1
|
Kibria MG, Shiwaku Y, Brindha S, Kuroda Y. Biophysical and biochemical nature of amorphous protein oligomers determines the strength of immune response and the generation of T-cell memory. FEBS J 2023; 290:4712-4725. [PMID: 37287403 DOI: 10.1111/febs.16884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
Here, we used domain 3 of dengue virus serotype 3 envelope protein (D3ED3), a natively folded globular low-immunogenicity protein, to ask whether the biophysical nature of amorphous oligomers can affect immunogenicity. We prepared nearly identical 30 ~ 50 nm-sized amorphous oligomers in five distinct ways and looked at any correlation between their biophysical properties and immunogenicity. One oligomer type was produced using our SCP tag (solubility controlling peptide) made of 5 isoleucines (C5I). The others were prepared by miss-shuffling the SS bonds (Ms), heating (Ht), stirring (St) and freeze-thaw (FT). Dynamic light scattering showed that all five formulations contained oligomers of approximately identical sizes with hydrodynamic radii (Rh) between 30 and 55 nm. Circular dichroism (cd) indicated that the secondary structure content of oligomers formed by stirring and freeze-thaw was essentially identical to that of the native monomeric D3ED3. The secondary structure content of the Ms showed moderate changes, whereas the C5I and heat-induced (Ht) oligomers exhibited a significant change. The Ms contained D3ED3 with intermolecular SS bonds as assessed by nonreducing size exclusion chromatography (SEC). Immunization in JcL:ICR mice showed that both C5I and Ms significantly increased the anti-D3ED3 IgG titre. Ht, St and FT were only mildly immunogenic, similar to the monomeric D3ED3. Cell surface CD marker analysis by flow cytometry confirmed that immunization with Ms generated a strong central and effector T-cell memory. Our observations indeed suggest that controlled oligomerization can provide a new, adjuvant-free method for increasing a protein's immunogenicity, yielding a potentially powerful platform for protein-based (subunit) vaccines.
Collapse
Affiliation(s)
- Md Golam Kibria
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Japan
| | - Yukari Shiwaku
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Japan
| | - Subbaian Brindha
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-Shi, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Japan
| |
Collapse
|
2
|
Yoshizue T, Brindha S, Wongnak R, Takemae H, Oba M, Mizutani T, Kuroda Y. Antisera Produced Using an E. coli-Expressed SARS-CoV-2 RBD and Complemented with a Minimal Dose of Mammalian-Cell-Expressed S1 Subunit of the Spike Protein Exhibits Improved Neutralization. Int J Mol Sci 2023; 24:10583. [PMID: 37445760 DOI: 10.3390/ijms241310583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
E. coli-expressed proteins could provide a rapid, cost-effective, and safe antigen for subunit vaccines, provided we can produce them in a properly folded form inducing neutralizing antibodies. Here, we use an E. coli-expressed SARS-CoV-2 receptor-binding domain (RBD) of the spike protein as a model to examine whether it yields neutralizing antisera with effects comparable to those generated by the S1 subunit of the spike protein (S1 or S1 subunit, thereafter) expressed in mammalian cells. We immunized 5-week-old Jcl-ICR female mice by injecting RBD (30 µg) and S1 subunit (5 µg) according to four schemes: two injections 8 weeks apart with RBD (RBD/RBD), two injections with S1 (S1/S1), one injection with RBD, and the second one with S1 (RBD/S1), and vice versa (S1/RBD). Ten weeks after the first injection (two weeks after the second injection), all combinations induced a strong immune response with IgG titer > 105 (S1/RBD < S1/S1 < RBD/S1 < RBD/RBD). In addition, the neutralization effect of the antisera ranked as S1/RBD~RBD/S1 (80%) > S1/S1 (56%) > RBD/RBD (42%). These results indicate that two injections with E. coli-expressed RBD, or mammalian-cell-produced spike S1 subunit alone, can provide some protection against SARS-CoV-2, but a mixed injection scheme yields significantly higher protection.
Collapse
Affiliation(s)
- Takahiro Yoshizue
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi 184-8588, Japan
| | - Subbaian Brindha
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi 183-8538, Japan
| | - Rawiwan Wongnak
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi 184-8588, Japan
| | - Hitoshi Takemae
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi 183-8538, Japan
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu-shi 183-8509, Japan
| | - Mami Oba
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi 183-8538, Japan
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu-shi 183-8509, Japan
| | - Tetsuya Mizutani
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi 183-8538, Japan
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu-shi 183-8509, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi 183-8538, Japan
| |
Collapse
|
3
|
Islam MD, Sharmin T, Tipo IH, Saha A, Yesmin S, Roy MG, Brindha S, Kuroda Y, Islam MM. The Immunogenicity of DENV1-4 ED3s Strongly Differ despite Their Almost Identical Three-Dimensional Structures and High Sequence Similarities. Int J Mol Sci 2023; 24:2393. [PMID: 36768719 PMCID: PMC9916489 DOI: 10.3390/ijms24032393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The development of a dengue (DENV) vaccine remains challenging due to the heteroserotypic infection, which can result in a potentially deadly hemorrhagic fever or dengue shock syndrome, and only a tetravalent vaccine can overcome this issue. Here, we report the immunogenicity of DENV envelope protein domain 3 (ED3) from all four DENV serotypes (DENV1-4) in Swiss albino and BALB/c mice models. Firstly, we observed that despite having very similar sequences and structures, both the humoral and cellular immunogenicity of ED3s varied significantly, with strength ranging from DENV2 ED3 (2ED3)~3ED3 > 1ED3 > 4ED3, which was assessed through anti-ED3 IgG titers, and DENV1 ED3 (1ED3) > 2ED3~3ED3 > 4ED3 as determined by monitoring T-cell memory (CD44+CD62L+ T cells with IL-4 and IFN-γ expression). Secondly, anti-1ED3 sera cross-reacted with 2ED3 and 3ED3; anti-2ED3 and anti-3ED3 sera cross-reacted with each other, but anti-4ED3 was completely serotype-specific. The lack of reciprocity of anti-1ED3's cross-reaction was unanticipated. Such disparity in the ED3 responses and cross-reaction might underlie the appearance of hemorrhagic fever and dengue shock syndrome. Hence, the development of an ED3-based tetravalent subunit vaccine would require understanding the aforementioned disparities.
Collapse
Affiliation(s)
- Md. Din Islam
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Tahmina Sharmin
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Imrul Hasan Tipo
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Antara Saha
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Sanjida Yesmin
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Moushumi Ghosh Roy
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
- Department of Biotechnology, Lovely Professional University, Jalandhar 144001, India
| | - Subbaian Brindha
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - M. Monirul Islam
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| |
Collapse
|
4
|
Loughran ST, Walls D. Tagging Recombinant Proteins to Enhance Solubility and Aid Purification. Methods Mol Biol 2023; 2699:97-123. [PMID: 37646996 DOI: 10.1007/978-1-0716-3362-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Protein fusion technology has had a major impact on the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has a long history, and there is a considerable repertoire of these that can be used to address issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. In this chapter, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags is described.
Collapse
Affiliation(s)
- Sinéad T Loughran
- Department of Life and Health Sciences, School of Health and Science, Dundalk Institute of Technology, Dundalk, Louth, Ireland.
| | - Dermot Walls
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
5
|
Kuroda Y. Biophysical studies of amorphous protein aggregation and in vivo immunogenicity. Biophys Rev 2022; 14:1495-1501. [PMID: 36465085 PMCID: PMC9684872 DOI: 10.1007/s12551-022-01011-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022] Open
Abstract
Amorphous protein aggregates are oligomers that lack specific, high-order structures. Soluble amorphous aggregates are smaller than ~1 µm. Despite their lack of high-order structure, amorphous protein aggregates exhibit specific biophysical properties such as reversibility of formation, density, conformation, and biochemical stability. Our mutational analysis using a Solubility Controlling Peptide (SCP) tag strongly suggests that amorphous aggregation of small globular proteins can significantly increase in vivo immune response and that the magnitude of enhanced immune responses depends on the aggregates' biophysical and biochemical properties. We propose that SCP tags might help develop subunit (protein) adjuvant-free (immunostimulant-free) vaccines by controlling the aggregation propensity of target proteins.
Collapse
Affiliation(s)
- Yutaka Kuroda
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-Shi, Tokyo, 184-8588 Japan
| |
Collapse
|
6
|
Aklima J, Onchaiya S, Saotome T, Velmurugan P, Motoichi T, Naima J, Kuroda Y, Ohta Y. Direct Analysis of Mitochondrial Damage Caused by Misfolded/Destabilized Proteins. Int J Mol Sci 2022; 23:ijms23179881. [PMID: 36077279 PMCID: PMC9456338 DOI: 10.3390/ijms23179881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Protein quality control is essential for cellular homeostasis. In this study, we examined the effect of improperly folded proteins that do not form amyloid fibrils on mitochondria, which play important roles in ATP production and cell death. First, we prepared domain 3 of the dengue envelope protein in wild type and four mutants with widely different biophysical properties in misfolded/aggregated or destabilized states. The effects of the different proteins were detected using fluorescence microscopy and Western blotting, which revealed that three of the five proteins disrupted both inner and outer membrane integrity, while the other two proteins, including the wild type, did not. Next, we examined the common characteristics of the proteins that displayed toxicity against mitochondria by measuring oligomer size, molten globule-like properties, and thermal stability. The common feature of all three toxic proteins was thermal instability. Therefore, our data strongly suggest that thermally unstable proteins generated in the cytosol can cause cellular damage by coming into direct contact with mitochondria. More importantly, we revealed that this damage is not amyloid-specific.
Collapse
Affiliation(s)
- Jannatul Aklima
- Division of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Sawaros Onchaiya
- Division of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Tomonori Saotome
- Division of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
- Department of Bioengineering, Nagaoka University of Technology, Niigata 940-2188, Japan
| | - Punitha Velmurugan
- Division of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Taihei Motoichi
- Division of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Jannatul Naima
- Division of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yutaka Kuroda
- Division of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yoshihiro Ohta
- Division of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
- Correspondence:
| |
Collapse
|
7
|
Rahman N, Miura S, Okawa M, Kibria MG, Islam MM, Kuroda Y. Solubility Controlling Peptide Tags of Opposite Charges Generate a Bivalent Immune Response Against Dengue ED3 Serotypes 3 and 4. Front Immunol 2021; 12:671590. [PMID: 34177912 PMCID: PMC8226127 DOI: 10.3389/fimmu.2021.671590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/04/2021] [Indexed: 11/24/2022] Open
Abstract
We previously demonstrated that a protein’s immunogenicity could be substantially increased by attaching a hydrophobic solubility controlling peptide tag (SCP-tag) producing small sub-visible aggregates. Here, we report the oligomerization of Dengue envelop protein domain 3 (ED3), and consequently, its immunogenicity increase by mixing ED3s attached with SCP-tags of opposite charges at equimolar concentration. We used ED3 of serotype 3 (D3ED3) and serotype 4 (D4ED3), which are, respectively, moderately and poorly immunogenic, and their SCP tagged variants constructed by attaching either a C-termini 5-Aspartic acid (C5D) or a 5-Lysine (C5K) tag. Light scattering indicated that the isolated tagged ED3s remained monomeric, but mixing the C5D and C5K tagged ED3s at equimolar concentration generated sub-visible aggregates or oligomers of ~500 nm through electrostatic interaction. In addition, the oligomerized ED3s remained in a native-like state, as assessed by fluorescence spectroscopy and circular dichroism. The in vivo immunogenicity of the D3ED3 and D4ED3 oligomers generated by the charged tags increased by 5 and 16 fold, respectively. Furthermore, injection of heterotypic ED3 oligomers (D3C5D+D4C5K) induced an immune response against both D3ED3 and D4ED3 in 3 of 4 responsive mice, and the IgG titer of the bivalent anti-D3C5D-D4C5K sera was over 100 times higher than that generated by co-injecting the untagged D3ED3 and D4ED3 (D3+D4). Altogether, these observations suggest that SCP-tags could be used as a platform for producing a long-sought tetravalent dengue vaccine.
Collapse
Affiliation(s)
- Nafsoon Rahman
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shiho Miura
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mami Okawa
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Md Golam Kibria
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mohammad Monirul Islam
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Yutaka Kuroda
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
8
|
Kibria MG, Fukutani A, Akazawa-Ogawa Y, Hagihara Y, Kuroda Y. Anti-EGFR V HH Antibody under Thermal Stress Is Better Solubilized with a Lysine than with an Arginine SEP Tag. Biomolecules 2021; 11:biom11060810. [PMID: 34072518 PMCID: PMC8229009 DOI: 10.3390/biom11060810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/15/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, we assessed the potential of arginine and lysine solubility-enhancing peptide (SEP) tags to control the solubility of a model protein, anti-EGFR VHH-7D12, in a thermally denatured state at a high temperature. We produced VHH-7D12 antibodies attached with a C-terminal SEP tag made of either five or nine arginines or lysines (7D12-C5R, 7D12-C9R, 7D12-C5K and 7D12-C9K, respectively). The 5-arginine and 5-lysine SEP tags increased the E. coli expression of VHH-7D12 by over 80%. Biophysical and biochemical analysis confirmed the native-like secondary and tertiary structural properties and the monomeric nature of all VHH-7D12 variants. Moreover, all VHH-7D12 variants retained a full binding activity to the EGFR extracellular domain. Finally, thermal stress with 45-minute incubation at 60 and 75 °C, where VHH-7D12 variants are unfolded, showed that the untagged VHH-7D12 formed aggregates in all of the four buffers, and the supernatant protein concentration was reduced by up to 35%. 7D12-C5R and 7D12-C9R did not aggregate in Na-acetate (pH 4.7) and Tris-HCl (pH 8.5) but formed aggregates in phosphate buffer (PB, pH 7.4) and phosphate buffer saline (PBS, pH 7.4). The lysine tags (either C5K or C9K) had the strongest solubilization effect, and both 7D12-C5K and 7D12-C9K remained in the supernatant. Altogether, our results indicate that, under a thermal stress condition, the lysine SEP tags solubilization effect is more potent than that of an arginine SEP tags, and the SEP tags did not affect the structural and functional properties of the protein.
Collapse
Affiliation(s)
- Md. Golam Kibria
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan; (M.G.K.); (A.F.)
| | - Akari Fukutani
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan; (M.G.K.); (A.F.)
| | - Yoko Akazawa-Ogawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan; (Y.A.-O.); (Y.H.)
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan; (Y.A.-O.); (Y.H.)
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan; (M.G.K.); (A.F.)
- Correspondence: ; Tel./Fax: +81-42-388-7794
| |
Collapse
|
9
|
Golam Kibria M, Akazawa-Ogawa Y, Hagihara Y, Kuroda Y. Immune response with long-term memory triggered by amorphous aggregates of misfolded anti-EGFR V HH-7D12 is directed against the native V HH-7D12 as well as the framework of the analogous V HH-9G8. Eur J Pharm Biopharm 2021; 165:13-21. [PMID: 33971271 DOI: 10.1016/j.ejpb.2021.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
We previously demonstrated that amorphous aggregates of misfolded VHH-7D12 antibodies (VHH-Mis), a potential anti-EGFR drug, can generate a robust serum IgG response. Here we investigate the immunogenic nature, especially the specificity of the immune response induced by VHH-Mis. To this end, we used two natively folded and 77% identical anti-EGFR VHHs (VHH-7D12 and VHH-9G8) that possess a common framework but distinct complementarity determining regions (CDRs). In 60% of mice immunized with VHH-Mis, the anti-VHH-7D12 IgG titer was stronger than the anti-VHH-9G8 titer (Group-1). In the remaining mice (40%; Group-2), the anti-VHH-7D12 and anti-VHH-9G8 titer were almost identical. We rationalized these results by hypothesizing that mice in Group-1 produced IgG mostly against the VHH-7D12's CDRs, whereas in Group-2 mice, they targeted the VHH's framework. The IgG specificity against VHH-7D12 and VHH-9G8 was essentially unchanged over 17 weeks in both groups. Further, in all mice (Group-1&2) re-immunized with native VHH-7D12, the IgG titer against VHH-7D12 increased sharply but not against VHH-9G8. On the other hand, none of the three Group-1 mice re-immunized with native VHH-9G8 showed immunogenicity against VHH-7D12 nor VHH-9G8. Whereas, in Group-2 mice (three/three) re-immunized with VHH-9G8, the IgG titers against both VHHs increased but slowly. Flow-cytometric studies showed that VHH-Mis immunized mice generated a higher number of effector and central memory T-cells. Overall, these observations indicate that amorphous aggregates made of a misfolded VHH can induce serum IgG against its natively folded self and analogous VHHs having a similar framework but distinct CDRs. Furthermore, a robust long-term immune response with memory was established against its natively folded self but with a nil-to-moderate immune response against natively folded VHH analogs.
Collapse
Affiliation(s)
- Md Golam Kibria
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Yoko Akazawa-Ogawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
10
|
Nakamura S, Kibria MG, Unzai S, Kuroda Y, Kidokoro SI. Reversible Oligomerization and Reverse Hydrophobic Effect Induced by Isoleucine Tags Attached at the C-Terminus of a Simplified BPTI Variant. Biochemistry 2020; 59:3660-3668. [PMID: 32924442 DOI: 10.1021/acs.biochem.0c00436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein amorphous aggregation has become the focus of great attention, as it can impair the ability of cells to function properly. Here, we evaluated the effects of three peptide tags, consisting of one, three, and five consecutive isoleucines attached at the C-terminus end of a simplified bovine pancreatic trypsin inhibitor (BPTI) variant, BPTI-19A, on the thermal stability and oligomerization by circular dichroism spectrometry and differential scanning calorimetry in detail. All of the BPTI-19A variants exhibited a reversible and apparently two-state thermal transition like BPTI-19A at pH 4.7. The thermal transition of the five-isoleucine-tagged variant showed clear protein-concentration dependence, where the apparent denaturation temperature decreased as the protein concentration increased. Quantitative analysis indicated that this phenomenon originated from the presence of reversibly oligomerized (RO) states at high temperatures. The results also illustrated that the thermodynamic stability difference between the native and the monomeric denatured state in all the proteins was destabilized by the hydrophobic tags and was well explained by the reverse hydrophobic effect due to the tags. The existence of the RO states was confirmed by both analytical ultracentrifugation and dynamic light scattering. This indicated that the five-isoleucine hydrophobic tag is strong enough to induce intermolecular hydrophobic contact among the denatured molecules leading to oligomerization, and even one- or three-isoleucine tags are effective enough to generate intramolecular hydrophobic contact, thus provoking denaturation through the reverse hydrophobic effect.
Collapse
Affiliation(s)
- Shigeyoshi Nakamura
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.,Department of General Education, National Institute of Technology, Ube College, 2-14-1 Tokiwadai, Ube, Yamaguchi 755-8555, Japan
| | - Md Golam Kibria
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-15 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Satoru Unzai
- Department of Frontier Bioscience, Faculty of Bioscience and Applied Chemistry, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-15 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Shun-Ichi Kidokoro
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
11
|
Rahman N, Islam MM, Kibria MG, Unzai S, Kuroda Y. A systematic mutational analysis identifies a 5-residue proline tag that enhances the in vivo immunogenicity of a non-immunogenic model protein. FEBS Open Bio 2020; 10:1947-1956. [PMID: 33017095 PMCID: PMC7530378 DOI: 10.1002/2211-5463.12941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Poor immunogenicity of small proteins is a major hurdle in developing vaccines or producing antibodies for biopharmaceutical usage. Here, we systematically analyzed the effects of 10 solubility controlling peptide tags (SCP‐tags) on the immunogenicity of a non‐immunogenic model protein, bovine pancreatic trypsin inhibitor (BPTI‐19A; 6 kDa). CD, fluorescence, DLS, SLS, and AUC measurements indicated that the SCP‐tags did not change the secondary structure content nor the tertiary structures of the protein nor its monomeric state. ELISA results indicated that the 5‐proline (C5P) and 5‐arginine (C5R) tags unexpectedly increased the IgG level of BPTI‐19A by 240‐ and 73‐fold, respectively, suggesting that non‐oligomerizing SCP‐tags may provide a novel method for increasing the immunogenicity of a protein in a highly specific manner.
Collapse
Affiliation(s)
- Nafsoon Rahman
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mohammad Monirul Islam
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Md Golam Kibria
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Satoru Unzai
- Department of Frontier Bioscience, Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
12
|
Kibria MG, Akazawa-Ogawa Y, Rahman N, Hagihara Y, Kuroda Y. The immunogenicity of an anti-EGFR single domain antibody (V HH) is enhanced by misfolded amorphous aggregation but not by heat-induced aggregation. Eur J Pharm Biopharm 2020; 152:164-174. [PMID: 32416134 DOI: 10.1016/j.ejpb.2020.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 11/30/2022]
Abstract
Amorphous aggregates of therapeutic proteins can provoke an unwanted immune response (anti-drug antibodies; ADAs), but counter-examples have led to some controversy. Amorphous aggregates can possess unique biophysical and biochemical attributes depending on both the way they are generated and the protein's biophysical/biochemical properties. Here, we examine the immunogenicity of an anti-EGFR single domain antibody (VHH) in four types of amorphous aggregates: two heat-aggregated VHH incubated at 65 °C (VHH-65) and 95 °C (VHH-95), a misfolded VHH isolated from the insoluble fraction of the E. coli lysate (VHH-Ins), and a low solubility misfolded VHH produced by miss-shuffling the SS bonds of the native VHH (VHH-Mis). Biophysical and biochemical measurements indicated that VHH was indeed natively folded, monomeric, and β-sheeted; that VHH-65 was partially unfolded and formed aggregates with a Z-average (Zave) of 771 nm; whereas VHH-95 was unfolded and formed aggregates of 1722 nm; and that both VHH-Ins and VHH-Mis were misfolded with non-native intermolecular SS bonds and formed aggregates with a Zave of 1846 nm and 1951 nm, respectively. The IgG level generated in Jcl:ICR mice determined by ELISA showed that the native VHH was barely immunogenic, VHH-95 was not immunogenic, while VHH-65 was mildly immunogenic. By contrast, the misfolded aggregates, VHH-Ins and VHH-Mis, having a Zave and an aggregation propensity similar to that of VHH-95, were highly immunogenic. These findings indicate the critical role of the biochemical and biophysical attributes of the amorphous aggregates in generating an immune response against a protein, rather than just their sizes.
Collapse
Affiliation(s)
- Md Golam Kibria
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Yoko Akazawa-Ogawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Nafsoon Rahman
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
13
|
Rahman N, Islam MM, Unzai S, Miura S, Kuroda Y. Nanometer-Sized Aggregates Generated Using Short Solubility Controlling Peptide Tags Do Increase the In Vivo Immunogenicity of a Nonimmunogenic Protein. Mol Pharm 2020; 17:1629-1637. [DOI: 10.1021/acs.molpharmaceut.0c00071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nafsoon Rahman
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Mohammad Monirul Islam
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Satoru Unzai
- Department of Frontier Bioscience, Faculty of Bioscience and Applied Chemistry, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan
| | - Shiho Miura
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|