1
|
Gao J, Liu CF, Liu PP, Wang XW. Double-stranded RNA induces antiviral transcriptional response through the Dicer-2/Ampk/FoxO axis in an arthropod. Proc Natl Acad Sci U S A 2024; 121:e2409233121. [PMID: 39047046 PMCID: PMC11295077 DOI: 10.1073/pnas.2409233121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Invertebrates mainly rely on sequence-specific RNA interference (RNAi) to resist viral infections. Increasing studies show that double-stranded RNA (dsRNA) can induce sequence-independent protection and that Dicer-2, the key RNAi player that cleaves long dsRNA into small interfering RNA (siRNA), is necessary for this protection. However, how this protection occurs remains unknown. Herein, we report that it is caused by adenosine triphosphate (ATP)-hydrolysis accompanying the dsRNA-cleavage. Dicer-2 helicase domain is ATP-dependent; therefore, the cleavage consumes ATP. ATP depletion activates adenosine monophosphate-activated protein kinase (Ampk) and induces nuclear localization of Fork head box O (FoxO), a key transcriptional factor for dsRNA-induced genes. siRNAs that do not require processing cannot activate the transcriptional response. This study reveals a unique nonspecific antiviral mechanism other than the specific RNAi in shrimp. This mechanism is functionally similar to, but mechanistically different from, the dsRNA-activated antiviral response in vertebrates and suggests an interesting evolution of innate antiviral immunity.
Collapse
Affiliation(s)
- Jie Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao266237, China
| | - Chen-Fei Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao266237, China
| | - Ping-Ping Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao266237, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| |
Collapse
|
2
|
Nakazawa D, Takeda Y, Kanda M, Tomaru U, Ogawa H, Kudo T, Shiratori‐Aso S, Watanabe‐Kusunoki K, Ueda Y, Miyoshi A, Hattanda F, Nishio S, Uozumi R, Ishizu A, Atsumi T. Transcriptional dynamics of granulocytes in direct response to incubation with SARS-CoV-2. FEBS Open Bio 2022; 13:60-71. [PMID: 36271697 PMCID: PMC9808587 DOI: 10.1002/2211-5463.13500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 01/07/2023] Open
Abstract
Severe coronavirus disease 2019 (COVID-19) is characterized by acute respiratory distress syndrome and multiple organ dysfunction, in which the host immune response plays a pivotal role. Excessive neutrophil activation and subsequent superfluity of neutrophil extracellular traps (NETs) can lead to tissue damage, and several studies have shown the involvement of neutrophils in severe COVID-19. However, the detailed responses of each neutrophil subset to SARS-CoV-2 infection has not been fully described. To explore this issue, we incubated normal-density granulocytes (NDGs) and low-density granulocytes (LDGs) with different viral titers of SARS-CoV-2. NDGs form NETs with chromatin fibers in response to SARS-CoV-2, whereas LDGs incubated with SARS-CoV-2 display a distinct morphology with condensed nuclei and moderate transcriptional changes. Based on these transcriptional changes, we suggest that AGO2 possibly plays a role in LDG regulation in response to SARS-CoV-2.
Collapse
Affiliation(s)
- Daigo Nakazawa
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Yohei Takeda
- Research Center for Global AgromedicineObihiro University of Agriculture and Veterinary MedicineJapan,Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineJapan
| | - Masatoshi Kanda
- Department of Rheumatology and Clinical ImmunologySapporo Medical UniversityJapan
| | - Utano Tomaru
- Department of Pathology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Haruko Ogawa
- Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineJapan
| | - Takashi Kudo
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Satoka Shiratori‐Aso
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Kanako Watanabe‐Kusunoki
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Yusho Ueda
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Atsuko Miyoshi
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Fumihiko Hattanda
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Saori Nishio
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Ryo Uozumi
- Division of Laboratory and Transfusion MedicineHokkaido University HospitalSapporoJapan
| | - Akihiro Ishizu
- Department of Medical Laboratory Science, Faculty of Health SciencesHokkaido UniversitySapporoJapan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
3
|
Mongelli V, Lequime S, Kousathanas A, Gausson V, Blanc H, Nigg J, Quintana-Murci L, Elena SF, Saleh MC. Innate immune pathways act synergistically to constrain RNA virus evolution in Drosophila melanogaster. Nat Ecol Evol 2022; 6:565-578. [PMID: 35273366 PMCID: PMC7612704 DOI: 10.1038/s41559-022-01697-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023]
Abstract
Host-pathogen interactions impose recurrent selective pressures that lead to constant adaptation and counter-adaptation in both competing species. Here, we sought to study this evolutionary arms-race and assessed the impact of the innate immune system on viral population diversity and evolution, using Drosophila melanogaster as model host and its natural pathogen Drosophila C virus (DCV). We isogenized eight fly genotypes generating animals defective for RNAi, Imd and Toll innate immune pathways as well as pathogen-sensing and gut renewal pathways. Wild-type or mutant flies were then orally infected with DCV and the virus was serially passaged ten times via reinfection in naive flies. Viral population diversity was studied after each viral passage by high-throughput sequencing and infection phenotypes were assessed at the beginning and at the end of the evolution experiment. We found that the absence of any of the various immune pathways studied increased viral genetic diversity while attenuating virulence. Strikingly, these effects were observed in a range of host factors described as having mainly antiviral or antibacterial functions. Together, our results indicate that the innate immune system as a whole and not specific antiviral defence pathways in isolation, generally constrains viral diversity and evolution.
Collapse
Affiliation(s)
- Vanesa Mongelli
- Viruses and RNA Interference Unit, Institut Pasteur, CNRS, Paris, France
| | - Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | | | - Valérie Gausson
- Viruses and RNA Interference Unit, Institut Pasteur, CNRS, Paris, France
| | - Hervé Blanc
- Viruses and RNA Interference Unit, Institut Pasteur, CNRS, Paris, France
| | - Jared Nigg
- Viruses and RNA Interference Unit, Institut Pasteur, CNRS, Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetic Unit, Institut Pasteur, CNRS, Paris, France
- Human Genomics and Evolution, Collège de France, Paris, France
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), València, Spain.
- The Santa Fe Institute, Santa Fe, NM, USA.
| | - Maria-Carla Saleh
- Viruses and RNA Interference Unit, Institut Pasteur, CNRS, Paris, France.
| |
Collapse
|
4
|
Ben Youssef M, Christelle Ouédraogo B, Bastarache P, Dumas P, Moffat CE, Vickruck JL, Morin PJ. Exposure to Temperature and Insecticides Modulates the Expression of Small Noncoding RNA-Associated Transcripts in the Colorado Potato Beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:23. [PMID: 35172010 PMCID: PMC8849280 DOI: 10.1093/jisesa/ieac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 06/14/2023]
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is an insect that can adapt to various challenges, including temperature fluctuations or select insecticide treatments. This pest is also an ongoing threat to the potato industry. Small noncoding RNAs such as miRNAs, which can control posttranscriptionally the expression of various genes, and piRNAs, which can notably impact mRNA turnover, are modulated in insects under different conditions. Unfortunately, information regarding the expression status of key players involved in their synthesis and function is for the most part lacking. The current study thus aims at assessing the levels of such targets in L. decemlineata exposed to hot and cold temperatures as well as treated to the insecticides chlorantraniliprole, clothianidin, imidacloprid, and spinosad. Transcript expression levels of Ago1, Ago2, Ago3, Dcr2a, Dcr2b, Expo-5, Siwi-1, and Siwi-2, components of pathways associated with small noncoding RNA production or function, were measured by qRT-PCR and revealed modulation of select transcripts in response to temperature challenges and to select insecticides. RNAi-mediated reduction of Ago2 transcript levels in L. decemlineata injected with Ago2-targeting dsRNA and exposed to cold and warm temperatures was also conducted. Changes in survival rates were observed for the latter condition in dsRNA- versus saline-injected insects. These results showcase the differential expression of select targets involved in small noncoding RNA homeostasis and provide leads for the subsequent assessment of their involvement during stress response in L. decemlineata using RNAi-based approaches.
Collapse
Affiliation(s)
- Mariem Ben Youssef
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Brigitte Christelle Ouédraogo
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Pierre Bastarache
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Pascal Dumas
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Chandra E Moffat
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - Jessica L Vickruck
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| |
Collapse
|
5
|
Smith M, Yadav S, Fagunloye OG, Pels NA, Horton DA, Alsultan N, Borns A, Cousin C, Dixon F, Mann VH, Lee C, Brindley PJ, El-Sayed NM, Bridger JM, Knight M. PIWI silencing mechanism involving the retrotransposon nimbus orchestrates resistance to infection with Schistosoma mansoni in the snail vector, Biomphalaria glabrata. PLoS Negl Trop Dis 2021; 15:e0009094. [PMID: 34495959 PMCID: PMC8462715 DOI: 10.1371/journal.pntd.0009094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/24/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
Background Schistosomiasis remains widespread in many regions despite efforts at its elimination. By examining changes in the transcriptome at the host-pathogen interface in the snail Biomphalaria glabrata and the blood fluke Schistosoma mansoni, we previously demonstrated that an early stress response in juvenile snails, manifested by induction of heat shock protein 70 (Hsp 70) and Hsp 90 and of the reverse transcriptase (RT) domain of the B. glabrata non-LTR- retrotransposon, nimbus, were critical for B. glabrata susceptibility to S. mansoni. Subsequently, juvenile B. glabrata BS-90 snails, resistant to S. mansoni at 25°C become susceptible by the F2 generation when maintained at 32°C, indicating an epigenetic response. Methodology/Principal findings To better understand this plasticity in susceptibility of the BS-90 snail, mRNA sequences were examined from S. mansoni exposed juvenile BS-90 snails cultured either at 25°C (non-permissive temperature) or 32°C (permissive). Comparative analysis of transcriptomes from snails cultured at the non-permissive and permissive temperatures revealed that whereas stress related transcripts dominated the transcriptome of susceptible BS-90 juvenile snails at 32°C, transcripts encoding proteins with a role in epigenetics, such as PIWI (BgPiwi), chromobox protein homolog 1 (BgCBx1), histone acetyltransferase (BgHAT), histone deacetylase (BgHDAC) and metallotransferase (BgMT) were highly expressed in those cultured at 25°C. To identify robust candidate transcripts that will underscore the anti-schistosome phenotype in B. glabrata, further validation of the differential expression of the above transcripts was performed by using the resistant BS-90 (25°C) and the BBO2 susceptible snail stock whose genome has now been sequenced and represents an invaluable resource for molecular studies in B. glabrata. A role for BgPiwi in B. glabrata susceptibility to S. mansoni, was further examined by using siRNA corresponding to the BgPiwi encoding transcript to suppress expression of BgPiwi, rendering the resistant BS-90 juvenile snail susceptible to infection at 25°C. Given transposon silencing activity of PIWI as a facet of its role as guardian of the integrity of the genome, we examined the expression of the nimbus RT encoding transcript at 120 min after infection of resistant BS90 piwi-siRNA treated snails. We observed that nimbus RT was upregulated, indicating that modulation of the transcription of the nimbus RT was associated with susceptibility to S. mansoni in BgPiwi-siRNA treated BS-90 snails. Furthermore, treatment of susceptible BBO2 snails with the RT inhibitor lamivudine, before exposure to S. mansoni, blocked S. mansoni infection concurrent with downregulation of the nimbus RT transcript and upregulation of the BgPiwi encoding transcript in the lamivudine-treated, schistosome-exposed susceptible snails. Conclusions and significance These findings support a role for the interplay of BgPiwi and nimbus in the epigenetic modulation of plasticity of resistance/susceptibility in the snail-schistosome relationship. Progress is being made to eliminate schistosomiasis, a tropical disease that remains endemic in the tropics and neotropics. In 2020, WHO proposed controlling the snail population as part of a strategy toward reducing schistosomiasis, a vector borne disease, by 2025. The life cycle of the causative parasite is, however, complex and in the absence of vaccines, new drugs, and access to clean water and sanitation, reduction of schistosomiasis will remain elusive. To break the parasite’s life cycle during the snail stage of its development, a better understanding of the molecular basis of how schistosomes survive, or not, in the snail is required. By examining changes in the transcriptome at the host-pathogen interface in the snail Biomphalaria glabrata and Schistosoma mansoni, we showed that early stress response, manifested by the induction of Heat Shock Proteins (Hsps) and the RT domain of the non-LTR retrotransposon, nimbus, were critical for snail susceptibility. Subsequently, juvenile B. glabrata BS-90 snails, resistant to S. mansoni at 25°C were observed to become susceptible by the F2 generation when maintained at 32°C, indicating an epigenetic response. This study confirms these earlier results and shows an interplay between PIWI and nimbus in the anti-schistosome response in the snail host.
Collapse
Affiliation(s)
- Michael Smith
- Howard University, Washington, District of Columbia, United States of America
| | - Swara Yadav
- Division of Science & Mathematics, University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Olayemi G. Fagunloye
- Division of Science & Mathematics, University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Nana Adjoa Pels
- Division of Science & Mathematics, University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Daniel A. Horton
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University, London, United Kingdom
| | - Nashwah Alsultan
- Division of Science & Mathematics, University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Andrea Borns
- Division of Science & Mathematics, University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Carolyn Cousin
- Division of Science & Mathematics, University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Freddie Dixon
- Division of Science & Mathematics, University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Victoria H. Mann
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, United States of America
| | - Clarence Lee
- Division of Science & Mathematics, University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, United States of America
| | - Najib M. El-Sayed
- Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Joanna M. Bridger
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University, London, United Kingdom
| | - Matty Knight
- Howard University, Washington, District of Columbia, United States of America
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, United States of America
- * E-mail: ,
| |
Collapse
|
6
|
González-González A, Wayne ML. Immunopathology and immune homeostasis during viral infection in insects. Adv Virus Res 2020; 107:285-314. [PMID: 32711732 DOI: 10.1016/bs.aivir.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Organisms clear infections by mounting an immune response that is normally turned off once the pathogens have been cleared. However, sometimes this immune response is not properly or timely arrested, resulting in the host damaging itself. This immune dysregulation may be referred to as immunopathology. While our knowledge of immune and metabolic pathways in insects, particularly in response to viral infections, is growing, little is known about the mechanisms that regulate this immune response and hence little is known about immunopathology in this important and diverse group of organisms. In this chapter we focus both on documenting the molecular mechanisms described involved in restoring immune homeostasis in insects after viral infections and on identifying potential mechanisms for future investigation. We argue that learning about the immunopathological consequences of an improperly regulated immune response in insects will benefit both insect and human health.
Collapse
Affiliation(s)
| | - Marta L Wayne
- Department of Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|