T‐cytotoxic cells (Tc17) in the context of MS/EAE.MethodsFemale C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein peptides 35–55 (MOG35–55), pertussis toxin, and complete Freund's adjuvant to establish the EAE animal model. T cells were isolated from the spleen (12–14 days postimmunization). CD4+ and CD8+ T cells were purified using isolation kit and then differentiated into Th17 and Tc17, respectively, using MOG35–55 and IL‐23. The secretion levels of interferon‐γ (IFN‐γ) and IL‐17 were measured via enzyme‐linked immunosorbent assay using cultured CD4+ and CD8+ T cell supernatants. The pathogenicity of Tc17 and Th17 cells was assessed through adoptive transfer (tEAE), with the clinical course assessed using an EAE score (0–5). Hematoxylin and eosin as well as Luxol fast blue staining were used to examine the spinal cord. Purified CD8+ CD3+ and CD4+ CD3+ cells differentiated into Tc17 and Th17 cells, respectively, were stimulated with MOG35–55 peptide for proliferation assays.ResultsThe results showed that Tc17 cells (15,951 ± 1985 vs. 55,709 ± 4196 cpm; p < 0.050) exhibited a weaker response to highest dose (20 μg/mL) MOG35–55 than Th17 cells. However, this response was not dependent on Th17 cells. After the 48 h stimulation, at the highest dose (20 μg/mL) of MOG35–55. Tc17 cells secreted lower levels of IFN‐γ (280.00 ± 15.00 vs. 556.67 ± 15.28 pg/mL, p < 0.050) and IL‐17 (102.67 ± 5.86 pg/mL vs. 288.33 ± 12.58 pg/mL; p < 0.050) than Th17 cells. Similar patterns were observed for IFN‐γ secretion at 96 and 144 h. Furthermore, Tc17 cell‐induced tEAE mice exhibited similar EAE scores to Th17 cell‐induced tEAE mice and also showed similar inflammation and demyelination.ConclusionThe degree of pathogenicity of Tc17 cells in EAE is lower than that of Th17 cells. Future investigation on different immune cells and EAE models is warranted to determine the mechanisms underlying MS.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Xiuli Zhang
- Science and Technology Innovation Center Hunan University of Chinese Medicine Changsha Hunan China
| | - Yandan Tang
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Shunqing He
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Guilan Rao
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Quan Chen
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Yahui Xue
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Hong Jin
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Shu Liu
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Ziyang Zhou
- Science and Technology Innovation Center Hunan University of Chinese Medicine Changsha Hunan China
| | - Yun Xiang
- Science and Technology Innovation Center Hunan University of Chinese Medicine Changsha Hunan China
| |
Collapse
|
3
|
Fazazi MR, Ruda GF, Brennan PE, Rangachari M. The X-linked histone demethylases KDM5C and KDM6A as regulators of T cell-driven autoimmunity in the central nervous system. Brain Res Bull 2023; 202:110748. [PMID: 37657612 DOI: 10.1016/j.brainresbull.2023.110748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
T cell-driven autoimmune responses are subject to striking sex-dependent effects. While the contributions of sex hormones are well-understood, those of sex chromosomes are meeting with increased appreciation. Here, we outline what is known about the contribution of sex chromosome-linked factors to experimental autoimmune encephalomyelitis (EAE), a mouse model that recapitulates many of the T cell-driven mechanisms of multiple sclerosis (MS) pathology. Particular attention is paid to the KDM family of histone demethylases, several of which - KDM5C, KDM5D and KDM6A - are sex chromosome encoded. Finally, we provide evidence that functional inhibition of KDM5 molecules can suppress interferon (IFN)γ production from murine male effector T cells, and that an increased ratio of inflammatory Kdm6a to immunomodulatory Kdm5c transcript is observed in T helper 17 (Th17) cells from women with the autoimmune disorder ankylosing spondylitis (AS). Histone lysine demethlyases thus represent intriguing targets for the treatment of T cell-driven autoimmune disorders.
Collapse
Affiliation(s)
- Mohamed Reda Fazazi
- axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Gian Filippo Ruda
- Centre for Medicines Discovery and NIHR, Oxford Biomedical Research Centre, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Paul E Brennan
- Centre for Medicines Discovery and NIHR, Oxford Biomedical Research Centre, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Alzheimer's Research UK, Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Manu Rangachari
- axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
4
|
Umair M, Fazazi MR, Rangachari M. Biological Sex As a Critical Variable in CD4 + Effector T Cell Function in Preclinical Models of Multiple Sclerosis. Antioxid Redox Signal 2022; 37:135-149. [PMID: 34538129 PMCID: PMC9293683 DOI: 10.1089/ars.2021.0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: T cells play a pivotal role in maintaining adaptive immune responses against pathogens. However, misdirected T cell responses against self-tissues may lead to autoimmune disease. Biological sex has profound effects on T cell function and is an important determinant of disease incidence and severity in autoimmune diseases such as multiple sclerosis (MS). Recent Advances: Many autoimmune diseases skew toward higher female incidence, including MS; however, it is has become increasingly more accepted that men living with MS are more prone to developing a progressive disease course and to having worsened disease outcomes. Critical Issues: In this review, we discuss what is known about the role of biological sex on T cell development and differentiation, examining evidence that male sex can augment T helper 17 (Th17) responses. Next, we outline what is known about sex differences in animal models of MS, and about the distinct roles played by sex hormones versus sex chromosomes in pathogenesis in these models. Finally, we discuss recent advances that examine the molecular basis for worsened disease outcomes in males, with a particular focus on the role played by Th17 cells in these models. Future Directions: Better understanding the role of biological sex in T cell function may pave the way to effective personalized treatment strategies in MS and other autoimmune diseases. Antioxid. Redox Signal. 37, 135-149.
Collapse
Affiliation(s)
- Muhammad Umair
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Quebec, Canada
| | - Mohamed Reda Fazazi
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Quebec, Canada
| | - Manu Rangachari
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Quebec, Canada.,Faculty of Medicine, Université Laval, Quebec, Canada
| |
Collapse
|
5
|
Doss PMIA, Umair M, Baillargeon J, Fazazi R, Fudge N, Akbar I, Yeola AP, Williams JB, Leclercq M, Joly-Beauparlant C, Beauchemin P, Ruda GF, Alpaugh M, Anderson AC, Brennan PE, Droit A, Lassmann H, Moore CS, Rangachari M. Male sex chromosomal complement exacerbates the pathogenicity of Th17 cells in a chronic model of central nervous system autoimmunity. Cell Rep 2021; 34:108833. [PMID: 33691111 DOI: 10.1016/j.celrep.2021.108833] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/13/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Sex differences in multiple sclerosis (MS) incidence and severity have long been recognized. However, the underlying cellular and molecular mechanisms for why male sex is associated with more aggressive disease remain poorly defined. Using a T cell adoptive transfer model of chronic experimental autoimmune encephalomyelitis (EAE), we find that male Th17 cells induce disease of increased severity relative to female Th17 cells, irrespective of whether transferred to male or female recipients. Throughout the disease course, a greater frequency of male Th17 cells produce IFNγ, a hallmark of pathogenic Th17 responses. Intriguingly, XY chromosomal complement increases the pathogenicity of male Th17 cells. An X-linked immune regulator, Jarid1c, is downregulated in pathogenic male murine Th17 cells, and functional experiments reveal that it represses the severity of Th17-mediated EAE. Furthermore, Jarid1c expression is downregulated in CD4+ T cells from MS-affected individuals. Our data indicate that male sex chromosomal complement critically regulates Th17 cell pathogenicity.
Collapse
Affiliation(s)
- Prenitha Mercy Ignatius Arokia Doss
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Muhammad Umair
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Joanie Baillargeon
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Reda Fazazi
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Neva Fudge
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Irshad Akbar
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Asmita Pradeep Yeola
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - John B Williams
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Mickael Leclercq
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Charles Joly-Beauparlant
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Philippe Beauchemin
- Department of Neurology, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada; Faculty of Medicine, Université Laval, 1050 ave de la Médecine, Quebec City, QC, Canada
| | - Gian Filipo Ruda
- Target Discovery Institute and NIHR, Oxford Biomedical Research Centre, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Melanie Alpaugh
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham & Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Paul E Brennan
- Target Discovery Institute and NIHR, Oxford Biomedical Research Centre, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Alzheimer's Research UK, Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Arnaud Droit
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; Faculty of Medicine, Université Laval, 1050 ave de la Médecine, Quebec City, QC, Canada
| | - Hans Lassmann
- Division of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada; Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Manu Rangachari
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; Faculty of Medicine, Université Laval, 1050 ave de la Médecine, Quebec City, QC, Canada.
| |
Collapse
|