1
|
Liu Q, Yu M, Liao M, Ran Z, Tang X, Hu J, Su B, Fu G, Wu Q. The ratio of alpha-calcitonin gene-related peptide to substance P is associated with the transition of bone metabolic states during aging and healing. J Mol Histol 2023; 54:689-702. [PMID: 37857924 DOI: 10.1007/s10735-023-10167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
Alpha-calcitonin gene-related peptide (αCGRP) and substance P (SP) are functionally correlated sensory neuropeptides deeply involved in bone homeostasis. However, they are usually studied individually rather than as an organic whole. To figure out whether they are interdependent, we firstly recorded the real-time αCGRP and SP levels in aging bone and healing fracture, which revealed a moderate to high level of αCGRP coupled with a low αCGRP/SP ratio in an anabolic state, and a high level of αCGRP coupled with a high αCGRP/SP ratio in a catabolic state, suggesting the importance of αCGRP/SP ratio in driving aging and healing scenarios. During facture healing, increase in αCGRP/SP ratio by adding αCGRP led to better callus formation and faster callus remodeling, while simultaneous addition of αCGRP and SP resulted in hypertrophic callus and delayed remodeling. The characteristics in inflammation and osteoclast activation further confirmed the importance of high αCGRP/SP ratio during catabolic bone remodeling. In vitro assays using different mixtures of αCGRP-SP proved that the osteogenic potential of the mixtures depended mostly on αCGRP, while their effects on osteoclasts and neutrophils relied on both peptides. These results demonstrated that αCGRP and SP were spatiotemporally interdependent. The αCGRP/SP ratio may be more important than the dose of a single neuropeptide in managing age-related and trauma-related bone diseases.
Collapse
Affiliation(s)
- Qianzi Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Minxuan Yu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Menglin Liao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Zhiyue Ran
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Xiaofeng Tang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Jun Hu
- Department of Stomatology, Qijiang District People's Hospital, Chongqing, 401420, China
| | - Beiju Su
- Chongqing Dazu District Hospital of Traditional Chinese Medicine, Chongqing, 402360, China
| | - Gang Fu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
- Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
| | - Qingqing Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
- Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
| |
Collapse
|
2
|
Nery Neto JADO, Yariwake VY, Câmara NOS, Andrade-Oliveira V. Enteroendocrine cells and gut hormones as potential targets in the crossroad of the gut-kidney axis communication. Front Pharmacol 2023; 14:1248757. [PMID: 37927592 PMCID: PMC10620747 DOI: 10.3389/fphar.2023.1248757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Recent studies suggest that disruptions in intestinal homeostasis, such as changes in gut microbiota composition, infection, and inflammatory-related gut diseases, can be associated with kidney diseases. For instance, genomic investigations highlight how susceptibility genes linked to IgA nephropathy are also correlated with the risk of inflammatory bowel disease. Conversely, investigations demonstrate that the use of short-chain fatty acids, produced through fermentation by intestinal bacteria, protects kidney function in models of acute and chronic kidney diseases. Thus, the dialogue between the gut and kidney seems to be crucial in maintaining their proper function, although the factors governing this crosstalk are still emerging as the field evolves. In recent years, a series of studies have highlighted the significance of enteroendocrine cells (EECs) which are part of the secretory lineage of the gut epithelial cells, as important components in gut-kidney crosstalk. EECs are distributed throughout the epithelial layer and release more than 20 hormones in response to microenvironment stimuli. Interestingly, some of these hormones and/or their pathways such as Glucagon-Like Peptide 1 (GLP-1), GLP-2, gastrin, and somatostatin have been shown to exert renoprotective effects. Therefore, the present review explores the role of EECs and their hormones as regulators of gut-kidney crosstalk and their potential impact on kidney diseases. This comprehensive exploration underscores the substantial contribution of EEC hormones in mediating gut-kidney communication and their promising potential for the treatment of kidney diseases.
Collapse
Affiliation(s)
- José Arimatéa de Oliveira Nery Neto
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Victor Yuji Yariwake
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Zhou Z, Sui X, Cao Z, Li X, Qing L, Tang J. Substance P promote macrophage M2 polarization to attenuate secondary lymphedema by regulating NF-kB/NLRP3 signaling pathway. Peptides 2023; 168:171045. [PMID: 37507091 DOI: 10.1016/j.peptides.2023.171045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 07/30/2023]
Abstract
Secondary lymphedema often occurs after filariasis, trauma, lymph node dissection and radiation therapy, which is manifested by infiltration of inflammatory cells and fibrosis formation in pathologically. Substance P is a widely used neuropeptide in the field of tissue repair, while the regenerative potential of the substance P has not been proven in the secondary lymphedema. In this study, animal model of secondary lymphedema was constructed by excising the skin and subcutaneous lymphatic network in the tail of mice, and the degree of swelling in the tail of mice was evaluated after 6 weeks under the treatment with substance P. Immunofluorescence staining was also performed to assess immune cell infiltration, subcutaneous fibrosis and lymphangiogenesis. The results revealed that substance P significantly alleviated post-surgical lymphedema in mice. Furthermore, we found that substance P promoted macrophages M2 polarization, a process associated with downregulation of the NF-kB/NLRP3 pathway. After application of disodium clodronate (macrophage scavenger, CLO), the positive effect of substance P in lymphedema is significantly inhibited. In vitro experiments, we further demonstrated the polarizing effect of substance P on bone marrow-derived macrophages (BMDMs), while substance P inhibited the activation of the NF-kB/NLRP3 pathway in BMDMs after the treatment of lipopolysaccharide (LPS). In addition, polarized macrophages were demonstrated to promote the proliferation, tube-forming and migratory functions of human lymphatic endothelial cells (hLEC). In conclusion, our study provides preliminary evidence that substance P alleviates secondary lymphedema by promoting macrophage M2 polarization, and this therapeutic effect may be associated with downregulation of the NF-kB/NLRP3 pathway.
Collapse
Affiliation(s)
- Zekun Zhou
- Xiangya hospital of central south university, Changsha, China
| | - Xinlei Sui
- Xiangya hospital of central south university, Changsha, China
| | - Zheming Cao
- Xiangya hospital of central south university, Changsha, China
| | - Xiaoxiao Li
- Changsha Medical University, Changsha, China
| | - Liming Qing
- Xiangya hospital of central south university, Changsha, China.
| | - Juyu Tang
- Xiangya hospital of central south university, Changsha, China.
| |
Collapse
|
4
|
Kashio S, Masuda S, Miura M. Involvement of neuronal tachykinin-like receptor at 86C in Drosophila disc repair via regulation of kynurenine metabolism. iScience 2023; 26:107553. [PMID: 37636053 PMCID: PMC10457576 DOI: 10.1016/j.isci.2023.107553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/15/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Neurons contribute to the regeneration of projected tissues; however, it remains unclear whether they are involved in the non-innervated tissue regeneration. Herein, we showed that a neuronal tachykinin-like receptor at 86C (TkR86C) is required for the repair of non-innervated wing discs in Drosophila. Using a genetic tissue repair system in Drosophila larvae, we performed genetic screening for G protein-coupled receptors to search for signal mediatory systems for remote tissue repair. An evolutionarily conserved neuroinflammatory receptor, TkR86C, was identified as the candidate receptor. Neuron-specific knockdown of TkR86C impaired disc repair without affecting normal development. We investigated the humoral metabolites of the kynurenine (Kyn) pathway regulated in the fat body because of their role as tissue repair-mediating factors. Neuronal knockdown of TkR86C hampered injury-dependent changes in the expression of vermillion in the fat body and humoral Kyn metabolites. Our data indicate the involvement of TkR86C neurons upstream of Kyn metabolism in non-autonomous tissue regeneration.
Collapse
Affiliation(s)
- Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu Masuda
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Asiedu K, Alotaibi S, Krishnan AV, Kwai N, Poynten A, Markoulli M, Dhanapalaratnam R. Chronic Kidney Disease Has No Impact on Tear Film Substance P Concentration in Type 2 Diabetes. Biomedicines 2023; 11:2368. [PMID: 37760810 PMCID: PMC10525867 DOI: 10.3390/biomedicines11092368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE The study aimed to ascertain the potential effects of chronic kidney disease (CKD) on substance P concentration in the tear film of people with type 2 diabetes. METHODS Participants were classified into two groups: type 2 diabetes with concurrent chronic kidney disease (T2DM-CKD (n = 25)) and type 2 diabetes without chronic kidney disease (T2DM-no CKD (n = 25)). Ocular surface discomfort assessment, flush tear collection, in-vivo corneal confocal microscopy, and peripheral neuropathy assessment were conducted. Enzyme-linked immunosorbent assays were utilized to ascertain the levels of tear film substance P in collected flush tears. Correlation analysis, hierarchical multiple linear regression analysis, and t-tests or Mann-Whitney U tests were used in the analysis of data for two-group comparisons. RESULTS There was no substantial difference between the T2DM-CKD and T2DM-no CKD groups for tear film substance P concentration (4.4 (0.2-50.4) and 5.9 (0.2-47.2) ng/mL, respectively; p = 0.54). No difference was observed in tear film substance P concentration between the low-severity peripheral neuropathy and high-severity peripheral neuropathy groups (4.4 (0.2-50.4) and 3.3 (0.3-40.7) ng/mL, respectively; p = 0.80). Corneal nerve fiber length (9.8 ± 4.6 and 12.4 ± 3.8 mm/mm2, respectively; p = 0.04) and corneal nerve fiber density (14.7 ± 8.5 and 21.1 ± 7.0 no/mm2, respectively; p < 0.01) were reduced significantly in the T2DM-CKD group compared to the T2DM-no CKD group. There were significant differences in corneal nerve fiber density (21.0 ± 8.1 and 15.8 ± 7.7 no/mm2, respectively; p = 0.04) and corneal nerve fiber length (12.9 ± 4.2 and 9.7 ± 3.8 mm/mm2, respectively; p = 0.03) between the low- and high-severity peripheral neuropathy groups. CONCLUSION In conclusion, no significant difference in tear film substance P concentration was observed between type 2 diabetes with and without CKD. Corneal nerve loss, however, was more significant in type 2 diabetes with chronic kidney disease compared to type 2 diabetes alone, indicating that corneal nerve morphological measures could serve greater utility as a tool to detect neuropathy and nephropathy-related corneal nerve changes.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sultan Alotaibi
- School of Optometry & Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11421, Saudi Arabia
| | - Arun V. Krishnan
- School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Natalie Kwai
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ann Poynten
- Department of Endocrinology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Maria Markoulli
- School of Optometry & Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
6
|
Zhou X, Zhang Z, Jiang W, Hu M, Meng Y, Li W, Zhou X, Wang C. Naringenin is a Potential Anabolic Treatment for Bone Loss by Modulating Osteogenesis, Osteoclastogenesis, and Macrophage Polarization. Front Pharmacol 2022; 13:872188. [PMID: 35586056 PMCID: PMC9108355 DOI: 10.3389/fphar.2022.872188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Bone undergoes constant remodeling of formation by osteoblasts and resorption by osteoclasts. In particular, macrophages have been reported to play an essential role in the regulation of bone homeostasis and regeneration. Naringenin, the predominant flavanone in citrus fruits, is reported to exert anti-inflammatory, anti-osteoclastic, and osteogenic effects. However, whether naringenin could modulate the crosstalk between macrophages and osteoblasts/osteoclasts remains to be investigated. In this study, we confirmed that naringenin enhanced osteogenesis and inhibited osteoclastogenesis directly. Naringenin promoted M2 transition and the secretion of osteogenic cytokines including IL-4, IL-10, BMP2, and TGF-β, while suppressing LPS-induced M1 polarization and the production of proinflammatory factors such as TNF-α and IL-1β. In addition, the coculture of primary bone mesenchymal stem cells (BMSCs)/bone marrow monocytes (BMMs) with macrophages showed that the naringenin-treated medium significantly enhanced osteogenic differentiation and impeded osteoclastic differentiation in both inflammatory and non-inflammatory environment. Moreover, in vivo experiments demonstrated that naringenin remarkably reversed LPS-induced bone loss and assisted the healing of calvarial defect. Taken together, naringenin serves as a potential anabolic treatment for pathological bone loss.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Zheng Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- College of Basic Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Weiwei Jiang
- Department of Critical Care Medicine, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Miao Hu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- College of Basic Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yichen Meng
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Wenfang Li
- Department of Critical Care Medicine, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- *Correspondence: Wenfang Li, ; Xuhui Zhou, ; Ce Wang,
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- *Correspondence: Wenfang Li, ; Xuhui Zhou, ; Ce Wang,
| | - Ce Wang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- *Correspondence: Wenfang Li, ; Xuhui Zhou, ; Ce Wang,
| |
Collapse
|
7
|
Yang Y, Gao J, Wang S, Wang W, Zhu FL, Wang X, Liang S, Feng Z, Lin S, Zhang L, Chen X, Cai G. Efficacy of umbilical cord mesenchymal stem cell transfusion for the treatment of severe AKI: a protocol for a randomised controlled trial. BMJ Open 2022; 12:e047622. [PMID: 35190406 PMCID: PMC8862499 DOI: 10.1136/bmjopen-2020-047622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is a common and severe clinical problem that is associated with high mortality, a long hospital stays and high healthcare resource consumption. Approximately a quarter of AKI survivors will develop chronic kidney disease. Mesenchymal stem cells (MSCs) are multipotent stem cells with antiapoptotic, immunomodulatory, antioxidative and proangiogenic properties. Therefore, MSCs have been considered as a potential new therapy for the treatment of AKI. Several clinical trials have been performed, but the results have been inconsistent. This trial investigated whether MSCs can improve renal recovery and mortality in patients with severe AKI. METHODS AND ANALYSIS One hundred subjects suffering from severe AKI will participate in this patient-blinded, randomised, placebo-controlled, parallel design clinical trial. Participants will be randomly assigned to receive two doses of MSCs or placebo (saline) on days 0 and 7. Urinary biomarkers of renal injury and repair will be measured using commercially available ELISA kits. The main outcome measures are changes in renal function levels within the first 28 days following MSC infusion. ETHICS AND DISSEMINATION The study was approved by the Ethics Committee of the Chinese PLA General Hospital. The findings of the study will be disseminated through public and scientific channels. TRIAL REGISTRATION NUMBER NCT04194671.
Collapse
Affiliation(s)
- Yuanjun Yang
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Jianjun Gao
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Siyang Wang
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Wenjuan Wang
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Fang-Lei Zhu
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Xiaolong Wang
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Shuang Liang
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Zhe Feng
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Shupeng Lin
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Li Zhang
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Yang Y, Geng X, Chi K, Liu C, Liu R, Chen X, Hong Q, Cai G. Ultrasound enhances the therapeutic potential of mesenchymal stem cells wrapped in greater omentum for aristolochic acid nephropathy. Stem Cell Res Ther 2021; 12:261. [PMID: 33941258 PMCID: PMC8091698 DOI: 10.1186/s13287-021-02243-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been reported to promote regeneration in both subjects with acute kidney injury (AKI) and chronic kidney disease (CKD), but their efficacy remains limited, probably because most of the cells accumulate in the lungs, liver, and spleen after an intravenous infusion. Therefore, ultrasound-guided administration of MSCs represents a possible approach to solve this problem. The greater omentum is used to promote cell survival due to its rich vasculature. We hypothesized that ultrasound-guided administration of MSCs combined with greater omentum might be more curative than currently available approaches. Methods In this study, we established an aristolochic acid nephropathy (AAN) model by intraperitoneally administering aristolochic acid I sodium salt (AA-I) at a dose of 5 mg/kg body weight on alternate days for 4 weeks. Subsequently, a laparotomy was performed, and the left kidney from which the capsule had been removed was wrapped with the greater omentum. A dose of 2 × 107 MSCs was injected into the space between the greater omentum and the left kidney. Equal amounts of MSCs were administered under ultrasound guidance every second week for a total of 4 treatments. Mice were sacrificed 4 weeks after surgery. Serum creatinine and blood urea levels were measured to assess renal function. qPCR, Western blot, and histological analyses were conducted to further investigate the therapeutic mechanism of MSCs. Results Ultrasound-guided injection of MSCs into the greater omentum that surrounds the kidney enriched cells in the kidney region for up to 5 days. Renal function tests indicated that MSCs improved renal function to a great extent, as reflected by decreased blood urea nitrogen and serum creatinine levels. In addition, histological analyses showed that MSCs noticeably attenuated kidney injury, as evidenced by the amelioration of tubular necrosis and peritubular interstitial fibrosis. Mitigation of renal interstitial fibrosis was further confirmed by immunohistochemistry, qPCR, and western blotting after MSC treatment. Moreover, immunofluorescence staining revealed that MSCs alleviated inflammatory responses by increasing the counts of CD206+ cells and decreasing the counts of CD68+ cells. MSC migration was initiated in response to AA-I-treated renal epithelial cells in an in vitro migration assay. Conclusions These findings suggested that administration of MSCs into the cavity formed by the injured kidney and the greater omentum under ultrasound guidance improved renal function, attenuated kidney injury, and mitigated renal interstitial fibrosis and inflammatory responses. Thus, this approach might be a safe and effective therapy for CKD. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02243-7.
Collapse
Affiliation(s)
- Yuanjun Yang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, 100853, China
| | - Xiaodong Geng
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, 100853, China
| | - Kun Chi
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, 100853, China
| | - Chao Liu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, 100853, China
| | - Ran Liu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, 100853, China
| | - Quan Hong
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, 100853, China.
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, 100853, China.
| |
Collapse
|
9
|
Dong Q, Jie Y, Ma J, Li C, Xin T, Yang D. Wnt/β-catenin signaling pathway promotes renal ischemia-reperfusion injury through inducing oxidative stress and inflammation response. J Recept Signal Transduct Res 2020; 41:15-18. [PMID: 32580617 DOI: 10.1080/10799893.2020.1783555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress and inflammation response have been found to be associated with renal ischemia reperfusion (I/R) injury through an undefined mechanism. The aim of our study is to explore the influence of Wnt/β-catenin signaling pathway on oxidative stress and inflammation response during renal I/R injury. The results of our study demonstrated that oxidative stress was induced whereas antioxidative factors were suppressed by renal I/R injury. Besides, the transcriptions and activities of pro-inflammation factors were also upregulated by renal I/R injury. Interestingly, inhibition of Wnt/β-catenin signaling pathway significantly attenuated I/R-mediated oxidative stress and inflammation response. Therefore, our results report a novel pathway responsible for renal I/R injury. Inhibition of Wnt/β-catenin signaling pathway would be considered as an effective approach to regulate oxidative stress and inflammation response in reperfused kidney.
Collapse
Affiliation(s)
- Qi Dong
- Department of Nephrology, Tianjin Hospital, Tianjin, P.R. China
| | - Yingxin Jie
- Department of Emergency, Tianjin Hospital, Tianjin, P.R. China
| | - Jian Ma
- Tianjin Women's and Children's Health Center, Tianjin Hospital, Tianjin, P.R. China
| | - Chen Li
- Department of Orthopaedics, Tianjin Hospital, Tianjin, P.R. China
| | - Ting Xin
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, P.R. China
| | - Dingwei Yang
- Department of Nephrology, Tianjin Hospital, Tianjin, P.R. China
| |
Collapse
|