1
|
Berry LK, Pullikuth AK, Stearns KL, Wang Y, Wagner CJ, Chou JW, Darby JP, Kelly MG, Mall R, Leung M, Chifman J, Miller LD. A patient stratification signature mirrors the immunogenic potential of high grade serous ovarian cancers. J Transl Med 2024; 22:1048. [PMID: 39568014 PMCID: PMC11577735 DOI: 10.1186/s12967-024-05846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND While high-grade serous ovarian cancer (HGSC) has proven largely resistant to immunotherapy, sporadic incidents of partial and complete response have been observed in clinical trials and case reports. These observations suggest that a molecular basis for effective immunity may exist within a subpopulation of HGSC. Herein, we developed an algorithm, CONSTRU (Computing Prognostic Marker Dependencies by Successive Testing of Gene-Stratified Subgroups), to facilitate the discovery and characterization of molecular backgrounds of HGSC that confer resistance or susceptibility to protective anti-tumor immunity. METHODS We used CONSTRU to identify genes from tumor expression profiles that influence the prognostic power of an established immune cytolytic activity signature (CYTscore). From the identified genes, we developed a stratification signature (STRATsig) that partitioned patient populations into tertiles that varied markedly by CYTscore prognostic power. The tertile groups were then analyzed for distinguishing biological, clinical and immunological properties using integrative bioinformatics approaches. RESULTS Patient survival and molecular measures of immune suppression, evasion and dysfunction varied significantly across STRATsig tertiles in validation cohorts. Tumors comprising STRATsig tertile 1 (S-T1) showed no immune-survival benefit and displayed a hyper-immune suppressed state marked by activation of TGF-β, Wnt/β-catenin and adenosine-mediated immunosuppressive pathways, with concurrent T cell dysfunction, reduced potential for antigen presentation, and enrichment of cancer-associated fibroblasts. By contrast, S-T3 tumors exhibited diminished immunosuppressive signaling, heightened antigen presentation machinery, lowered T cell dysfunction, and a significant CYTscore-survival benefit that correlated with mutational burden in a manner consistent with anti-tumor immunoediting. These tumors also showed elevated activity of DNA damage/repair, cell cycle/proliferation and oxidative phosphorylation, and displayed greater proportions of Th1 CD4 + T cells. In these patients, but not those of S-T1 or S-T2, validated predictors of immunotherapy response were prognostic of longer patient survival. Further analyses showed that STRATsig tertile properties were not explained by known HGSC molecular or clinical subtypes or singular immune mechanisms. CONCLUSIONS STRATsig is a composite of parallel immunoregulatory pathways that mirrors tumor immunogenic potential. Approximately one-third of HGSC cases classify as S-T3 and display a hypo-immunosuppressed and antigenic molecular composition that favors immunologic tumor control. These patients may show heightened responsiveness to current immunotherapies.
Collapse
Affiliation(s)
- Laurel K Berry
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ashok K Pullikuth
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kristen L Stearns
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuezhu Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Calvin J Wagner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jeff W Chou
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA
| | - Janelle P Darby
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Michael G Kelly
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Biotechnology Research Center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - Ming Leung
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA
| | - Julia Chifman
- Department of Mathematics and Statistics, American University, Washington, DC, 20016, USA
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
2
|
Mowday AM, van de Laak JM, Fu Z, Henare KL, Dubois L, Lambin P, Theys J, Patterson AV. Tumor-targeting bacteria as immune stimulants - the future of cancer immunotherapy? Crit Rev Microbiol 2024; 50:955-970. [PMID: 38346140 PMCID: PMC11523919 DOI: 10.1080/1040841x.2024.2311653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 03/22/2024]
Abstract
Cancer immunotherapies have been widely hailed as a breakthrough for cancer treatment in the last decade, epitomized by the unprecedented results observed with checkpoint blockade. Even so, only a minority of patients currently achieve durable remissions. In general, responsive patients appear to have either a high number of tumor neoantigens, a preexisting immune cell infiltrate in the tumor microenvironment, or an 'immune-active' transcriptional profile, determined in part by the presence of a type I interferon gene signature. These observations suggest that the therapeutic efficacy of immunotherapy can be enhanced through strategies that release tumor neoantigens and/or produce a pro-inflammatory tumor microenvironment. In principle, exogenous tumor-targeting bacteria offer a unique solution for improving responsiveness to immunotherapy. This review discusses how tumor-selective bacterial infection can modulate the immunological microenvironment of the tumor and the potential for combination with cancer immunotherapy strategies to further increase therapeutic efficacy. In addition, we provide a perspective on the clinical translation of replicating bacterial therapies, with a focus on the challenges that must be resolved to ensure a successful outcome.
Collapse
Affiliation(s)
- Alexandra M. Mowday
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Jella M. van de Laak
- The M-Lab, Department of Precision Medicine, GROW—Research School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Zhe Fu
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Kimiora L. Henare
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Ludwig Dubois
- The M-Lab, Department of Precision Medicine, GROW—Research School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW—Research School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Jan Theys
- The M-Lab, Department of Precision Medicine, GROW—Research School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Adam V. Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Elkrief A, Montesion M, Sivakumar S, Hale C, Bowman AS, Bektas AB, Bradic M, Kang W, Chan E, Gogia P, Manova-Todorova K, Mata DA, Egger JV, Rizvi H, Socci N, Kelly DW, Rosiek E, Meng F, Tam G, Ning F, Drilon A, Yu HA, Riely GJ, Rekhtman N, Villalonga ÁQ, Dogan S, Bhanot U, Gonen M, Loomis B, Hellmann MD, Schoenfeld AJ, Ladanyi M, Rudin CM, Vanderbilt CM. Intratumoral Escherichia Is Associated With Improved Survival to Single-Agent Immune Checkpoint Inhibition in Patients With Advanced Non-Small-Cell Lung Cancer. J Clin Oncol 2024; 42:3339-3349. [PMID: 39038258 PMCID: PMC11600405 DOI: 10.1200/jco.23.01488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/12/2024] [Accepted: 03/31/2024] [Indexed: 07/24/2024] Open
Abstract
PURPOSEThe impact of the intratumoral microbiome on immune checkpoint inhibitor (ICI) efficacy in patients with non-small-cell lung cancer (NSCLC) is unknown. Preclinically, intratumoral Escherichia is associated with a proinflammatory tumor microenvironment and decreased metastases. We sought to determine whether intratumoral Escherichia is associated with outcome to ICI in patients with NSCLC.PATIENTS AND METHODSWe examined the intratumoral microbiome in 958 patients with advanced NSCLC treated with ICI by querying unmapped next-generation sequencing reads against a bacterial genome database. Putative environmental contaminants were filtered using no-template controls (n = 2,378). The impact of intratumoral Escherichia detection on overall survival (OS) was assessed using univariable and multivariable analyses. The findings were further validated in an external independent cohort of 772 patients. Escherichia fluorescence in situ hybridization (FISH) and transcriptomic profiling were performed.RESULTSIn the discovery cohort, read mapping to intratumoral Escherichia was associated with significantly longer OS (16 v 11 months; hazard ratio, 0.73 [95% CI, 0.59 to 0.92]; P = .0065) in patients treated with single-agent ICI, but not combination chemoimmunotherapy. The association with OS in the single-agent ICI cohort remained statistically significant in multivariable analysis adjusting for prognostic features including PD-L1 expression (P = .023). Analysis of an external validation cohort confirmed the association with improved OS in univariable and multivariable analyses of patients treated with single-agent ICI, and not in patients treated with chemoimmunotherapy. Escherichia localization within tumor cells was supported by coregistration of FISH staining and serial hematoxylin and eosin sections. Transcriptomic analysis correlated Escherichia-positive samples with expression signatures of immune cell infiltration.CONCLUSIONRead mapping to potential intratumoral Escherichia was associated with survival to single-agent ICI in two independent cohorts of patients with NSCLC.
Collapse
Affiliation(s)
- Arielle Elkrief
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Caryn Hale
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anita S. Bowman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ayyuce Begum Bektas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martina Bradic
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wenfei Kang
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eric Chan
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pooja Gogia
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Jacklynn V. Egger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hira Rizvi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicolas Socci
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel W. Kelly
- Informatics Systems, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eric Rosiek
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Fanli Meng
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Grittney Tam
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fan Ning
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell, New York, NY
| | - Helena A. Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell, New York, NY
| | - Gregory J. Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell, New York, NY
| | - Natasha Rekhtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Snjezana Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Umesh Bhanot
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brian Loomis
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew D. Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell, New York, NY
| | - Adam J. Schoenfeld
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell, New York, NY
| | - Chad M. Vanderbilt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
4
|
Ma Y, Fang F, Liao K, Zhang J, Wei C, Liao Y, Zhao B, Fang Y, Chen Y, Zhang X, Tang D. Identification and validation of the clinical prediction model and biomarkers based on chromatin regulators in colon cancer by integrated analysis of bulk- and single-cell RNA sequencing data. Transl Cancer Res 2024; 13:1290-1313. [PMID: 38617504 PMCID: PMC11009811 DOI: 10.21037/tcr-23-1886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/08/2024] [Indexed: 04/16/2024]
Abstract
Background Chromatin regulators (CRs) are implicated in the development of cancer, but a comprehensive investigation of their role in colon adenocarcinoma (COAD) is inadequate. The purpose of this study is to find CRs that can provide recommendations for clinical diagnosis and treatment, and to explore the reasons why they serve as critical CRs. Methods We obtained data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Weighted Gene Co-Expression Network Analysis (WGCNA) screened tumor-associated CRs. LASSO-Cox regression was used to construct the model and to screen key CRs together with support vector machine (SVM), the univariate Cox regression. We used single-cell data to explore the expression of CRs in cells and their communication. Immune infiltration, immune checkpoints, mutation, methylation, and drug sensitivity analyses were performed. Gene expression was verified by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Pan-cancer analysis was used to explore the importance of hub CRs. Results We finally obtained 32 tumor-associated CRs. The prognostic model was constructed based on RCOR2, PPARGC1A, PKM, RAC3, PHF19, MYBBP1A, ORC1, and EYA2 by the LASSO-Cox regression. Single-cell data revealed that the model was immune-related. Combined with immune infiltration analysis, immune checkpoint analysis, and tumor immune dysfunction and exclusion (TIDE) analysis, the low-score risk group had more immune cell infiltration and better immune response. Mutation and methylation analysis showed that multiple CRs may be mutated and methylated in colon cancer. Drug sensitivity analysis revealed that the low-risk group may be more sensitive to several drugs and PKM was associated with multiple drugs. Combined with machine learning, PKM is perhaps the most critical gene in CRs. Pan-cancer analysis showed that PKM plays a role in the prognosis of cancers. Conclusions We developed a prognostic model for COAD based on CRs. Increased expression of the core gene PKM is linked with a poor prognosis in several malignancies.
Collapse
Affiliation(s)
- Yichao Ma
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Fang Fang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Kai Liao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Jingqiu Zhang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Chen Wei
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yiqun Liao
- Department of Clinical Medical college, Dalian Medical University, Dalian, China
| | - Bin Zhao
- Department of Clinical Medical college, Dalian Medical University, Dalian, China
| | - Yongkun Fang
- Department of Clinical Medical college, Dalian Medical University, Dalian, China
| | - Yuji Chen
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xinyue Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Li X, Li J, Liu Y, Sun L, Tai Q, Gao S, Jiang W. Inhibition of KDM5B participates in immune microenvironment remodeling in pancreatic cancer by inducing STING expression. Cytokine 2024; 175:156451. [PMID: 38163400 DOI: 10.1016/j.cyto.2023.156451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/22/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This study aims to investigate the effect of lysine demethylase 5B (KDM5B)-mediated dimethyl-lysine 4 histone H3 (H3K4me2) demethylation on immune microenvironment remodeling in pancreatic cancer. METHODS Pan 02 mouse pancreatic cancer cell lines were cultured and used to establish tumor model in vivo. RT-qPCR and Western blot were used to detect the expression of stimulator of interferon gene (STING) and KDM5B in pancreatic cancer tissues and Pan 02 cells. The specific demethylation domain of KDM5B was detected by isothermal titration calorimetry binding assay. The regulatory roles of KDM5B in cell apoptosis and remodeling of immune microenvironment in vitro and in vivo were explored after loss-of functions in KDM5B. RESULTS KDM5B was highly expressed but STING was poorly expressed in pancreatic cancer tissues and Pan 02 cells. After knockdown of KDM5B, CD8+ T cells recognized and killed Pan 02 cells, which promoted the infiltration of CD8+ T cells in Pan 02 cells, thus improving the anti-tumor ability. The PHD domain in KDM5B specifically bound to H3K4me2 peptide and inhibition of KDM5B induced STING expression. Knockdown of KDM5B up-regulated STING expression to promote apoptosis, thus regulating the immune microenvironment and inhibiting the growth of tumor in mice. Meanwhile, knockdown of KDM5B and STING simultaneously counteracted the knockdown effect of KDM5B. CONCLUSION Inhibition of KDM5B can promote the expression of STING through H3K4me2 demethylation, which promoted the recognition and killing of Pan 02 cells by CD8+ T cells, thus improving the anti-tumor ability and regulating the immune microenvironment.
Collapse
Affiliation(s)
- Xuesong Li
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China.
| | - Jiazhuang Li
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China
| | - Ying Liu
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China
| | - Li Sun
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China
| | - Qingyang Tai
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China
| | - Shoubao Gao
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China
| | - Weiwei Jiang
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China
| |
Collapse
|
6
|
Gene signature of m6A-related targets to predict prognosis and immunotherapy response in ovarian cancer. J Cancer Res Clin Oncol 2023; 149:593-608. [PMID: 36048273 DOI: 10.1007/s00432-022-04162-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/17/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE The aim of the study was to construct a risk score model based on m6A-related targets to predict overall survival and immunotherapy response in ovarian cancer. METHODS The gene expression profiles of 24 m6A regulators were extracted. Survival analysis screened 9 prognostic m6A regulators. Next, consensus clustering analysis was applied to identify clusters of ovarian cancer patients. Furthermore, 47 phenotype-related differentially expressed genes, strongly correlated with 9 prognostic m6A regulators, were screened and subjected to univariate and the least absolute shrinkage and selection operator (LASSO) Cox regression. Ultimately, a nomogram was constructed which presented a strong ability to predict overall survival in ovarian cancer. RESULTS CBLL1, FTO, HNRNPC, METTL3, METTL14, WTAP, ZC3H13, RBM15B and YTHDC2 were associated with worse overall survival (OS) in ovarian cancer. Three m6A clusters were identified, which were highly consistent with the three immune phenotypes. What is more, a risk model based on seven m6A-related targets was constructed with distinct prognosis. In addition, the low-risk group is the best candidate population for immunotherapy. CONCLUSION We comprehensively analyzed the m6A modification landscape of ovarian cancer and detected seven m6A-related targets as an independent prognostic biomarker for predicting survival. Furthermore, we divided patients into high- and low-risk groups with distinct prognosis and select the optimum population which may benefit from immunotherapy and constructed a nomogram to precisely predict ovarian cancer patients' survival time and visualize the prediction results.
Collapse
|
7
|
Routh ED, Van Swearingen AED, Sambade MJ, Vensko S, McClure MB, Woodcock MG, Chai S, Cuaboy LA, Wheless A, Garrett A, Carey LA, Hoyle AP, Parker JS, Vincent BG, Anders CK. Comprehensive Analysis of the Immunogenomics of Triple-Negative Breast Cancer Brain Metastases From LCCC1419. Front Oncol 2022; 12:818693. [PMID: 35992833 PMCID: PMC9387304 DOI: 10.3389/fonc.2022.818693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) is an aggressive variant of breast cancer that lacks the expression of estrogen and progesterone receptors (ER and PR) and HER2. Nearly 50% of patients with advanced TNBC will develop brain metastases (BrM), commonly with progressive extracranial disease. Immunotherapy has shown promise in the treatment of advanced TNBC; however, the immune contexture of BrM remains largely unknown. We conducted a comprehensive analysis of TNBC BrM and matched primary tumors to characterize the genomic and immune landscape of TNBC BrM to inform the development of immunotherapy strategies in this aggressive disease. Methods Whole-exome sequencing (WES) and RNA sequencing were conducted on formalin-fixed, paraffin-embedded samples of BrM and primary tumors of patients with clinical TNBC (n = 25, n = 9 matched pairs) from the LCCC1419 biobank at UNC—Chapel Hill. Matched blood was analyzed by DNA sequencing as a comparison for tumor WES for the identification of somatic variants. A comprehensive genomics assessment, including mutational and copy number alteration analyses, neoantigen prediction, and transcriptomic analysis of the tumor immune microenvironment were performed. Results Primary and BrM tissues were confirmed as TNBC (23/25 primaries, 16/17 BrM) by immunohistochemistry and of the basal intrinsic subtype (13/15 primaries and 16/19 BrM) by PAM50. Compared to primary tumors, BrM demonstrated a higher tumor mutational burden. TP53 was the most frequently mutated gene and was altered in 50% of the samples. Neoantigen prediction showed elevated cancer testis antigen- and endogenous retrovirus-derived MHC class I-binding peptides in both primary tumors and BrM and predicted that single-nucleotide variant (SNV)-derived peptides were significantly higher in BrM. BrM demonstrated a reduced immune gene signature expression, although a signature associated with fibroblast-associated wound healing was elevated in BrM. Metrics of T and B cell receptor diversity were also reduced in BrM. Conclusions BrM harbored higher mutational burden and SNV-derived neoantigen expression along with reduced immune gene signature expression relative to primary TNBC. Immune signatures correlated with improved survival, including T cell signatures. Further research will expand these findings to other breast cancer subtypes in the same biobank. Exploration of immunomodulatory approaches including vaccine applications and immune checkpoint inhibition to enhance anti-tumor immunity in TNBC BrM is warranted.
Collapse
Affiliation(s)
- Eric D. Routh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amanda E. D. Van Swearingen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Maria J. Sambade
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Steven Vensko
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Marni B. McClure
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- National Cancer Center Research Institute, Tokyo, Japan
| | - Mark G. Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, Division of Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shengjie Chai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, United States
| | - Luz A. Cuaboy
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amy Wheless
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amy Garrett
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lisa A. Carey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, Division of Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alan P. Hoyle
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joel S. Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin G. Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, Division of Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Hematology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Carey K. Anders
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, Division of Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Carey K. Anders,
| |
Collapse
|
8
|
Zhang T, Yu H, Dai X, Zhang X. CMTM6 and CMTM4 as two novel regulators of PD-L1 modulate the tumor microenvironment. Front Immunol 2022; 13:971428. [PMID: 35958549 PMCID: PMC9359082 DOI: 10.3389/fimmu.2022.971428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) plays crucial roles in regulating tumor occurrence, progress, metastasis and drug resistance. However, it remains largely elusive how the components of TME are regulated to govern its functions in tumor biology. Here, we discussed how the two novel functional proteins, chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing 6 (CMTM6) and CMTM4, which involved in the post-translational regulation of PD-L1, modulate the TME functions. The roles of CMTM6 and CMTM4 in regulating TME components, including immune cells and tumor cells themselves were discussed in this review. The potential clinical applications of CMTM6 and CMTM4 as biomarkers to predict therapy efficacy and as new or combined immunotherapy targets are also highlighted. Finally, the current hot topics for the biological function of CMTM6/4 and several significant research directions for CMTM6/4 are also briefly summarized in the review.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Haixiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Xiaoling Zhang,
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Xiaoling Zhang,
| |
Collapse
|
9
|
Lim YW, Coles GL, Sandhu SK, Johnson DS, Adler AS, Stone EL. Single-cell transcriptomics reveals the effect of PD-L1/TGF-β blockade on the tumor microenvironment. BMC Biol 2021; 19:107. [PMID: 34030676 PMCID: PMC8147417 DOI: 10.1186/s12915-021-01034-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The anti-tumor activity of anti-PD-1/PD-L1 therapies correlates with T cell infiltration in tumors. Thus, a major goal in oncology is to find strategies that enhance T cell infiltration and efficacy of anti-PD-1/PD-L1 therapy. TGF-β has been shown to contribute to T cell exclusion, and anti-TGF-β improves anti-PD-L1 efficacy in vivo. However, TGF-β inhibition has frequently been shown to induce toxicity in the clinic, and the clinical efficacy of combination PD-L1 and TGF-β blockade has not yet been proven. To identify strategies to overcome resistance to PD-L1 blockade, the transcriptional programs associated with PD-L1 and/or TGF-β blockade in the tumor microenvironment should be further elucidated. RESULTS We used single-cell RNA sequencing in a mouse model to characterize the transcriptomic effects of PD-L1 and/or TGF-β blockade on nearly 30,000 single cells in the tumor and surrounding microenvironment. Combination treatment led to upregulation of immune response genes, including multiple chemokine genes such as CCL5, in macrophages, and downregulation of extracellular matrix genes in fibroblasts. Analysis of publicly available tumor transcriptome profiles showed that the chemokine CCL5 was strongly associated with immune cell infiltration in various human cancers. Further investigation with in vivo models showed that intratumorally administered CCL5 enhanced cytotoxic lymphocytes and the anti-tumor activity of anti-PD-L1. CONCLUSIONS Taken together, our data could be leveraged translationally to complement or find alternatives to anti-PD-L1 plus anti-TGF-β combination therapy, for example through companion biomarkers, and/or to identify novel targets that could be modulated to overcome resistance.
Collapse
Affiliation(s)
- Yoong Wearn Lim
- GigaGen, Inc., One Tower Place, Suite 750, South San Francisco, CA, 94080, USA
| | - Garry L Coles
- GigaGen, Inc., One Tower Place, Suite 750, South San Francisco, CA, 94080, USA
| | - Savreet K Sandhu
- GigaGen, Inc., One Tower Place, Suite 750, South San Francisco, CA, 94080, USA
| | - David S Johnson
- GigaGen, Inc., One Tower Place, Suite 750, South San Francisco, CA, 94080, USA
| | - Adam S Adler
- GigaGen, Inc., One Tower Place, Suite 750, South San Francisco, CA, 94080, USA.
| | - Erica L Stone
- GigaGen, Inc., One Tower Place, Suite 750, South San Francisco, CA, 94080, USA.
| |
Collapse
|
10
|
Li M, Luo F, Tian X, Yin S, Zhou L, Zheng S. Chemokine-Like Factor-Like MARVEL Transmembrane Domain-Containing Family in Hepatocellular Carcinoma: Latest Advances. Front Oncol 2020; 10:595973. [PMID: 33282744 PMCID: PMC7691587 DOI: 10.3389/fonc.2020.595973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
Chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTMs) is a new gene family, consisting of CKLF and CMTM1 to CMTM8, which plays an important role in hematopoiesis system, autoimmune diseases, male reproduction etc. Abnormal expression of CMTMs is also associated with tumor genesis, development and metastasis. In this review, we briefly describe the characteristics of CMTM family, outline its functions in multiple kinds of carcinomas, and summarize the latest research on their roles in hepatocellular carcinoma which are mainly related to the expression, prognostic effect, potential functions, and mechanism of action. The CMTM family is expected to provide new ideas and targets for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Mengxia Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Fangzhou Luo
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Xinyao Tian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Shengyong Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| |
Collapse
|