1
|
Zheng F, Dong T, Chen Y, Wang L, Peng G. Border-associated macrophages: From physiology to therapeutic targets in Alzheimer's disease. Exp Neurol 2024; 383:115021. [PMID: 39461707 DOI: 10.1016/j.expneurol.2024.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Border-associated macrophages (BAMs) constitute a highly heterogeneous group of central nervous system-resident macrophages at the brain boundaries. Despite their significance, BAMs have mainly been overlooked compared to microglia, resulting in a limited understanding of their functions. However, recent advancements in single-cell immunophenotyping and transcriptomic analyses of BAMs have revealed a previously unrecognized complexity in these cells, in addition to their critical roles under non-pathological conditions and diseases like Alzheimer's disease (AD), Parkinson's disease, glioma, and ischemic stroke. In this review, we discuss the origins, self-renewal capabilities, and extensive heterogeneity of BAMs, and clarify their important physiological functions such as immune monitoring, waste removal and vascular permeability regulation. We also summarize experimental evidence linking BAMs to the progression of AD. Finally, we review therapeutic strategies targeting brain innate immune cells mainly focusing on strategies aimed at modulating BAMs to treat AD and evaluate their potential in clinical applications.
Collapse
Affiliation(s)
- Fangxue Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Taiwei Dong
- Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yi Chen
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lang Wang
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Dissecting the immune response of CD4 + T cells in Alzheimer's disease. Rev Neurosci 2024:revneuro-2024-0090. [PMID: 39238424 DOI: 10.1515/revneuro-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4+ T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4+ T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4+ T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ana Cvetanovic
- Department of Oncology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Jelena Basic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| |
Collapse
|
3
|
Jucá PM, de Almeida Duque É, Covre LHH, Mariano KAA, Munhoz CD. Microglia and Systemic Immunity. ADVANCES IN NEUROBIOLOGY 2024; 37:287-302. [PMID: 39207698 DOI: 10.1007/978-3-031-55529-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are specialized immune cells that reside in the central nervous system (CNS) and play a crucial role in maintaining the homeostasis of the brain microenvironment. While traditionally regarded as a part of the innate immune system, recent research has highlighted their role in adaptive immunity. The CNS is no longer considered an immune-privileged organ, and increasing evidence suggests bidirectional communication between the immune system and the CNS. Microglia are sensitive to systemic immune signals and can respond to systemic inflammation by producing various inflammatory cytokines and chemokines. This response is mediated by activating pattern recognition receptors (PRRs), which recognize pathogen- and danger-associated molecular patterns in the systemic circulation. The microglial response to systemic inflammation has been implicated in several neurological conditions, including depression, anxiety, and cognitive impairment. Understanding the complex interplay between microglia and systemic immunity is crucial for developing therapeutic interventions to modulate immune responses in the CNS.
Collapse
Affiliation(s)
- Paloma Marinho Jucá
- Department of Pharmacology, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
| | - Érica de Almeida Duque
- Department of Pharmacology, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
| | - Luiza Helena Halas Covre
- Department of Pharmacology, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
| | | | - Carolina Demarchi Munhoz
- Department of Pharmacology, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil.
| |
Collapse
|
4
|
Gericke C, Kirabali T, Flury R, Mallone A, Rickenbach C, Kulic L, Tosevski V, Hock C, Nitsch RM, Treyer V, Ferretti MT, Gietl A. Early β-amyloid accumulation in the brain is associated with peripheral T cell alterations. Alzheimers Dement 2023; 19:5642-5662. [PMID: 37314431 DOI: 10.1002/alz.13136] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Fast and minimally invasive approaches for early diagnosis of Alzheimer's disease (AD) are highly anticipated. Evidence of adaptive immune cells responding to cerebral β-amyloidosis has raised the question of whether immune markers could be used as proxies for β-amyloid accumulation in the brain. METHODS Here, we apply multidimensional mass-cytometry combined with unbiased machine-learning techniques to immunophenotype peripheral blood mononuclear cells from a total of 251 participants in cross-sectional and longitudinal studies. RESULTS We show that increases in antigen-experienced adaptive immune cells in the blood, particularly CD45RA-reactivated T effector memory (TEMRA) cells, are associated with early accumulation of brain β-amyloid and with changes in plasma AD biomarkers in still cognitively healthy subjects. DISCUSSION Our results suggest that preclinical AD pathology is linked to systemic alterations of the adaptive immune system. These immunophenotype changes may help identify and develop novel diagnostic tools for early AD assessment and better understand clinical outcomes.
Collapse
Affiliation(s)
- Christoph Gericke
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
| | - Tunahan Kirabali
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
| | - Roman Flury
- Institute of Mathematics, University of Zurich, Zurich, Switzerland
| | - Anna Mallone
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
- Institute of Microbiology, ETHZ, Zurich, Switzerland
| | - Chiara Rickenbach
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
| | - Luka Kulic
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
- Roche Pharma Research and Early Development, Roche, Basel, Switzerland
| | - Vinko Tosevski
- Mass Cytometry Facility, University of Zurich, Zurich, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
- Center for Prevention and Dementia Therapy, University of Zurich, Schlieren, Switzerland
- Neurimmune AG, Schlieren, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
- Neurimmune AG, Schlieren, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
- Center for Prevention and Dementia Therapy, University of Zurich, Schlieren, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Maria Teresa Ferretti
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
- Women's Brain Project, Guntershausen, Switzerland
| | - Anton Gietl
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
- Center for Prevention and Dementia Therapy, University of Zurich, Schlieren, Switzerland
- Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland
| |
Collapse
|
5
|
Sutter PA, Crocker SJ. Glia as antigen-presenting cells in the central nervous system. Curr Opin Neurobiol 2022; 77:102646. [PMID: 36371828 PMCID: PMC10183975 DOI: 10.1016/j.conb.2022.102646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022]
Abstract
The contribution of the cells within the central nervous system (CNS) toward adaptive immune responses is emerging and incompletely understood. Recent findings indicate important functional interactions between T-cells and glial cells within the CNS that may contribute to disease and neuropathology through antigen presentation. Although glia are not classically considered antigen-presenting cell (APC) types, there is growing evidence indicating that glial antigen presentation plays an important role in several neurological diseases. This review discusses these findings which incriminate microglia, astrocytes, and oligodendrocyte lineage cells as CNS-resident APC types with implications for understanding disease.
Collapse
Affiliation(s)
- Pearl A Sutter
- Departments of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Stephen J Crocker
- Departments of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
6
|
Ng L, Wang X, Yang C, Su C, Li M, Cheung AKL. Celastrol Downmodulates Alpha-Synuclein-Specific T Cell Responses by Mediating Antigen Trafficking in Dendritic Cells. Front Immunol 2022; 13:833515. [PMID: 35309340 PMCID: PMC8926036 DOI: 10.3389/fimmu.2022.833515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s Disease (PD) is a neurodegenerative disease that affects the elderly. It is associated with motor dysfunction due to the accumulation of misfolded or aggregated fibrillar alpha-synuclein (α-syn) in the mid-brain. Current treatments are mainly focused on relieving the symptoms but are accompanied by side effects and are limited in halting disease progression. Increasing evidence points to peripheral immune cells underlying disease development, especially T cells contributing to α-syn-related neuroinflammation in PD. The onset of these cells is likely mediated by dendritic cells (DCs), whose role in α-syn-specific responses remain less studied. Moreover, Traditional Chinese medicine (TCM)-derived compounds that are candidates to treat PD may alleviate DC-T cell-mediated immune responses. Therefore, our study focused on the role of DC in response to fibrillar α-syn and subsequent induction of antigen-specific T cell responses, and the effect of TCM Curcumin-analog C1 and Tripterygium wilfordii Hook F-derived Celastrol. We found that although fibrillar α-syn did not induce significant inflammatory or T cell-mediating cytokines, robust pro-inflammatory T cell responses were found by co-culturing fibrillar α-syn-pulsed DCs with α-syn-specific CD4+ T cells. Celastrol, but not C1, reduced the onset of pro-inflammatory T cell differentiation, through promoting interaction of endosomal, amphisomal, and autophagic vesicles with fibrillar α-syn, which likely lead to its degradation and less antigen peptides available for presentation and T cell recognition. In conclusion, regulating the intracellular trafficking/processing of α-syn by DCs can be a potential approach to control the progression of PD, in which Celastrol is a potential candidate to accomplish this.
Collapse
Affiliation(s)
- Lam Ng
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Xiaohui Wang
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Chuanbin Yang
- Mr. & Mrs. Ko Chi Ming Center for Parkinson Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Chengfu Su
- Mr. & Mrs. Ko Chi Ming Center for Parkinson Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Min Li
- Mr. & Mrs. Ko Chi Ming Center for Parkinson Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- *Correspondence: Allen Ka Loon Cheung, ; Min Li,
| | - Allen Ka Loon Cheung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- *Correspondence: Allen Ka Loon Cheung, ; Min Li,
| |
Collapse
|
7
|
Rickenbach C, Gericke C. Specificity of Adaptive Immune Responses in Central Nervous System Health, Aging and Diseases. Front Neurosci 2022; 15:806260. [PMID: 35126045 PMCID: PMC8812614 DOI: 10.3389/fnins.2021.806260] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/29/2021] [Indexed: 12/25/2022] Open
Abstract
The field of neuroimmunology endorses the involvement of the adaptive immune system in central nervous system (CNS) health, disease, and aging. While immune cell trafficking into the CNS is highly regulated, small numbers of antigen-experienced lymphocytes can still enter the cerebrospinal fluid (CSF)-filled compartments for regular immune surveillance under homeostatic conditions. Meningeal lymphatics facilitate drainage of brain-derived antigens from the CSF to deep cervical lymph nodes to prime potential adaptive immune responses. During aging and CNS disorders, brain barriers and meningeal lymphatic functions are impaired, and immune cell trafficking and antigen efflux are altered. In this context, alterations in the immune cell repertoire of blood and CSF and T and B cells primed against CNS-derived autoantigens have been observed in various CNS disorders. However, for many diseases, a causal relationship between observed immune responses and neuropathological findings is lacking. Here, we review recent discoveries about the association between the adaptive immune system and CNS disorders such as autoimmune neuroinflammatory and neurodegenerative diseases. We focus on the current challenges in identifying specific T cell epitopes in CNS diseases and discuss the potential implications for future diagnostic and treatment options.
Collapse
Affiliation(s)
- Chiara Rickenbach
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Christoph Gericke
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| |
Collapse
|