1
|
Diebold M, Mayer KA, Hidalgo L, Kozakowski N, Budde K, Böhmig GA. Chronic Rejection After Kidney Transplantation. Transplantation 2025; 109:610-621. [PMID: 39192468 PMCID: PMC11927446 DOI: 10.1097/tp.0000000000005187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
In kidney transplantation, ongoing alloimmune processes-commonly triggered by HLA incompatibilities-can trigger chronic transplant rejection, affecting the microcirculation and the tubulointerstitium. Continuous inflammation may lead to progressive, irreversible graft injury, culminating in graft dysfunction and accelerated transplant failure. Numerous experimental and translational studies have delineated a complex interplay of different immune mechanisms driving rejection, with antibody-mediated rejection (AMR) being an extensively studied rejection variant. In microvascular inflammation, a hallmark lesion of AMR, natural killer (NK) cells have emerged as pivotal effector cells. Their essential role is supported by immunohistologic evidence, bulk and spatial transcriptomics, and functional genetics. Despite significant research efforts, a substantial unmet need for approved rejection therapies persists, with many trials yielding negative outcomes. However, several promising therapies are currently under investigation, including felzartamab, a monoclonal antibody targeting the surface molecule CD38, which is highly expressed in NK cells and antibody-producing plasma cells. In an exploratory phase 2 trial in late AMR, this compound has demonstrated potential in resolving molecular and morphologic rejection activity and injury, predominantly by targeting NK cell effector function. These findings inspire hope for effective treatments and emphasize the necessity of further pivotal trials focusing on chronic transplant rejection.
Collapse
Affiliation(s)
- Matthias Diebold
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katharina A. Mayer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Luis Hidalgo
- HLA Laboratory, Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | | | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Georg A. Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Mayer KA, Budde K, Schatzl M, Schrezenmeier E, Diebold M, Jilma B, Böhmig GA. CD38 monoclonal antibody felzartamab for late antibody-mediated rejection: a phase II drug evaluation. Expert Opin Investig Drugs 2025; 34:1-10. [PMID: 39925214 DOI: 10.1080/13543784.2025.2463092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/09/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
INTRODUCTION Felzartamab is a novel, fully human CD38 monoclonal antibody, currently in development for the treatment of antibody-mediated rejection (AMR) following kidney transplantation. AREAS COVERED This review focuses on current phase II trials of felzartamab in AMR and other immune-mediated kidney diseases. Specifically, it discusses the drug's mechanism of action, current phase of clinical development, potential future applications and regulatory status. EXPERT OPINION CD38 is an activation marker expressed on the surface of plasma cells and immune cells, including natural killer cells (NK cells) cells. In a recent phase II randomized, placebo-controlled clinical trial, felzartamab demonstrated an acceptable safety and side-effect profile in patients with AMR after kidney transplantation. Efficacy outcomes suggested potential therapeutic benefits, including significant reductions in morphologic and molecular AMR activity. Given the mixed results of previous clinical trials for AMR treatments, the novel approach of targeting both antibody-secreting plasma cells and innate effector cells such as CD38+ NK cells may offer a promising new therapeutic strategy. Felzartamab is also being investigated for the treatment of other antibody-mediated kidney diseases, such as lupus nephritis, primary membranous nephropathy and IgA nephropathy. If proven effective, it could expand the therapeutic options for kidney transplant rejection and primary kidney diseases.
Collapse
MESH Headings
- Humans
- Graft Rejection/immunology
- Graft Rejection/drug therapy
- Kidney Transplantation/adverse effects
- ADP-ribosyl Cyclase 1/immunology
- Animals
- Clinical Trials, Phase II as Topic
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Killer Cells, Natural/immunology
- Randomized Controlled Trials as Topic
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/administration & dosage
- Drug Development
- Membrane Glycoproteins/immunology
- Kidney Diseases/drug therapy
- Kidney Diseases/immunology
Collapse
Affiliation(s)
- Katharina A Mayer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Schatzl
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Diebold
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Russum S, Sayin I, Shwetar J, Baughan E, Jeong JC, Kim A, Reyentovich A, Moazami N, Zeevi A, Chong AS, Habal M. Donor HLA-DQ reactive B cells clonally expand under chronic immunosuppression and include atypical CD21 low CD27 - B cells with high-avidity germline B-cell receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627284. [PMID: 39713394 PMCID: PMC11661077 DOI: 10.1101/2024.12.06.627284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Long-term allograft survival is limited by humoral-associated chronic allograft rejection, suggesting inadequate constraint of humoral alloimmunity by contemporary immunosuppression. Heterogeneity in alloreactive B cells and the incomplete definition of which B cells participate in chronic rejection in immunosuppressed transplant recipients limits our ability to develop effective therapies. Using a double-fluorochrome single-HLA tetramer approach combined with single-cell in vitro culture, we investigated the B-cell receptor (BCR) repertoire characteristics, avidity, and phenotype of donor HLA-DQ reactive B cells in a transplant recipient with end-stage donor specific antibody (DSA)-associated cardiac allograft vasculopathy while receiving maintenance immunosuppression (tacrolimus, mycophenolate mofetil, prednisone). Donor DQB1*03:02/DQA1*03:01 (DQ8)-reactive IgG+ B cells were enriched for minimally mutated and germline encoded high avidity BCRs (median K D 4.26×10 -09 ) with an atypical, antigen-experienced and proliferative phenotype (CD27 - CD21 low CD71 + CD11c +/- ). These B cells coexisted with a smaller subset of more highly mutated, affinity matured IgG+CD27+ B cells. Circulating donor-reactive B cells and DSA remained detectable after rituximab, contrasting with the marked reduction in DSA after allograft explant and retransplant. Together, these findings define the persistence of germline high-avidity HLA-DQ alloreactive B cells and their co-existence with affinity matured clones that were both driven by the allograft despite conventional immunosuppression.
Collapse
|
4
|
Basu S, Dudreuilh C, Shah S, Sanchez-Fueyo A, Lombardi G, Dorling A. Activation and Regulation of Indirect Alloresponses in Transplanted Patients With Donor Specific Antibodies and Chronic Rejection. Transpl Int 2024; 37:13196. [PMID: 39228658 PMCID: PMC11368725 DOI: 10.3389/ti.2024.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Following transplantation, human CD4+T cells can respond to alloantigen using three distinct pathways. Direct and semi-direct responses are considered potent, but brief, so contribute mostly to acute rejection. Indirect responses are persistent and prolonged, involve B cells as critical antigen presenting cells, and are an absolute requirement for development of donor specific antibody, so more often mediate chronic rejection. Novel in vitro techniques have furthered our understanding by mimicking in vivo germinal centre processes, including B cell antigen presentation to CD4+ T cells and effector cytokine responses following challenge with donor specific peptides. In this review we outline recent data detailing the contribution of CD4+ T follicular helper cells and antigen presenting B cells to donor specific antibody formation and antibody mediated rejection. Furthermore, multi-parametric flow cytometry analyses have revealed specific endogenous regulatory T and B subsets each capable of suppressing distinct aspects of the indirect response, including CD4+ T cell cytokine production, B cell maturation into plasmablasts and antibody production, and germinal centre maturation. These data underpin novel opportunities to control these aberrant processes either by targeting molecules critical to indirect alloresponses or potentiating suppression via exogenous regulatory cell therapy.
Collapse
Affiliation(s)
- Sumoyee Basu
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| | - Caroline Dudreuilh
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Transplantation, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Sapna Shah
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Renal Unit, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Alberto Sanchez-Fueyo
- Department of Inflammation Biology, King’s College London, London, United Kingdom
- Liver Sciences, King’s College London, London, United Kingdom
| | - Giovanna Lombardi
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| | - Anthony Dorling
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| |
Collapse
|
5
|
Elias C, Chen C, Cherukuri A. Regulatory B Cells in Solid Organ Transplantation: From Immune Monitoring to Immunotherapy. Transplantation 2024; 108:1080-1089. [PMID: 37779239 PMCID: PMC10985051 DOI: 10.1097/tp.0000000000004798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Regulatory B cells (Breg) modulate the immune response in diverse disease settings including transplantation. Despite the lack of a specific phenotypic marker or transcription factor, their significance in transplantation is underscored by their ability to prolong experimental allograft survival, the possibility for their clinical use as immune monitoring tools, and the exciting prospect for them to form the basis for cell therapy. Interleukin (IL)-10 expression remains the most widely used marker for Breg. Several Breg subsets with distinct phenotypes that express this "signature Breg cytokine" have been described in mice and humans. Although T-cell immunoglobulin and mucin family-1 is the most inclusive and functional marker that accounts for murine Breg with disparate mechanisms of action, the significance of T-cell immunoglobulin and mucin family-1 as a marker for Breg in humans still needs to be explored. Although the primary focus of this review is the role of Breg in clinical transplantation, the net modulatory effect of B cells on the immune response and clinical outcomes is the result of the balancing functions of both Breg and effector B cells. Supporting this notion, B-cell IL-10/tumor necrosis factor α ratio is shown to predict immunologic reactivity and clinical outcomes in kidney and liver transplantation. Assessment of Breg:B effector balance using their IL-10/tumor necrosis factor α ratio may identify patients that require more immunosuppression and provide mechanistic insights into potential therapies. In summary, current advances in our understanding of murine and human Breg will pave way for future definitive clinical studies aiming to test them for immune monitoring and as therapeutic targets.
Collapse
Affiliation(s)
- Charbel Elias
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chuxiao Chen
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Renal and Electrolyte Division, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Kervella D, Heidt S, Fairchild R, Todryk S, Bestard O. Tracking Circulating HLA-Specific IgG-Producing Memory B Cells with the B-Cell ImmunoSpot Assay. Methods Mol Biol 2024; 2768:201-209. [PMID: 38502395 DOI: 10.1007/978-1-0716-3690-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Donor-specific antibodies (DSA) against human leukocyte antigen (HLA) molecules are a major risk factor for rejection of transplanted organs (in antibody-mediated rejection [ABMR]), particularly in patients who have prior sensitization or receive insufficient immunosuppression through minimization or noncompliance. These DSA are measured routinely in the serum of patients prior to transplantation mainly using bead-based technologies or cell-based assays. However, the absence of detectable serum DSA does not always reflect the absence of sensitization or histologically defined ABMR, and so it has been proposed that the detection and measurement of memory B cells capable of secreting antibodies against donor HLA antigens could be carried out using B-cell ImmunoSpot, to better inform the degree of immune sensitization of transplant patients prior to as well as after transplantation. Such an assay is described here.
Collapse
Affiliation(s)
- Delphine Kervella
- Nephrology and Transplantation Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Nephrology and Kidney Transplantation Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert Fairchild
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stephen Todryk
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK.
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
- Cellular Technology Limited (CTL) Europe GmbH, Rutesheim, Germany.
| | - Oriol Bestard
- Nephrology and Transplantation Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Nephrology and Kidney Transplantation Department, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
7
|
Yin Y, Chen C, Zhang D, Han Q, Wang Z, Huang Z, Chen H, Sun L, Fei S, Tao J, Han Z, Tan R, Gu M, Ju X. Construction of predictive model of interstitial fibrosis and tubular atrophy after kidney transplantation with machine learning algorithms. Front Genet 2023; 14:1276963. [PMID: 38028591 PMCID: PMC10646529 DOI: 10.3389/fgene.2023.1276963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Interstitial fibrosis and tubular atrophy (IFTA) are the histopathological manifestations of chronic kidney disease (CKD) and one of the causes of long-term renal loss in transplanted kidneys. Necroptosis as a type of programmed death plays an important role in the development of IFTA, and in the late functional decline and even loss of grafts. In this study, 13 machine learning algorithms were used to construct IFTA diagnostic models based on necroptosis-related genes. Methods: We screened all 162 "kidney transplant"-related cohorts in the GEO database and obtained five data sets (training sets: GSE98320 and GSE76882, validation sets: GSE22459 and GSE53605, and survival set: GSE21374). The training set was constructed after removing batch effects of GSE98320 and GSE76882 by using the SVA package. The differentially expressed gene (DEG) analysis was used to identify necroptosis-related DEGs. A total of 13 machine learning algorithms-LASSO, Ridge, Enet, Stepglm, SVM, glmboost, LDA, plsRglm, random forest, GBM, XGBoost, Naive Bayes, and ANNs-were used to construct 114 IFTA diagnostic models, and the optimal models were screened by the AUC values. Post-transplantation patients were then grouped using consensus clustering, and the different subgroups were further explored using PCA, Kaplan-Meier (KM) survival analysis, functional enrichment analysis, CIBERSOFT, and single-sample Gene Set Enrichment Analysis. Results: A total of 55 necroptosis-related DEGs were identified by taking the intersection of the DEGs and necroptosis-related gene sets. Stepglm[both]+RF is the optimal model with an average AUC of 0.822. A total of four molecular subgroups of renal transplantation patients were obtained by clustering, and significant upregulation of fibrosis-related pathways and upregulation of immune response-related pathways were found in the C4 group, which had poor prognosis. Conclusion: Based on the combination of the 13 machine learning algorithms, we developed 114 IFTA classification models. Furthermore, we tested the top model using two independent data sets from GEO.
Collapse
Affiliation(s)
- Yu Yin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Congcong Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianguang Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengkai Huang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Sun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Fei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaobing Ju
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Dudreuilh C, Jarvis P, Beadle N, Pilecka I, Shaw O, Gardner L, Scottà C, Mamode N, Game DS, Sanchez-Fueyo A, Lombardi G, Learoyd A, Douiri A, Dorling A. Can regulatory T cells improve outcomes of sensitised patients after HLA-Ab incompatible renal transplantation: study protocol for the Phase IIa GAMECHANgER-1 trial. BMC Nephrol 2023; 24:117. [PMID: 37118685 PMCID: PMC10140710 DOI: 10.1186/s12882-023-03157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/06/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Kidney transplantation is the gold-standard treatment for patients with kidney failure. However, one-third of patients awaiting a kidney transplant are highly sensitized to human leukocyte antigens (HLA), resulting in an increased waiting time for a suitable kidney, more acute and chronic rejection, and a shorter graft survival compared to non-highly sensitised patients. Current standard immunosuppression protocols do not adequately suppress memory responses, and so alternative strategies are needed. Autologous polyclonally expanded regulatory T cells (Tregs) have been demonstrated to be safe in transplant settings and could be a potential alternative to modulate memory immune alloresponses. METHODS The aim of this trial is to determine whether adoptive transfer of autologous Tregs into HLA sensitised patients can suppress memory T and B cell responses against specific HLA antigens. This is a two-part, multi-centre, prospective clinical trial, comprising an observational phase (Part 1) aiming to identify patients with unregulated cellular memory responses to HLA (Pure HLA Proteins) followed by an interventional phase (Part 2). The first 9 patients identified as being eligible in Part 1 will undergo baseline immune monitoring for 2 months to inform statistical analysis of the primary endpoint. Part 2 is an adaptive, open labelled trial based on Simon's two-stage design, with 21 patients receiving Good Manufacturing Practice (GMP)-grade polyclonally expanded Tregs to a dose of 5-10 × 106 cells/kg body weight. The primary EP is suppression of in vitro memory responses for 2 months post-infusion. 12 patients will receive treatment in stage 1 of Part 2, and 9 patients will receive treatment in stage 2 of Part 2 if ≥ 50% patients pass the primary EP in stage 1. DISCUSSION This is a prospective study aiming to identify patients with unregulated cellular memory responses to Pure HLA Proteins and determine baseline variation in these patterns of response. Part 2 will be an adaptive phase IIa clinical trial with 21 patients receiving a single infusion of GMP-grade polyclonally expanded Tregs in two stages. It remains to be demonstrated that modulating memory alloresponses clinically using Treg therapy is achievable. TRIAL REGISTRATION EudraCT Number: 2021-001,664-23. REC Number: 21/SC/0253. Trial registration number ISRCTN14582152.
Collapse
Affiliation(s)
- C Dudreuilh
- Centre for Nephrology, Urology and Transplantation, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London & NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, UK.
| | - P Jarvis
- Centre for Nephrology, Urology and Transplantation, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London & NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - N Beadle
- Centre for Nephrology, Urology and Transplantation, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London & NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - I Pilecka
- Centre for Nephrology, Urology and Transplantation, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London & NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
- Clinical Trials Unit, King's College London, London, UK
| | - O Shaw
- Guy's and St Thomas's Hospital Trust, London, UK
| | - L Gardner
- Centre for Nephrology, Urology and Transplantation, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London & NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - C Scottà
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - N Mamode
- Centre for Nephrology, Urology and Transplantation, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London & NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - D S Game
- Department of Transplantation, Guys and St, Thomas's Hospital NHS Trust, London, UK
| | - A Sanchez-Fueyo
- Institute of Liver Studies, King's College London University and King's College Hospital, London, UK
| | - G Lombardi
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - A Learoyd
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - A Douiri
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - A Dorling
- Centre for Nephrology, Urology and Transplantation, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London & NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
9
|
Stringer D, Gardner L, Shaw O, Clarke B, Briggs D, Worthington J, Buckland M, Danzi G, Hilton R, Picton M, Thuraisingham R, Borrows R, Baker R, McCullough K, Stoves J, Phanish M, Shah S, Shiu KY, Walsh SB, Ahmed A, Ayub W, Hegarty J, Tinch-Taylor R, Georgiou E, Bidad N, Kılıç A, Moon Z, Horne R, McCrone P, Kelly J, Murphy C, Peacock J, Dorling A. Optimized immunosuppression to prevent graft failure in renal transplant recipients with HLA antibodies (OuTSMART): a randomised controlled trial. EClinicalMedicine 2023; 56:101819. [PMID: 36684392 PMCID: PMC9852275 DOI: 10.1016/j.eclinm.2022.101819] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND 3% of kidney transplant recipients return to dialysis annually upon allograft failure. Development of antibodies (Ab) against human leukocyte antigens (HLA) is a validated prognostic biomarker of allograft failure. We tested whether screening for HLA Ab, combined with an intervention to improve adherence and optimization of immunosuppression could prevent allograft failure. METHODS Prospective, open-labelled randomised biomarker-based strategy (hybrid) trial in 13 UK transplant centres [EudraCT (2012-004308-36) and ISRCTN (46157828)]. Patients were randomly allocated (1:1) to unblinded or double-blinded arms and screened every 8 months. Unblinded HLA Ab+ patients were interviewed to encourage medication adherence and had tailored optimisation of Tacrolimus, Mycophenolate mofetil and Prednisolone. The primary outcome was time to graft failure in an intention to treat analysis. The trial had 80% power to detect a hazard ratio of 0.49 in donor specific antibody (DSA)+ patients. FINDINGS From 11/9/13 to 27/10/16, 5519 were screened for eligibility and 2037 randomised (1028 to unblinded care and 1009 to double blinded care). We identified 198 with DSA and 818 with non-DSA. Development of DSA, but not non-DSA was predictive of graft failure. HRs for graft failure in unblinded DSA+ and non-DSA+ groups were 1.54 (95% CI: 0.72 to 3.30) and 0.97 (0.54-1.74) respectively, providing no evidence of an intervention effect. Non-inferiority for the overall unblinded versus blinded comparison was not demonstrated as the upper confidence limit of the HR for graft failure exceeded 1.4 (1.02, 95% CI: 0.72 to 1.44). The only secondary endpoint reduced in the unblinded arm was biopsy-proven rejection. INTERPRETATION Intervention to improve adherence and optimize immunosuppression does not delay failure of renal transplants after development of DSA. Whilst DSA predicts increased risk of allograft failure, novel interventions are needed before screening can be used to direct therapy. FUNDING The National Institute for Health Research Efficacy and Mechanism Evaluation programme grant (ref 11/100/34).
Collapse
Affiliation(s)
- Dominic Stringer
- Biostatistics and Health Informatics, The Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- King's Clinical Trials Unit, King's College London, London, UK
| | - Leanne Gardner
- King's Clinical Trials Unit, King's College London, London, UK
- Centre for Nephrology, Urology and Transplantation, Department of Inflammation Biology, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Olivia Shaw
- Clinical Transplantation Laboratory, Viapath Analytics LLP, London, UK
| | - Brendan Clarke
- Transplant Immunology, Level 09 Gledhow Wing, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - David Briggs
- NHSBT Birmingham, Vincent Drive, Edgbaston, Birmingham, B15 2SG, UK
| | - Judith Worthington
- Transplantation Laboratory, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL, UK
| | - Matthew Buckland
- Clinical Transplantation Laboratory, The Royal London Hospital, 2nd Floor, Pathology and Pharmacy Building, 80 Newark Street, London, E1 1BB, UK
| | - Guilherme Danzi
- Renal Unit, Hospital das Clínicas da Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife - PE, 50670-901, Brazil
| | - Rachel Hilton
- Department of Nephrology and Transplantation, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Michael Picton
- Department of Renal Medicine, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL, UK
| | - Raj Thuraisingham
- Department of Renal Medicine and Transplantation, Barts Health NHS Trust, London, E1 1BB, UK
| | - Richard Borrows
- Renal Unit, University Hospital Birmingham, Edgbaston, Birmingham, B15 2LN, UK
| | - Richard Baker
- Renal Unit, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Keith McCullough
- Renal Unit, York Teaching Hospital NHS Foundation Trust, York, YO31 8HE, UK
| | - John Stoves
- Renal Unit, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, BD5 0NA, UK
| | - Mysore Phanish
- Renal Unit, Epsom and St Helier University Hospitals NHS Trust, Surrey, UK
| | - Sapna Shah
- Renal Unit, King's College Hospital, London, SE5 9RJ, UK
| | - Kin Yee Shiu
- UCL Department of Renal Medicine, Royal Free London NHS Foundation Trust, London, NW3 2QG, UK
| | - Stephen B. Walsh
- UCL Department of Renal Medicine, Royal Free London NHS Foundation Trust, London, NW3 2QG, UK
| | - Aimun Ahmed
- Renal Unit, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, PR2 9HT, UK
| | - Waqar Ayub
- Renal Unit, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - Janet Hegarty
- Renal Unit, Salford Royal NHS Foundation Trust, Salford, M6 8HD, UK
| | - Rose Tinch-Taylor
- Biostatistics and Health Informatics, The Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- King's Clinical Trials Unit, King's College London, London, UK
| | | | - Natalie Bidad
- Centre for Behavioural Medicine, UCL School of Pharmacy, University College London, London, WC1H 9JP, UK
| | - Ayşenur Kılıç
- Centre for Behavioural Medicine, UCL School of Pharmacy, University College London, London, WC1H 9JP, UK
| | - Zoe Moon
- Centre for Behavioural Medicine, UCL School of Pharmacy, University College London, London, WC1H 9JP, UK
| | - Robert Horne
- Centre for Behavioural Medicine, UCL School of Pharmacy, University College London, London, WC1H 9JP, UK
| | - Paul McCrone
- King's Clinical Trials Unit, King's College London, London, UK
- Faculty of Education, Health and Human Sciences, University of Greenwich, London, UK
| | - Joanna Kelly
- King's Clinical Trials Unit, King's College London, London, UK
| | - Caroline Murphy
- King's Clinical Trials Unit, King's College London, London, UK
| | - Janet Peacock
- School of Life Course and Population Sciences, King's College London, London, UK
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, USA
| | - Anthony Dorling
- Centre for Nephrology, Urology and Transplantation, Department of Inflammation Biology, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
- Corresponding author.
| |
Collapse
|
10
|
van Vugt LK, Schagen MR, de Weerd A, Reinders ME, de Winter BC, Hesselink DA. Investigational drugs for the treatment of kidney transplant rejection. Expert Opin Investig Drugs 2022; 31:1087-1100. [PMID: 36175360 DOI: 10.1080/13543784.2022.2130751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Kidney transplant rejection remains an important clinical problem despite the development of effective immunosuppressive drug combination therapy. Two major types of rejection are recognized, namely T-cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR), which have a different pathophysiology and are treated differently. Unfortunately, long-term outcomes of both TCMR and ABMR remain unsatisfactory despite current therapy. Hence, alternative therapeutic drugs are urgently needed. AREAS COVERED This review covers novel and investigational drugs for the pharmacological treatment of kidney transplant rejection. Potential therapeutic strategies and future directions are discussed. EXPERT OPINION The development of alternative pharmacologic treatment of rejection has focused mostly on ABMR, since this is the leading cause of kidney allograft loss and currently lacks an effective, evidence-based therapy. At present, there is insufficient high-quality evidence for any of the covered investigational drugs to support their use in ABMR. However, with the emergence of targeted therapies, this potential arises for individualized treatment strategies. In order to generate more high-quality evidence for such strategies and overcome the obstacles of classic, randomized, controlled trials, we advocate the implementation of adaptive trial designs and surrogate clinical endpoints. We believe such adaptive trial designs could help to understand the risks and benefits of promising drugs such as tocilizumab, clazakizumab, belimumab, and imlifidase.
Collapse
Affiliation(s)
- Lukas K van Vugt
- Erasmus MC Transplant Institute, Rotterdam, the Netherlands.,Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maaike R Schagen
- Erasmus MC Transplant Institute, Rotterdam, the Netherlands.,Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Annelies de Weerd
- Erasmus MC Transplant Institute, Rotterdam, the Netherlands.,Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marlies Ej Reinders
- Erasmus MC Transplant Institute, Rotterdam, the Netherlands.,Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Brenda Cm de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dennis A Hesselink
- Erasmus MC Transplant Institute, Rotterdam, the Netherlands.,Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
11
|
Burton H, McLaughlin L, Shiu KY, Shaw O, Mamode N, Spencer J, Dorling A. The phenotype of HLA-binding B cells from sensitized kidney transplant recipients correlates with clinically prognostic patterns of interferon-γ production against purified HLA proteins. Kidney Int 2022; 102:355-369. [PMID: 35483526 DOI: 10.1016/j.kint.2022.02.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
B cells play crucial roles in cell-mediated alloimmune responses. In vitro, B cells can support or regulate indirect T-cell alloreactivity in response to donor antigens on ELISpot and these patterns associate with clinical outcome. Previous reports of associations between B-cell phenotype and function have examined global phenotypes and responses to polyclonal stimuli. We hypothesized that studying antigen-specific B cells, using samples from sensitized patients, would inform further study to identify novel targets for intervention. Using biotinylated HLA proteins, which bind HLA-specific B cells via the B-cell receptor in a dose-dependent fashion, we report the specific phenotype of HLA-binding B cells and define how they associated with patterns of anti-HLA response in interferon-γ ELISpot. HLA-binding class-switched and IgM+CD27+ memory cells associated strongly with B-dependent interferon-γ production and appeared not suppressible by endogenous Tregs. When the predominant HLA-binding phenotype was naïve B cells, the associated functional ELISpot phenotype was determined by other cells present. High numbers of non-HLA-binding transitional cells associated with B-suppressed interferon-γ production, especially if Tregs were present. However, high frequencies of HLA-binding marginal-zone precursors associated with B-dependent interferon-γ production that appeared suppressible by Tregs. Finally, non-HLA-binding marginal zone precursors may also suppress interferon-γ production, though this association only emerged when Tregs were absent from the ELISpot. Thus, our novel data provide a foundation on which to further define the complexities of interactions between HLA-specific T and B cells and identify new targets for intervention in new therapies for chronic rejection.
Collapse
Affiliation(s)
- Hannah Burton
- Department of Inflammation Biology, King's College London, London, UK
| | - Laura McLaughlin
- Department of Inflammation Biology, King's College London, London, UK
| | - Kin Yee Shiu
- Department of Inflammation Biology, King's College London, London, UK; Department of Renal Medicine (UCL), Royal Free Hospital, London, UK
| | - Olivia Shaw
- Clinical Transplantation Laboratory, Guy's Hospital, London, UK
| | - Nizam Mamode
- Department of Inflammation Biology, King's College London, London, UK
| | - Jo Spencer
- Department of Immunobiology, King's College London, London, UK
| | - Anthony Dorling
- Department of Inflammation Biology, King's College London, London, UK.
| |
Collapse
|
12
|
Mayer KA, Budde K, Jilma B, Doberer K, Böhmig GA. Emerging drugs for antibody-mediated rejection after kidney transplantation: a focus on phase II & III trials. Expert Opin Emerg Drugs 2022; 27:151-167. [PMID: 35715978 DOI: 10.1080/14728214.2022.2091131] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Antibody-mediated rejection (ABMR) is a leading cause of kidney allograft failure. Its therapy continues to be challenge, and no treatment has been approved for the market thus far. AREAS COVERED In this article, we discuss the pathophysiology and phenotypic presentation of ABMR, the current level of evidence to support the use of available therapeutic strategies, and the emergence of tailored drugs now being evaluated in systematic clinical trials. We searched PubMed, Clinicaltrials.gov and Citeline's Pharmaprojects for pertinent information on emerging anti-rejection strategies, laying a focus on phase II and III trials. EXPERT OPINION Currently, we rely on the use of apheresis for alloantibody depletion and intravenous immunoglobulin (referred to as standard of care), preferentially in early active ABMR. Recent systematic trials have questioned the benefits of using the CD20 antibody rituximab or the proteasome inhibitor bortezomib. However, there are now several promising treatment approaches in the pipeline, which are being trialed in phase II and III studies. These include interleukin-6 antagonism, CD38-targeting antibodies, and selective inhibitors of complement. On the basis of the information that has emerged so far, it seems that innovative treatment strategies for clinical use in ABMR may be available within the next 5-10 years.
Collapse
Affiliation(s)
- Katharina A Mayer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - Konstantin Doberer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Basu S, Dorling A. Regulation of T- and B-cell interactions determines the clinical phenotype associated with donor-specific antibodies. Kidney Int 2022; 101:877-879. [PMID: 35461614 DOI: 10.1016/j.kint.2022.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022]
Abstract
The cellular mechanisms that regulate donor-specific antibody formation and antibody-mediated rejection remain unknown. In this issue, Louis et al. report that specific T-regulatory cell and B-regulatory transitional cell subsets are concomitantly diminished in patients with donor-specific antibody and consequent antibody-mediated rejection and advance alterations in specific cytokines and costimulatory molecules as important mechanisms by which these cells may suppress donor-specific antibody formation and, independently, progression to antibody-mediated rejection.
Collapse
Affiliation(s)
- Sumoyee Basu
- Centre for Nephrology, Urology and Transplantation, Department of Inflammation Biology, King's College London, Guy's Hospital, London, UK
| | - Anthony Dorling
- Centre for Nephrology, Urology and Transplantation, Department of Inflammation Biology, King's College London, Guy's Hospital, London, UK.
| |
Collapse
|
14
|
Parlakpinar H, Gunata M. Transplantation and immunosuppression: a review of novel transplant-related immunosuppressant drugs. Immunopharmacol Immunotoxicol 2021; 43:651-665. [PMID: 34415233 DOI: 10.1080/08923973.2021.1966033] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunosuppressive drugs used in the transplantation period are generally defined as induction and maintenance therapy. The use of immunosuppressants, which are particularly useful and have fewer side effects, decreased both mortality and morbidity. Many drugs such as steroids, calcineurin inhibitors (cyclosporine-A, tacrolimus), antimetabolites (mycophenolate mofetil, azathioprine), and mTOR inhibitors (sirolimus, everolimus) are used as immunosuppressive agents. Although immunosuppressant drugs cause many side effects such as hypertension, infection, and hyperlipidemia, they are the agents that should be used to prevent organ rejection. This shows the importance of individualized drug use. The optimal immunosuppressive therapy post-transplant is not established. Therefore, discovering less toxic but more potent new agents is of great importance, and new experimental and clinical studies are needed in this regard.Our review discussed the mechanism of immunosuppressants, new agents' discovery, and current therapeutic protocols in the transplantation.
Collapse
Affiliation(s)
- Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
15
|
Lai X, Zheng X, Mathew JM, Gallon L, Leventhal JR, Zhang ZJ. Tackling Chronic Kidney Transplant Rejection: Challenges and Promises. Front Immunol 2021; 12:661643. [PMID: 34093552 PMCID: PMC8173220 DOI: 10.3389/fimmu.2021.661643] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/27/2021] [Indexed: 01/09/2023] Open
Abstract
Despite advances in post-transplant management, the long-term survival rate of kidney grafts and patients has not improved as approximately forty percent of transplants fails within ten years after transplantation. Both immunologic and non-immunologic factors contribute to late allograft loss. Chronic kidney transplant rejection (CKTR) is often clinically silent yet progressive allogeneic immune process that leads to cumulative graft injury, deterioration of graft function. Chronic active T cell mediated rejection (TCMR) and chronic active antibody-mediated rejection (ABMR) are classified as two principal subtypes of CKTR. While significant improvements have been made towards a better understanding of cellular and molecular mechanisms and diagnostic classifications of CKTR, lack of early detection, differential diagnosis and effective therapies continue to pose major challenges for long-term management. Recent development of high throughput cellular and molecular biotechnologies has allowed rapid development of new biomarkers associated with chronic renal injury, which not only provide insight into pathogenesis of chronic rejection but also allow for early detection. In parallel, several novel therapeutic strategies have emerged which may hold great promise for improvement of long-term graft and patient survival. With a brief overview of current understanding of pathogenesis, standard diagnosis and challenges in the context of CKTR, this mini-review aims to provide updates and insights into the latest development of promising novel biomarkers for diagnosis and novel therapeutic interventions to prevent and treat CKTR.
Collapse
Affiliation(s)
- Xingqiang Lai
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Organ Transplant Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Zheng
- Department of Urology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - James M. Mathew
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lorenzo Gallon
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Medicine, Nephrology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph R. Leventhal
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Zheng Jenny Zhang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
16
|
Beckett J, Hester J, Issa F, Shankar S. Regulatory B cells in transplantation: roadmaps to clinic. Transpl Int 2020; 33:1353-1368. [PMID: 32725703 DOI: 10.1111/tri.13706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/08/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022]
Abstract
Over the last two decades, an additional and important role for B cells has been established in immune regulation. Preclinical studies demonstrate that regulatory B cells (Breg) can prolong allograft survival in animal models and induce regulatory T cells. Operationally tolerant human kidney transplant recipients demonstrate B-cell-associated gene signatures of immune tolerance, and novel therapeutic agents can induce Bregs in phase I clinical trials in transplantation. Our rapidly expanding appreciation of this novel B-cell subtype has made the road to clinical application a reality. Here, we outline several translational pathways by which Bregs could soon be introduced to the transplant clinic.
Collapse
Affiliation(s)
- Joseph Beckett
- Transplant Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joanna Hester
- Transplant Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Transplant Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Sushma Shankar
- Transplant Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Dudreuilh C, Dorling A. Effect of rituximab on anti-donor T-cell responses. Transpl Int 2020; 33:1322-1323. [PMID: 32519346 DOI: 10.1111/tri.13671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Caroline Dudreuilh
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Anthony Dorling
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| |
Collapse
|