1
|
Xue L, Zhang H, Zheng X, Sun W, Lei J. Treatment of melanoma with dendritic cell vaccines and immune checkpoint inhibitors: A mathematical modeling study. J Theor Biol 2023; 568:111489. [PMID: 37054970 DOI: 10.1016/j.jtbi.2023.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/13/2022] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Dendritic cell (DC) vaccines and immune checkpoint inhibitors (ICIs) play critical roles in shaping the immune responses of tumor cells (TCs) and are widely used in cancer immunotherapies. Quantitatively evaluating the effectiveness of these therapies are essential for the optimization of treatment strategies. Here, based on the combined therapy of melanoma with DC vaccines and ICIs, we formulated a mathematical model to investigate the dynamic interactions between TCs and the immune system and understand the underlying mechanisms of immunotherapy. First, we obtained a threshold parameter for the growth of TCs, which is given by the ratio of spontaneous proliferation to immune inhibition. Next, we proved the existence and locally asymptotic stability of steady states of tumor-free, tumor-dominant, and tumor-immune coexistent equilibrium, and identified the existence of Hopf bifurcation of the proposed model. Furthermore, global sensitivity analysis showed that the growth of TCs strongly correlates with the injection rate of DC vaccines, the activation rate of CTLs, and the killing rate of TCs. Finally, we tested the efficacy of multiple monotherapies and combined therapies with model simulations. Our results indicate that DC vaccines can decelerate the growth of TCs, and ICIs can inhibit the growth of TCs. Besides, both therapies can prolong the lifetime of patients, and the combined therapy of DC vaccines and ICIs can effectively eradicate TCs.
Collapse
Affiliation(s)
- Ling Xue
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China; College of Mathematical Sciences, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
| | - Hongyu Zhang
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China; College of Mathematical Sciences, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
| | - Xiaoming Zheng
- Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48859, United States of America
| | - Wei Sun
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China; College of Mathematical Sciences, Harbin Engineering University, Harbin, Heilongjiang, 150001, China.
| | - Jinzhi Lei
- School of Mathematical Sciences, Center for Applied Mathematics, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
2
|
Brückner M, Fichter M, da Costa Marques R, Landfester K, Mailänder V. PEG Spacer Length Substantially Affects Antibody-Based Nanocarrier Targeting of Dendritic Cell Subsets. Pharmaceutics 2022; 14:pharmaceutics14081614. [PMID: 36015239 PMCID: PMC9414227 DOI: 10.3390/pharmaceutics14081614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023] Open
Abstract
Successful cell targeting depends on the controlled positioning of cell-type-specific antibodies on the nanocarrier’s (NC) surface. Uncontrolled antibody immobilization results in unintended cell uptake due to Fc-mediated cell interaction. Consequently, precise immobilization of the Fc region towards the nanocarrier surface is needed with the Fab regions staying freely accessible for antigen binding. Moreover, the antibody needs to be a certain distance from the nanocarrier surface, influencing the targeting performance after formation of the biomolecular corona. This can be achieved by using PEG linker molecules. Here we demonstrate cell type-specific targeting for dendritic cells (DC) as cellular key regulators of immune responses. However, to date, dendritic cell targeting experiments using different linker lengths still need to be conducted. Consequently, we focused on the surface modification of nanocarriers with different molecular weight PEG linkers (0.65, 2, and 5 kDa), and their ability to reduce undesired cell uptake, while achieving efficient DC targeting via covalently immobilized antibodies (stealth targeting). Our findings demonstrate that the PEG linker length significantly affects active dendritic cell targeting from cell lines (DC2.4) to primary cells (BMDCs, splenocytic conventional DCs type 1 (cDC1)). While antibody-functionalized nanocarriers with a shorter PEG length (0.65 kDa) showed the best targeting in DC2.4, a longer PEG length (5 kDa) was required to specifically accumulate in BMDCs and splenocytic cDC1. Our study highlights that these crucial aspects must be considered when targeting dendritic cell subsets, which are of great importance in the fields of cancer immunotherapy and vaccine development.
Collapse
Affiliation(s)
- Maximilian Brückner
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (M.B.); (M.F.); (R.d.C.M.)
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;
| | - Michael Fichter
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (M.B.); (M.F.); (R.d.C.M.)
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;
| | - Richard da Costa Marques
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (M.B.); (M.F.); (R.d.C.M.)
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;
| | - Volker Mailänder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (M.B.); (M.F.); (R.d.C.M.)
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;
- Correspondence:
| |
Collapse
|
3
|
Nagy NA, de Haas AM, Geijtenbeek TBH, van Ree R, Tas SW, van Kooyk Y, de Jong EC. Therapeutic Liposomal Vaccines for Dendritic Cell Activation or Tolerance. Front Immunol 2021; 12:674048. [PMID: 34054859 PMCID: PMC8155586 DOI: 10.3389/fimmu.2021.674048] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are paramount in initiating and guiding immunity towards a state of activation or tolerance. This bidirectional capacity of DCs sets them at the center stage for treatment of cancer and autoimmune or allergic conditions. Accordingly, many clinical studies use ex vivo DC vaccination as a strategy to boost anti-tumor immunity or to suppress immunity by including vitamin D3, NF-κB inhibitors or retinoic acid to create tolerogenic DCs. As harvesting DCs from patients and differentiating these cells in vitro is a costly and cumbersome process, in vivo targeting of DCs has huge potential as nanoparticulate platforms equipped with activating or tolerogenic adjuvants can modulate DCs in their natural environment. There is a rapid expansion of the choices of nanoparticles and activation- or tolerance-promoting adjuvants for a therapeutic vaccine platform. In this review we highlight the most recent nanomedical approaches aimed at inducing immune activation or tolerance via targeting DCs, together with novel fundamental insights into the mechanisms inherent to fostering anti-tumor or tolerogenic immunity.
Collapse
Affiliation(s)
- Noémi Anna Nagy
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Aram M. de Haas
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Department of Otorhinolaryngology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W. Tas
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam Rheumatology and Immunology Center, University of Amsterdam, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esther C. de Jong
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Lu L, Sun Y, Wan C, Hu Y, Lo PC, Lovell JF, Yang K, Jin H. Role of intravital imaging in nanomedicine-assisted anti-cancer therapy. Curr Opin Biotechnol 2021; 69:153-161. [PMID: 33476937 DOI: 10.1016/j.copbio.2020.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 01/07/2023]
Abstract
Although nanomedicines have provided promising anti-tumor effects in cancer animal models, their clinical success remains limited. One of the most significant barriers in the clinical translation of nanomedicines is that they consist of multiple components, each of which may have different toxicities and therapeutic effects. Intravital imaging provides high spatial and temporal resolution for visualizing nanomedicine-mediated interactions between immune cells and tumor cells in real-time. Intravital imaging can facilitate the in vivo evaluation of the properties and effects of nanomedicines, such as their ability to cross the tumor vasculature, specifically eliminate the cancer cells, and modulate the immune cells found in the tumor microenvironment (TME). Thus, intravital imaging can provide direct evidence of nanomedicine's intravital behavior to better understand mechanism and accelerate clinical translation. In this review, we summarize several applications and latest advances in intravital imaging in nanomedicine-assisted anti-cancer therapy and discuss future perspectives in the field.
Collapse
Affiliation(s)
- Lisen Lu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Jang GY, Kim YS, Lee SE, Lee JW, Han HD, Kang TH, Park YM. Improvement of DC-based vaccines using adjuvant TLR4-binding 60S acidic ribosomal protein P2 and immune checkpoint inhibitors. Cancer Immunol Immunother 2020; 70:1075-1088. [PMID: 33113002 DOI: 10.1007/s00262-020-02759-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/15/2020] [Indexed: 12/25/2022]
Abstract
Cancer immunotherapy has fewer side effects and higher efficiency than conventional methods. Dendritic cell (DC)-based vaccine, a cancer immunotherapeutic, is prepared by processing mature DCs and pulsing with tumor antigen peptide ex vivo, to induce the activation of tumor-specific T lymphocytes followed by tumor clearance in vivo. Unfortunately, clinical trials of this method mostly failed due to low patient response, possibly due to the absence of novel adjuvants that induce DC maturation through Toll-like receptor (TLR) signals. Interestingly, immune checkpoint inhibitor (ICI) therapy has shown remarkable anti-tumor efficacy when combined with cancer vaccines. In this study, we identified 60S acidic ribosomal protein P2 (RPLP2) through pull-down assay using human cancer cells derived proteins that binds to Toll-like receptor 4 (TLR4). Recombinant RPLP2 induced maturation and activation of DCs in vitro. This DC-based vaccine, followed by pulsing with tumor-specific antigen, has shown to significantly increase tumor-specific CD8+IFN-γ+ T cells, and improved both tumor prevention and tumor treatment effects in vivo. The adjuvant effects of RPLP2 were shown to be dependent on TLR4 using TLR4 knockout mice. Moreover, ICIs that suppress the tumor evasion mechanism showed synergistic effects on tumor treatment when combined with these vaccines.
Collapse
Affiliation(s)
- Gun-Young Jang
- Department of Immunology, College of Medicine, Konkuk University, 268 Chungwon-daero Chungju-si Chungcheongbuk-do 27478, Seoul, South Korea
| | - Young Seob Kim
- Department of Immunology, College of Medicine, Konkuk University, 268 Chungwon-daero Chungju-si Chungcheongbuk-do 27478, Seoul, South Korea
| | - Sung Eun Lee
- Department of Immunology, College of Medicine, Konkuk University, 268 Chungwon-daero Chungju-si Chungcheongbuk-do 27478, Seoul, South Korea
| | - Ji Won Lee
- Department of Immunology, College of Medicine, Konkuk University, 268 Chungwon-daero Chungju-si Chungcheongbuk-do 27478, Seoul, South Korea
| | - Hee Dong Han
- Department of Immunology, College of Medicine, Konkuk University, 268 Chungwon-daero Chungju-si Chungcheongbuk-do 27478, Seoul, South Korea
| | - Tae Heung Kang
- Department of Immunology, College of Medicine, Konkuk University, 268 Chungwon-daero Chungju-si Chungcheongbuk-do 27478, Seoul, South Korea.
| | - Yeong-Min Park
- Department of Immunology, College of Medicine, Konkuk University, 268 Chungwon-daero Chungju-si Chungcheongbuk-do 27478, Seoul, South Korea.
| |
Collapse
|