1
|
Sufianov A, Agaverdiev M, Mashkin A, Ilyasova T. The functions of immune system-derived miRNAs in cardiovascular diseases. Noncoding RNA Res 2025; 11:91-103. [PMID: 39736852 PMCID: PMC11683256 DOI: 10.1016/j.ncrna.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 01/01/2025] Open
Abstract
Cardiovascular diseases (CVD) are the foremost cause of mortality worldwide, with recent advances in immunology underscoring the critical roles of immune cells in their onset and progression. MicroRNAs (miRNAs), particularly those derived from the immune system, have emerged as vital regulators of cellular functions within the cardiovascular landscape. This review focuses on "immuno-miRs," a class of miRNAs that are highly expressed in immune cells, including T cells, B cells, NK cells, neutrophils, and monocytes/macrophages, and their significant role in controlling immune signaling pathways. Highlighting recent studies in human and animal models, this review examines how miRNAs influence both innate and adaptive immune responses and explores their potential as therapeutic targets for CVD. Special emphasis is placed on miRNAs that regulate T cells, suggesting that targeted manipulation of these miRNA pathways could offer new strategies for CVD treatment. As research in cardiovascular immunology advances, this review aims to provide a thorough overview of the potential of immune system-derived miRNAs to revolutionize CVD management and therapy, addressing a major global health challenge.
Collapse
Affiliation(s)
- Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Murad Agaverdiev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Andrey Mashkin
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| |
Collapse
|
2
|
Yamagishi M, Miyata K, Kamatani T, Kabata H, Baba R, Tanaka Y, Suzuki N, Matsusaka M, Motomura Y, Kiniwa T, Koga S, Goda K, Ohara O, Funatsu T, Fukunaga K, Moro K, Uemura S, Shirasaki Y. Quantitative live-cell imaging of secretion activity reveals dynamic immune responses. iScience 2024; 27:109840. [PMID: 38779479 PMCID: PMC11109006 DOI: 10.1016/j.isci.2024.109840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/19/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Quantification of cytokine secretion has facilitated advances in the field of immunology, yet the dynamic and varied secretion profiles of individual cells, particularly those obtained from limited human samples, remain obscure. Herein, we introduce a technology for quantitative live-cell imaging of secretion activity (qLCI-S) that enables high-throughput and dual-color monitoring of secretion activity at the single-cell level over several days, followed by transcriptome analysis of individual cells based on their phenotype. The efficacy of qLCI-S was demonstrated by visualizing the characteristic temporal pattern of cytokine secretion of group 2 innate lymphoid cells, which constitute less than 0.01% of human peripheral blood mononuclear cells, and by revealing minor subpopulations with enhanced cytokine production. The underlying mechanism of this feature was linked to the gene expression of stimuli receptors. This technology paves the way for exploring gene expression signatures linked to the spatiotemporal dynamic nature of various secretory functions.
Collapse
Affiliation(s)
- Mai Yamagishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Live Cell Diagnosis, Ltd., Saitama 351-0022, Japan
| | - Kaede Miyata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Kamatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of AI Technology Development, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Division of Precision Cancer Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Rie Baba
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yumiko Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Nobutake Suzuki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masako Matsusaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasutaka Motomura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Kiniwa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Satoshi Koga
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Keisuke Goda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute of Technological Sciences, Wuhan University, Hubei 430072, China
| | - Osamu Ohara
- KAZUSA DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Takashi Funatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuyo Moro
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshitaka Shirasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Kimura G, Tagami A, Fukui R, Yaita M, Miyasaka T. Airway inflammation in a novel mouse model of asthma-COPD overlap induced by co-exposure to papain and tobacco smoke. Biochem Biophys Res Commun 2024; 709:149831. [PMID: 38552552 DOI: 10.1016/j.bbrc.2024.149831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are respiratory diseases associated with airway inflammation, which is the main pathogenesis. Although their causes and characteristics differ, in some cases, asthma and COPD may coexist in the same patient in a condition called asthma-COPD overlap (ACO). The prognosis of ACO is more unfavourable than those of asthma or COPD alone, without any treatment strategies demonstrating efficacy. Owing to its intricate spectrum of features, the detailed pathogenesis of how ACO exacerbates respiratory features remains unclear. In this study, we exposed papain-induced asthma model mice to tobacco smoke to establish an ACO mouse model, in which features of airway inflammation observed in both asthma and COPD were incorporated. This model exhibited distinctive mixed and corticosteroid-resistant airway inflammation and emphysematous changes that are characteristic of ACO. The novel mouse model established here is expected to significantly contribute to elucidating the mechanisms of the broad pathologies of ACO and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Genki Kimura
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan.
| | - Ai Tagami
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | - Rina Fukui
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | - Masaki Yaita
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | - Tomohiro Miyasaka
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan.
| |
Collapse
|
4
|
Lenz B, Ehrens A, Ajendra J, Risch F, Gal J, Neumann AL, Reichwald JJ, Strutz W, McSorley HJ, Martin C, Hoerauf A, Hübner MP. Repeated sensitization of mice with microfilariae of Litomosoides sigmodontis induces pulmonary eosinophilia in an IL-33-dependent manner. PLoS Pathog 2024; 20:e1012071. [PMID: 38457461 PMCID: PMC10954174 DOI: 10.1371/journal.ppat.1012071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/20/2024] [Accepted: 02/24/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Eosinophilia is a hallmark of helminth infections and eosinophils are essential in the protective immune responses against helminths. Nevertheless, the distinct role of eosinophils during parasitic filarial infection, allergy and autoimmune disease-driven pathology is still not sufficiently understood. In this study, we established a mouse model for microfilariae-induced eosinophilic lung disease (ELD), a manifestation caused by eosinophil hyper-responsiveness within the lung. METHODS Wild-type (WT) BALB/c mice were sensitized with dead microfilariae (MF) of the rodent filarial nematode Litomosoides sigmodontis three times at weekly intervals and subsequently challenged with viable MF to induce ELD. The resulting immune response was compared to non-sensitized WT mice as well as sensitized eosinophil-deficient dblGATA mice using flow cytometry, lung histology and ELISA. Additionally, the impact of IL-33 signaling on ELD development was investigated using the IL-33 antagonist HpARI2. RESULTS ELD-induced WT mice displayed an increased type 2 immune response in the lung with increased frequencies of eosinophils, alternatively activated macrophages and group 2 innate lymphoid cells, as well as higher peripheral blood IgE, IL-5 and IL-33 levels in comparison to mice challenged only with viable MF or PBS. ELD mice had an increased MF retention in lung tissue, which was in line with an enhanced MF clearance from peripheral blood. Using eosinophil-deficient dblGATA mice, we demonstrate that eosinophils are essentially involved in driving the type 2 immune response and retention of MF in the lung of ELD mice. Furthermore, we demonstrate that IL-33 drives eosinophil activation in vitro and inhibition of IL-33 signaling during ELD induction reduces pulmonary type 2 immune responses, eosinophil activation and alleviates lung lacunarity. In conclusion, we demonstrate that IL-33 signaling is essentially involved in MF-induced ELD development. SUMMARY Our study demonstrates that repeated sensitization of BALB/c mice with L. sigmodontis MF induces pulmonary eosinophilia in an IL-33-dependent manner. The newly established model recapitulates the characteristic features known to occur during eosinophilic lung diseases (ELD) such as human tropical pulmonary eosinophilia (TPE), which includes the retention of microfilariae in the lung tissue and induction of pulmonary eosinophilia and type 2 immune responses. Our study provides compelling evidence that IL-33 drives eosinophil activation during ELD and that blocking IL-33 signaling using HpARI2 reduces eosinophil activation, eosinophil accumulation in the lung tissue, suppresses type 2 immune responses and mitigates the development of structural damage to the lung. Consequently, IL-33 is a potential therapeutic target to reduce eosinophil-mediated pulmonary pathology.
Collapse
Affiliation(s)
- Benjamin Lenz
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Joséphine Gal
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Equipe Parasites et Protistes Libres, Muséum National d’Histoire Naturelle, CNRS; CP52, Paris, France
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Julia J. Reichwald
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Wiebke Strutz
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Henry J. McSorley
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Equipe Parasites et Protistes Libres, Muséum National d’Histoire Naturelle, CNRS; CP52, Paris, France
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
5
|
Zhang Y, Wang M, Liu Z, Zhu X, Huang Q, Wang J, Liu Y. CCR3 gene knockout inhibits proliferation, differentiation, and migration of eosinophils in allergic rhinitis model mice. Mol Immunol 2023; 162:1-10. [PMID: 37611377 DOI: 10.1016/j.molimm.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Allergic rhinitis (AR) is characterized by various bothersome clinical symptoms of the nasal mucosa that impaired the quality of daily life. Different chemokine receptors play a crucial role in the recruitment of inflammatory cells in AR. However, the effect of CC chemokine receptor (CCR) 3 on the function of eosinophils (EOS) is still unclear. We investigated the effect of CCR3 on EOS in a murine model of OVA-mediated allergic rhinitis using CCR3-deficient (CCR3-/-) mice. In vitro, bone marrow of CCR3-/- and wild-type (WT) mice were used to investigate the induction and development of EOS. In vivo, Allergic rhinitis was initiated in CCR3-/- and wild-type (WT) mice by passive transfer OVA, followed by detecting the eosinophil infiltration of the nasal mucosa and bone marrow. Then CD34+ progenitor cells in bone marrow and blood were evaluated by IHC analysis. Furthermore, the degranulation proteins of EOS in nasal mucosa, marrow, blood and NALF were determined by IHC, real-time PCR analysis and Western blot. We found that CCR3 gene can regulate the growth and development of primary cultured eosinophils. Knockout CCR3 gene can inhibit the proliferation and degranulation of EOS. The infiltration of eosinophils in the nasal mucosa following OVA-challenged, was significantly higher in WT mice compared with those stimulated with phosphate-buffered saline (PBS) for WT, but that was not seen in similarly treated CCR3-/- mice. Besides, the number of CD34+ progenitor cells in bone marrow and blood were also suppressed in CCR3-/- mice. The degranulation proteins of EOS expressed in nasal mucosa, marrow, blood and NALF were decreased in CCR3-/- AR mice compared with WT-AR mice. And the clinical symptoms were significantly alleviated. The expression of granulation proteins in NALF were not detected in both untreated CCR3-/- mice and WT mice. These results demonstrate a contribution of CCR3 to both the growth, migration, and degranulation of EOS during allergic rhinitis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Meiqun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zheng Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Xinhua Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Quanlong Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Jialin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yuehui Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| |
Collapse
|
6
|
Zhao R, Shi Y, Liu N, Li B. Elevated levels of interleukin-33 are associated with asthma: A meta-analysis. Immun Inflamm Dis 2023; 11:e842. [PMID: 37102668 PMCID: PMC10116908 DOI: 10.1002/iid3.842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Previous studies reported that patients with asthma showed higher levels of interleukin (IL)-33 in peripheral blood, compared to healthy control (HCs). However, we also noticed that there were no significant differences of IL-33 levels between controls and asthma patients in a recent study. We aim to conduct this meta-analysis and evaluate the feasibility of IL-33 in peripheral blood that may act as a promising biomarker in asthma. METHODS Articles published before December 2022 were searched in these databases (PubMed, Web of Science, EMBASE, and Google Scholar). We used STATA 12.0 software to compute the results. RESULTS The study showed that asthmatics showed higher IL-33 level in serum and plasma, compared to HCs (serum: standard mean difference [SMD] 2.06, 95% confidence interval [CI] 1.12-3.00, I2 = 98.4%, p < .001; plasma: SMD 3.67, 95% CI 2.32-5.03, I2 = 86.0%, p < .001). Subgroup analysis indicated that asthma adults showed higher IL-33 level in serum, compared to HCs, whereas no significant difference in IL-33 level in serum was showed between asthma children and HCs (adults: SMD 2.17, 95% CI 1.09-3.25; children: SMD 1.81, 95% CI -0.11 to 3.74). The study indicated that moderate and severe asthmatics showed higher IL-33 level in serum, compared to mild asthmatics (SMD 0.78, 95% CI 0.41-1.16, I2 = 66.2%, p = .011). CONCLUSIONS In conclusion, the main findings of present meta-analysis suggested that there was a significant correlation between IL-33 levels and the severity of asthma. Therefore, IL-33 levels of either serum or plasma may be regarded as a useful biomarker of asthma or the degree of disease.
Collapse
Affiliation(s)
- Ranran Zhao
- Department of Respiratory MedicineCapital Medical University Affiliated Beijing Friendship HospitalBeijingChina
| | - Yun Shi
- Medical and Health CenterCapital Medical University Affiliated Beijing Friendship HospitalBeijingChina
| | - Na Liu
- Department of Respiratory MedicineBeijing Hepingli hospitalBeijingChina
| | - Bin Li
- Department of Respiratory MedicineCapital Medical University Affiliated Beijing Friendship HospitalBeijingChina
| |
Collapse
|
7
|
Wiese AV, Duhn J, Korkmaz RÜ, Quell KM, Osman I, Ender F, Schröder T, Lewkowich I, Hogan S, Huber-Lang M, Gumprecht F, König P, Köhl J, Laumonnier Y. C5aR1 activation in mice controls inflammatory eosinophil recruitment and functions in allergic asthma. Allergy 2023. [PMID: 36757006 DOI: 10.1111/all.15670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Pulmonary eosinophils comprise at least two distinct populations of resident eosinophils (rEOS) and inflammatory eosinophils (iEOS), the latter recruited in response to pulmonary inflammation. Here, we determined the impact of complement activation on rEOS and iEOS trafficking and function in two models of pulmonary inflammation. METHODS BALB/c wild-type and C5ar1-/- mice were exposed to different allergens or IL-33. Eosinophil populations in the airways, lung, or mediastinal lymph nodes (mLN) were characterized by FACS or immunohistochemistry. rEOS and iEOS functions were determined in vivo and in vitro. RESULTS HDM and IL-33 exposure induced a strong accumulation of iEOS but not rEOS in the airways, lungs, and mLNs. rEOS and iEOS expressed C3/C5 and C5aR1, which were significantly higher in iEOS. Initial pulmonary trafficking of iEOS was markedly reduced in C5ar1-/- mice and associated with less IL-5 production from ILC2 cells. Functionally, adoptively transferred pulmonary iEOS from WT but not from C5ar1-/- mice-induced airway hyperresponsiveness (AHR), which was associated with significantly reduced C5ar1-/- iEOS degranulation. Pulmonary iEOS but not rEOS were frequently associated with T cells in lung tissue. After HDM or IL-33 exposure, iEOS but not rEOS were found in mLNs, which were significantly reduced in C5ar1-/- mice. C5ar1-/- iEOS expressed less costimulatory molecules, associated with a decreased potency to drive antigen-specific T cell proliferation and differentiation into memory T cells. CONCLUSIONS We uncovered novel roles for C5aR1 in iEOS trafficking and activation, which affects key aspects of allergic inflammation such as AHR, ILC2, and T cell activation.
Collapse
Affiliation(s)
- Anna V Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jannis Duhn
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Rabia Ülkü Korkmaz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Katharina M Quell
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Ibrahim Osman
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Torsten Schröder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein & University of Lübeck, Lübeck, Germany
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Simon Hogan
- Mary H. Weiser Food Allergy Center, Experimental Pathology, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University of Ulm, Ulm, Germany
| | | | - Peter König
- Institute for Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein & University of Lübeck, Lübeck, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
8
|
Laky K, Kinard JL, Li JM, Moore IN, Lack J, Fischer ER, Kabat J, Latanich R, Zachos NC, Limkar AR, Weissler KA, Thompson RW, Wynn TA, Dietz HC, Guerrerio AL, Frischmeyer-Guerrerio PA. Epithelial-intrinsic defects in TGFβR signaling drive local allergic inflammation manifesting as eosinophilic esophagitis. Sci Immunol 2023; 8:eabp9940. [PMID: 36608150 PMCID: PMC10106118 DOI: 10.1126/sciimmunol.abp9940] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Allergic diseases are a global health challenge. Individuals harboring loss-of-function variants in transforming growth factor-β receptor (TGFβR) genes have an increased prevalence of allergic disorders, including eosinophilic esophagitis. Allergic diseases typically localize to mucosal barriers, implicating epithelial dysfunction as a cardinal feature of allergic disease. Here, we describe an essential role for TGFβ in the control of tissue-specific immune homeostasis that provides mechanistic insight into these clinical associations. Mice expressing a TGFβR1 loss-of-function variant identified in atopic patients spontaneously develop disease that clinically, immunologically, histologically, and transcriptionally recapitulates eosinophilic esophagitis. In vivo and in vitro, TGFβR1 variant-expressing epithelial cells are hyperproliferative, fail to differentiate properly, and overexpress innate proinflammatory mediators, which persist in the absence of lymphocytes or external allergens. Together, our results support the concept that TGFβ plays a fundamental, nonredundant, epithelial cell-intrinsic role in controlling tissue-specific allergic inflammation that is independent of its role in adaptive immunity.
Collapse
Affiliation(s)
- Karen Laky
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica L Kinard
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny Min Li
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin Lack
- Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Elizabeth R Fischer
- Electron Microscopy Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rachel Latanich
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ajinkya R Limkar
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine A Weissler
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert W Thompson
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas A Wynn
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Anthony L Guerrerio
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Bandeira E, Jang SC, Lässer C, Johansson K, Rådinger M, Park KS. Effects of mesenchymal stem cell-derived nanovesicles in experimental allergic airway inflammation. Respir Res 2023; 24:3. [PMID: 36604658 PMCID: PMC9817274 DOI: 10.1186/s12931-023-02310-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Allergic asthma is associated with airflow obstruction and hyper-responsiveness that arises from airway inflammation and remodeling. Cell therapy with mesenchymal stem cells (MSC) has been shown to attenuate inflammation in asthma models, and similar effects have recently been observed using extracellular vesicles (EV) obtained from these cells. Biologically functional vesicles can also be artificially generated from MSC by extruding cells through membranes to produce EV-mimetic nanovesicles (NV). In this study, we aimed to determine the effects of different MSC-derived vesicles in a murine model of allergic airway inflammation. METHODS EV were obtained through sequential centrifugation of serum-free media conditioned by human bone marrow MSC for 24 h. NV were produced through serial extrusion of the whole cells through filters. Both types of vesicles underwent density gradient purification and were quantified through nanoparticle tracking analysis. C57BL/6 mice were sensitized to ovalbumin (OVA, 8 µg), and then randomly divided into the OVA group (intranasally exposed to 100 µg OVA for 5 days) and control group (exposed to PBS). The mice were then further divided into groups that received 2 × 109 EV or NV (intranasally or intraperitoneally) or PBS immediately following the first OVA exposure. RESULTS Administration of EV and NV reduced cellularity and eosinophilia in bronchoalveolar lavage (BAL) fluid in OVA-sensitized and OVA-exposed mice. In addition, NV treatment resulted in decreased numbers of inflammatory cells within the lung tissue, and this was associated with lower levels of Eotaxin-2 in both BAL fluid and lung tissue. Furthermore, both intranasal and systemic administration of NV were effective in reducing inflammatory cells; however, systemic delivery resulted in a greater reduction of eosinophilia in the lung tissue. CONCLUSIONS Taken together, our results indicate that MSC-derived NV significantly reduce OVA-induced allergic airway inflammation to a level comparable to EV. Thus, cell-derived NV may be a novel EV-mimetic therapeutic candidate for treating allergic diseases such as asthma.
Collapse
Affiliation(s)
- Elga Bandeira
- grid.8761.80000 0000 9919 9582Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Su Chul Jang
- grid.8761.80000 0000 9919 9582Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- grid.8761.80000 0000 9919 9582Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Johansson
- grid.8761.80000 0000 9919 9582Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Madeleine Rådinger
- grid.8761.80000 0000 9919 9582Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kyong-Su Park
- grid.8761.80000 0000 9919 9582Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Guo H, Bossila EA, Ma X, Zhao C, Zhao Y. Dual Immune Regulatory Roles of Interleukin-33 in Pathological Conditions. Cells 2022; 11:cells11203237. [PMID: 36291105 PMCID: PMC9600220 DOI: 10.3390/cells11203237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family and a multifunctional cytokine, plays critical roles in maintaining host homeostasis and in pathological conditions, such as allergy, infectious diseases, and cancer, by acting on multiple types of immune cells and promoting type 1 and 2 immune responses. IL-33 is rapidly released by immune and non-immune cells upon stimulation by stress, acting as an “alarmin” by binding to its receptor, suppression of tumorigenicity 2 (ST2), to trigger downstream signaling pathways and activate inflammatory and immune responses. It has been recognized that IL-33 displays dual-functioning immune regulatory effects in many diseases and has both pro- and anti-tumorigenic effects, likely depending on its primary target cells, IL-33/sST2 expression levels, cellular context, and the cytokine microenvironment. Herein, we summarize our current understanding of the biological functions of IL-33 and its roles in the pathogenesis of various conditions, including inflammatory and autoimmune diseases, infections, cancers, and cases of organ transplantation. We emphasize the nature of context-dependent dual immune regulatory functions of IL-33 in many cells and diseases and review systemic studies to understand the distinct roles of IL-33 in different cells, which is essential to the development of more effective diagnoses and therapeutic approaches for IL-33-related diseases.
Collapse
Affiliation(s)
- Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Elhusseny A. Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo 11311, Egypt
| | - Xinran Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Beijing Institute for Stem Cell and Regeneration, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302; Fax: +86-10-64807313
| |
Collapse
|
11
|
Eosinophilic inflammation: An Appealing Target for Pharmacologic Treatments in Severe Asthma. Biomedicines 2022; 10:biomedicines10092181. [PMID: 36140282 PMCID: PMC9496162 DOI: 10.3390/biomedicines10092181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022] Open
Abstract
Severe asthma is characterized by different endotypes driven by complex pathologic mechanisms. In most patients with both allergic and non-allergic asthma, predominant eosinophilic airway inflammation is present. Given the central role of eosinophilic inflammation in the pathophysiology of most cases of severe asthma and considering that severe eosinophilic asthmatic patients respond partially or poorly to corticosteroids, in recent years, research has focused on the development of targeted anti-eosinophil biological therapies; this review will focus on the unique and particular biology of the eosinophil, as well as on the current knowledge about the pathobiology of eosinophilic inflammation in asthmatic airways. Finally, current and prospective anti-eosinophil therapeutic strategies will be discussed, examining the reason why eosinophilic inflammation represents an appealing target for the pharmacological treatment of patients with severe asthma.
Collapse
|
12
|
Zeng Q, Xi L, Zeng Y, Liu W, Zhou L. Osteopontin mediated eosinophils activation by group II innate lymphoid cells. World Allergy Organ J 2022; 15:100659. [PMID: 36017066 PMCID: PMC9389302 DOI: 10.1016/j.waojou.2022.100659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/14/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Background Osteopontin (OPN) can regulate Th2 inflammation in allergic rhinitis (AR). A recent study suggested that group II innate lymphoid cells (ILC2s) were very important for airway inflammation. But the role of OPN in ILC2s regulation is not explored. Methods Purified ILC2s were stimulated by human recombinant OPN. The expression of GATA3 and RORα was assayed using real-time polymerase chain reaction (PCR) and enzyme linked immunosorbent assay. MiR-181a was transfected into eosinophils to test the OPN production. The protein concentrations of interleukin (IL)-5 and IL-13 were examined using ELISA. Purified eosinophils and ILC2s were cocultured and stimulated by OPN and the activation of eosinophils was detected by ELISA. Results After OPN stimulation, the ILC2s proliferation, the mRNA levels of GATA3 and RORα, the protein of GATA3, RORα, IL-5 and IL-13 expression were up-regulated significantly in a dose dependent manner. Eosinophils cultured alone transfected with miR-181a mimics produced less OPN protein compared with eosinophils transfected with miR-control, whereas OPN production was significantly promoted when miR-181a inhibitor was transfected. In the eosinophils and ILC2s coculture system, eosinophil cationic protein (ECP) production induced by OPN or IL-33 were significantly higher than ECP production in eosinophils culture system. OPN presented similar potency with IL-33 in the activation of eosinophils. When anti-IL-5 antibody was added, the production of ECP was significantly inhibited. Conclusions Our data for the first time provided new evidence that OPN played important roles in innate immunity of AR by regulation of ILC2s and the interaction between ILC2s and eosinophils.
Collapse
Affiliation(s)
| | | | | | - Wenlong Liu
- Corresponding author. Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9, Jinsui Road, Guangzhou, 510623, China
| | - Lifeng Zhou
- Corresponding author. Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9, Jinsui Road, Guangzhou, 510623, China
| |
Collapse
|
13
|
Boberg E, Weidner J, Malmhäll C, Calvén J, Corciulo C, Rådinger M. Rapamycin Dampens Inflammatory Properties of Bone Marrow ILC2s in IL-33-Induced Eosinophilic Airway Inflammation. Front Immunol 2022; 13:915906. [PMID: 35720347 PMCID: PMC9203889 DOI: 10.3389/fimmu.2022.915906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
The alarmin cytokine interleukin (IL)-33 plays an important proinflammatory role in type 2 immunity and can act on type 2 innate lymphoid cells (ILC2s) and type 2 T helper (TH2) cells in eosinophilic inflammation and asthma. The mechanistic target of rapamycin (mTOR) signaling pathway drives immune responses in several inflammatory diseases, but its role in regulating bone marrow responses to IL-33 is unclear. The aim of this study was to determine the role of the mTORC1 signaling pathway in IL-33-induced bone marrow ILC2 responses and its impact on IL-33-induced eosinophilia. Wild-type mice were intranasally exposed to IL-33 only or in combination with the mTORC1 inhibitor, rapamycin, intraperitoneally. Four groups were included in the study: saline-treated (PBS)+PBS, rapamycin+PBS, PBS+IL-33 and rapamycin+IL-33. Bronchoalveolar lavage fluid (BALF), serum and bone marrow cells were collected and analyzed by differential cell count, enzyme-linked immunosorbent assay and flow cytometry. IL-33 induced phosphorylation of the mTORC1 protein rpS6 in bone marrow ILC2s both ex vivo and in vivo. The observed mTOR signal was reduced by rapamycin treatment, indicating the sensitivity of bone marrow ILC2s to mTORC1 inhibition. IL-5 production by ILC2s was reduced in cultures treated with rapamycin before stimulation with IL-33 compared to IL-33 only. Bone marrow and airway eosinophils were reduced in mice given rapamycin before IL-33-exposure compared to mice given IL-33 only. Bone marrow ILC2s responded to IL-33 in vivo with increased mTORC1 activity and rapamycin treatment successfully decreased IL-33-induced eosinophilic inflammation, possibly by inhibition of IL-5-producing bone marrow ILC2s. These findings highlight the importance of investigating specific cells and proinflammatory pathways as potential drivers of inflammatory diseases, including asthma.
Collapse
Affiliation(s)
- Emma Boberg
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Julie Weidner
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Malmhäll
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Calvén
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carmen Corciulo
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Nur Husna SM, Md Shukri N, Tuan Sharif SE, Tan HTT, Mohd Ashari NS, Wong KK. IL-4/IL-13 Axis in Allergic Rhinitis: Elevated Serum Cytokines Levels and Inverse Association With Tight Junction Molecules Expression. Front Mol Biosci 2022; 9:819772. [PMID: 35372516 PMCID: PMC8969661 DOI: 10.3389/fmolb.2022.819772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
The IL-4/IL-13 axis is involved in the pathogenesis of allergic rhinitis (AR). In this study, we investigated the serum cytokines levels of IL-4, IL-5, IL-6, and IL-13 in AR patients, and the transcript expression levels of their receptors (i.e. IL4R, IL5RA, IL6R, and IL13RA1) in nasal epithelial cells of AR patients versus non-allergic controls. Nasal epithelial cells and blood samples of non-allergic controls (n = 30) and AR patients (n = 30) were collected to examine mRNA expression and serum cytokines levels, respectively. Bioinformatics analyses of IL-4/IL-13 receptor heterodimer association with tight junction (TJ) and JAK/STAT signaling genes were conducted in a gene expression profiling (GEP) dataset (GSE44037) of AR patients (n = 12) and healthy controls (n = 6). Serum IL-4, IL-5, IL-6 or IL-13 levels, and IL13RA1 transcript expression were significantly higher in AR patients compared with non-allergic controls. IL-4 and IL-13 serum levels were positively correlated with IL13RA1 expression in AR patients but not in non-allergic controls. In the GEP dataset (GSE44037), six TJ (CLDN4, CLDN7, CLDN12, CLDN15, TJP1, and TJP2) genes’ expressions were negatively correlated, respectively, with IL-4Rα/IL-13Rα1 heterodimeric receptor expression in AR patients and not in control samples. These six TJ genes contributed to the significant enrichment of tight junction Gene Ontology (GO ID: 0070160). Lastly, STATs DNA binding motif analysis showed that each of these TJ genes contains STATs binding consensus sequence within intronic and intergenic regions. Our results suggest that increased IL-4/IL-13 serum cytokines levels may contribute to decreased TJs expression via IL-4Rα/IL-13Rα1 heterodimeric receptor in nasal epithelium of AR patients.
Collapse
Affiliation(s)
- Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Norasnieda Md Shukri
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Hern Tze Tina Tan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Noor Suryani Mohd Ashari
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- *Correspondence: Kah Keng Wong,
| |
Collapse
|
15
|
Janson C, Bjermer L, Lehtimäki L, Kankaanranta H, Karjalainen J, Altraja A, Yasinska V, Aarli B, Rådinger M, Hellgren J, Lofdahl M, Howarth PH, Porsbjerg C. Eosinophilic airway diseases: basic science, clinical manifestations and future challenges. Eur Clin Respir J 2022; 9:2040707. [PMID: 35251534 PMCID: PMC8896196 DOI: 10.1080/20018525.2022.2040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Eosinophils have a broad range of functions, both homeostatic and pathological, mediated through an array of cell surface receptors and specific secretory granules that promote interactions with their microenvironment. Eosinophil development, differentiation, activation, survival and recruitment are closely regulated by a number of type 2 cytokines, including interleukin (IL)-5, the key driver of eosinophilopoiesis. Evidence shows that type 2 inflammation, driven mainly by interleukin (IL)-4, IL-5 and IL-13, plays an important role in the pathophysiology of eosinophilic airway diseases, including asthma, chronic rhinosinusitis with nasal polyps, eosinophilic granulomatosis with polyangiitis and hypereosinophilic syndrome. Several biologic therapies have been developed to suppress type 2 inflammation, namely mepolizumab, reslizumab, benralizumab, dupilumab, omalizumab and tezepelumab. While these therapies have been associated with clinical benefits in a range of eosinophilic diseases, their development has highlighted several challenges and directions for future research. These include the need for further information on disease progression and identification of treatable traits, including clinical characteristics or biomarkers that will improve the prediction of treatment response. The Nordic countries have a long tradition of collaboration using patient registries and Nordic asthma registries provide unique opportunities to address these research questions. One example of such a registry is the NORdic Dataset for aSThmA Research (NORDSTAR), a longitudinal population-based dataset containing all 3.3 million individuals with asthma from four Nordic countries (Denmark, Finland, Norway and Sweden). Large-scale, real-world registry data such as those from Nordic countries may provide important information regarding the progression of eosinophilic asthma, in addition to clinical characteristics or biomarkers that could allow targeted treatment and ensure optimal patient outcomes.
Collapse
Affiliation(s)
- Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Skane University Hospital, Lund, Sweden
| | - Lauri Lehtimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Allergy Centre, Tampere University Hospital, Tampere, Finland
| | - Hannu Kankaanranta
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Respiratory Medicine, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Jussi Karjalainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Allergy Centre, Tampere University Hospital, Tampere, Finland
| | - Alan Altraja
- Department of Pulmonology, University of Tartu and Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Valentyna Yasinska
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Huddinge, Sweden
| | - Bernt Aarli
- Department of Clinical Science, University of Bergen and Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Hellgren
- Department of Otorhinolaryngology, University of Gothenburg, Gothenburg, Sweden
| | | | - Peter H Howarth
- Respiratory Medical Franchise, GSK, Brentford, Middlesex, UK
| | - Celeste Porsbjerg
- Department of Respiratory Medicine, Bispebjerg Hospital and Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
16
|
Zhang M, Duffen JL, Nocka KH, Kasaian MT. IL-13 Controls IL-33 Activity through Modulation of ST2. THE JOURNAL OF IMMUNOLOGY 2021; 207:3070-3080. [PMID: 34789557 DOI: 10.4049/jimmunol.2100655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
IL-33 is a multifunctional cytokine that mediates local inflammation upon tissue damage. IL-33 is known to act on multiple cell types including group 2 innate lymphoid cells (ILC2s), Th2 cells, and mast cells to drive production of Th2 cytokines including IL-5 and IL-13. IL-33 signaling activity through transmembrane ST2L can be inhibited by soluble ST2 (sST2), which acts as a decoy receptor. Previous findings suggested that modulation of IL-13 levels in mice lacking decoy IL-13Rα2, or mice lacking IL-13, impacted responsiveness to IL-33. In this study, we used Il13 -/- mice to investigate whether IL-13 regulates IL-33 activity by modulating the transmembrane and soluble forms of ST2. In Il13 -/- mice, the effects of IL-33 administration were exacerbated relative to wild type (WT). Il13 -/- mice administered IL-33 i.p. had heightened splenomegaly, more immune cells in the peritoneum including an expanded ST2L+ ILC2 population, increased eosinophilia in the spleen and peritoneum, and reduced sST2 in the circulation and peritoneum. In the spleen, lung, and liver of mice given IL-33, gene expression of both isoforms of ST2 was increased in Il13 -/- mice relative to WT. We confirmed fibroblasts to be an IL-13-responsive cell type that can regulate IL-33 activity through production of sST2. This study elucidates the important regulatory activity that IL-13 exerts on IL-33 through induction of IL-33 decoy receptor sST2 and through modulation of ST2L+ ILC2s.
Collapse
Affiliation(s)
- Melvin Zhang
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA
| | - Jennifer L Duffen
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA
| | - Karl H Nocka
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA
| | - Marion T Kasaian
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA
| |
Collapse
|
17
|
Krampera M, Le Blanc K. Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell Stem Cell 2021; 28:1708-1725. [PMID: 34624232 DOI: 10.1016/j.stem.2021.09.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An exceptional safety profile has been shown in a large number of cell therapy clinical trials that use mesenchymal stromal cells (MSCs). However, reliable potency assays are still lacking to predict MSC immunosuppressive efficacy in the clinical setting. Nevertheless, MSCs are approved in Japan and Europe for the treatment of graft-versus-host and Crohn's fistular diseases, but not in the United States for any clinical indication. We discuss potential mechanisms of action for the therapeutic effects of MSC transplantation, experimental models that dissect tissue modulating function of MSCs, and approaches for identifying MSC effects in vivo by integrating biomarkers of disease and MSC activity.
Collapse
Affiliation(s)
- Mauro Krampera
- Section of Hematology and Bone Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy.
| | - Katarina Le Blanc
- Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden; Center of Allogeneic Stem Cell Transplantation and Cellular Therapy (CAST), Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
18
|
Zheng H, Zhang Y, Pan J, Liu N, Qin Y, Qiu L, Liu M, Wang T. The Role of Type 2 Innate Lymphoid Cells in Allergic Diseases. Front Immunol 2021; 12:586078. [PMID: 34177881 PMCID: PMC8220221 DOI: 10.3389/fimmu.2021.586078] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Allergic diseases are significant diseases that affect many patients worldwide. In the past few decades, the incidence of allergic diseases has increased significantly due to environmental changes and social development, which has posed a substantial public health burden and even led to premature death. The understanding of the mechanism underlying allergic diseases has been substantially advanced, and the occurrence of allergic diseases and changes in the immune system state are known to be correlated. With the identification and in-depth understanding of innate lymphoid cells, researchers have gradually revealed that type 2 innate lymphoid cells (ILC2s) play important roles in many allergic diseases. However, our current studies of ILC2s are limited, and their status in allergic diseases remains unclear. This article provides an overview of the common phenotypes and activation pathways of ILC2s in different allergic diseases as well as potential research directions to improve the understanding of their roles in different allergic diseases and ultimately find new treatments for these diseases.
Collapse
Affiliation(s)
- Haocheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiachuang Pan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Nannan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Qin
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Linghui Qiu
- Journal Press of Global Traditional Chinese Medicine, Beijing, China
| | - Min Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Laanesoo A, Urgard E, Periyasamy K, Laan M, Bochkov YA, Aab A, Magilnick N, Pooga M, Gern JE, Johnston SL, Coquet JM, Boldin MP, Wengel J, Altraja A, Bochenek G, Jakiela B, Rebane A. Dual role of the miR-146 family in rhinovirus-induced airway inflammation and allergic asthma exacerbation. Clin Transl Med 2021; 11:e427. [PMID: 34185416 PMCID: PMC8161513 DOI: 10.1002/ctm2.427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Rhinovirus (RV) infections are associated with asthma exacerbations. MicroRNA-146a and microRNA-146b (miR-146a/b) are anti-inflammatory miRNAs that suppress signaling through the nuclear factor kappa B (NF-κB) pathway and inhibit pro-inflammatory chemokine production in primary human bronchial epithelial cells (HBECs). In the current study, we aimed to explore whether miR-146a/b could regulate cellular responses to RVs in HBECs and airways during RV-induced asthma exacerbation. We demonstrated that expression of miR-146a/b and pro-inflammatory chemokines was increased in HBECs and mouse airways during RV infection. However, transfection with cell-penetrating peptide (CPP)-miR-146a nanocomplexes before infection with RV significantly reduced the expression of the pro-inflammatory chemokines CCL5, IL-8 and CXCL1, increased interferon-λ production, and attenuated infection with the green fluorescent protein (GFP)-expressing RV-A16 in HBECs. Concordantly, compared to wild-type (wt) mice, Mir146a/b-/- mice exhibited more severe airway neutrophilia and increased T helper (Th)1 and Th17 cell infiltration in response to RV-A1b infection and a stronger Th17 response with a less prominent Th2 response in house dust mite extract (HDM)-induced allergic airway inflammation and RV-induced exacerbation models. Interestingly, intranasal administration of CPP-miR-146a nanocomplexes reduced HDM-induced allergic airway inflammation without a significant effect on the Th2/Th1/Th17 balance in wild-type mice. In conclusion, the overexpression of miR-146a has a strong anti-inflammatory effect on RV infection in HBECs and a mouse model of allergic airway inflammation, while a lack of miR-146a/b leads to attenuated type 2 cell responses in mouse models of allergic airway inflammation and RV-induced exacerbation of allergic airway inflammation. Furthermore, our data indicate that the application of CPP-miR-146a nanocomplexes has therapeutic potential for targeting airway inflammation.
Collapse
Affiliation(s)
- Anet Laanesoo
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Egon Urgard
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Kapilraj Periyasamy
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Martti Laan
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Yury A. Bochkov
- School of Medicine and Public Health University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Alar Aab
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Nathaniel Magilnick
- Department of Molecular and Cellular BiologyBeckman Research Institute of City of Hope National Medical CenterDuarteCaliforniaUSA
| | - Margus Pooga
- Institute of TechnologyUniversity of TartuTartuEstonia
| | - James E. Gern
- School of Medicine and Public Health University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Sebastian L. Johnston
- National Heart and Lung InstituteImperial College LondonLondonUK
- Imperial College Healthcare NHS TrustLondonUK
| | - Jonathan M. Coquet
- Department of MicrobiologyTumor and Cell Biology (MTC)Karolinska InstitutetStockholmSweden
| | - Mark P. Boldin
- Department of Molecular and Cellular BiologyBeckman Research Institute of City of Hope National Medical CenterDuarteCaliforniaUSA
| | - Jesper Wengel
- Nucleic Acid CenterDepartment of PhysicsChemistry and PharmacyUniversity of Southern DenmarkOdenseDenmark
| | - Alan Altraja
- Department of Pulmonary MedicineUniversity of TartuTartuEstonia
- Lung Clinic of the Tartu University HospitalTartuEstonia
| | - Grazyna Bochenek
- Department of MedicineJagiellonian University Medical CollegeKrakowPoland
| | - Bogdan Jakiela
- Department of MedicineJagiellonian University Medical CollegeKrakowPoland
| | - Ana Rebane
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| |
Collapse
|
20
|
Shin SB, McNagny KM. ILC-You in the Thymus: A Fresh Look at Innate Lymphoid Cell Development. Front Immunol 2021; 12:681110. [PMID: 34025680 PMCID: PMC8136430 DOI: 10.3389/fimmu.2021.681110] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/20/2021] [Indexed: 01/20/2023] Open
Abstract
The discovery of innate lymphoid cells (ILCs) has revolutionized our understanding of innate immunity and immune cell interactions at epithelial barrier sites. Their presence and maintenance are critical for modulating immune homeostasis, responding to injury or infection, and repairing damaged tissues. To date, ILCs have been defined by a set of transcription factors, surface antigens and cytokines, and their functions resemble those of three major classes of helper T cell subsets, Th1, Th2 and Th17. Despite this, the lack of antigen-specific surface receptors and the notion that ILCs can develop in the absence of the thymic niche have clearly set them apart from the T-cell lineage and promulgated a dogma that ILCs develop directly from progenitors in the bone marrow. Interestingly however, emerging studies have challenged the BM-centric view of adult ILC development and suggest that ILCs could arise neonatally from developing T cell progenitors. In this review, we discuss ILC development in parallel to T-cell development and summarize key findings that support a T-cell-centric view of ILC ontogeny.
Collapse
Affiliation(s)
- Samuel B Shin
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M McNagny
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Shin SB, Lo BC, Ghaedi M, Scott RW, Li Y, Messing M, Hernaez DC, Cait J, Murakami T, Hughes MR, Leslie KB, Underhill TM, Takei F, McNagny KM. Abortive γδTCR rearrangements suggest ILC2s are derived from T-cell precursors. Blood Adv 2020; 4:5362-5372. [PMID: 33137203 PMCID: PMC7656916 DOI: 10.1182/bloodadvances.2020002758] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/27/2020] [Indexed: 12/15/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a recently identified subset of leukocytes that play a central role in pathogen surveillance and resistance, modulation of immune response, and tissue repair. They are remarkably similar to CD4+ T-helper subsets in terms of function and transcription factors required for their development but are distinguished by their lack of antigen-specific receptors. Despite their similarities, the absence of a surface T-cell receptor (TCR) and presence of ILCs and precursors in adult bone marrow has led to speculation that ILCs and T cells develop separately from lineages that branch at the point of precursors within the bone marrow. Considering the common lineage markers and effector cytokine profiles shared between ILCs and T cells, it is surprising that the status of the TCR loci in ILCs was not fully explored at the time of their discovery. Here, we demonstrate that a high proportion of peripheral tissue ILC2s have TCRγ chain gene rearrangements and TCRδ locus deletions. Detailed analyses of these loci show abundant frameshifts and premature stop codons that would encode nonfunctional TCR proteins. Collectively, these data argue that ILC2 can develop from T cells that fail to appropriately rearrange TCR genes, potentially within the thymus.
Collapse
Affiliation(s)
- Samuel B Shin
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; and
| | - Bernard C Lo
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; and
| | - Maryam Ghaedi
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - R Wilder Scott
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; and
| | - Yicong Li
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; and
| | - Melina Messing
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; and
| | - Diana Canals Hernaez
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; and
| | - Jessica Cait
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; and
| | - Taka Murakami
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; and
| | - Michael R Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; and
| | - Kevin B Leslie
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; and
| | - T Michael Underhill
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; and
| | - Fumio Takei
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Kelly M McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; and
| |
Collapse
|
22
|
Boberg E, Johansson K, Malmhäll C, Weidner J, Rådinger M. House Dust Mite Induces Bone Marrow IL-33-Responsive ILC2s and T H Cells. Int J Mol Sci 2020; 21:E3751. [PMID: 32466530 PMCID: PMC7312993 DOI: 10.3390/ijms21113751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/05/2023] Open
Abstract
Type 2 innate lymphoid cells (ILC2s) and their adaptive counterpart type 2 T helper (TH2) cells respond to interleukin-33 (IL-33) by producing IL-5, which is a crucial cytokine for eosinophil development in the bone marrow. The aim of this study was to determine if bone marrow ILC2s, TH cells, and eosinophils are locally regulated by IL-33 in terms of number and activation upon exposure to the common aeroallergen house dust mite (HDM). Mice that were sensitized and challenged with HDM by intranasal exposures induced eosinophil development in the bone marrow with an initial increase of IL5Rα+ eosinophil progenitors, following elevated numbers of mature eosinophils and the induction of airway eosinophilia. Bone marrow ILC2s, TH2, and eosinophils all responded to HDM challenge by increased IL-33 receptor (ST2) expression. However, only ILC2s, but not TH cells, revealed increased ST2 expression at the onset of eosinophil development, which significantly correlated with the number of eosinophil progenitors. In summary, our findings suggest that airway allergen challenges with HDM activates IL-33-responsive ILC2s, TH cells, and eosinophils locally in the bone marrow. Targeting the IL-33/ST2 axis in allergic diseases including asthma may be beneficial by decreasing eosinophil production in the bone marrow.
Collapse
Affiliation(s)
| | | | | | | | - Madeleine Rådinger
- Krefting Research Centre, Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (E.B.); (K.J.); (C.M.); (J.W.)
| |
Collapse
|