1
|
Machado H, Temudo A, Niz MD. The lymphatic system favours survival of a unique T. brucei population. Biol Open 2023; 12:bio059992. [PMID: 37870927 PMCID: PMC10651106 DOI: 10.1242/bio.059992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Trypanosoma brucei colonise and multiply in the blood vasculature, as well as in various organs of the host's body. Lymph nodes have been previously shown to harbour large numbers of parasites, and the lymphatic system has been proposed as a key site that allows T. brucei distribution through, and colonization of the mammalian body. However, visualization of host-pathogen interactions in the lymphatic system has never captured dynamic events with high spatial and temporal resolution throughout infection. In our work, we used a mixture of tools including intravital microscopy and ex vivo imaging to study T. brucei distribution in 20 sets of lymph nodes. We demonstrate that lymph node colonization by T. brucei is different across lymph node sets, with the most heavily colonised being the draining lymph nodes of main tissue reservoirs: the gonadal white adipose tissue and pancreas. Moreover, we show that the lymphatic vasculature is a pivotal site for parasite dispersal, and altering this colonization by blocking LYVE-1 is detrimental for parasite survival. Additionally, parasites within the lymphatic vasculature have unique morphological and behavioural characteristics, different to those found in the blood, demonstrating that across both types of vasculature, these environments are physically separated. Finally, we demonstrate that the lymph nodes and the lymphatic vasculature undergo significant alterations during T. brucei infection, resulting in oedema throughout the host's body.
Collapse
Affiliation(s)
- Henrique Machado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - António Temudo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
- Bioimaging Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| |
Collapse
|
2
|
Quintana JF, Sinton MC, Chandrasegaran P, Kumar Dubey L, Ogunsola J, Al Samman M, Haley M, McConnell G, Kuispond Swar NR, Ngoyi DM, Bending D, de Lecea L, MacLeod A, Mabbott NA. The murine meninges acquire lymphoid tissue properties and harbour autoreactive B cells during chronic Trypanosoma brucei infection. PLoS Biol 2023; 21:e3002389. [PMID: 37983289 PMCID: PMC10723712 DOI: 10.1371/journal.pbio.3002389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/15/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
The meningeal space is a critical brain structure providing immunosurveillance for the central nervous system (CNS), but the impact of infections on the meningeal immune landscape is far from being fully understood. The extracellular protozoan parasite Trypanosoma brucei, which causes human African trypanosomiasis (HAT) or sleeping sickness, accumulates in the meningeal spaces, ultimately inducing severe meningitis and resulting in death if left untreated. Thus, sleeping sickness represents an attractive model to study immunological dynamics in the meninges during infection. Here, by combining single-cell transcriptomics and mass cytometry by time-of-flight (CyTOF) with in vivo interventions, we found that chronic T. brucei infection triggers the development of ectopic lymphoid aggregates (ELAs) in the murine meninges. These infection-induced ELAs were defined by the presence of ER-TR7+ fibroblastic reticular cells, CD21/35+ follicular dendritic cells (FDCs), CXCR5+ PD1+ T follicular helper-like phenotype, GL7+ CD95+ GC-like B cells, and plasmablasts/plasma cells. Furthermore, the B cells found in the infected meninges produced high-affinity autoantibodies able to recognise mouse brain antigens, in a process dependent on LTβ signalling. A mid-throughput screening identified several host factors recognised by these autoantibodies, including myelin basic protein (MBP), coinciding with cortical demyelination and brain pathology. In humans, we identified the presence of autoreactive IgG antibodies in the cerebrospinal fluid (CSF) of second stage HAT patients that recognised human brain lysates and MBP, consistent with our findings in experimental infections. Lastly, we found that the pathological B cell responses we observed in the meninges required the presence of T. brucei in the CNS, as suramin treatment before the onset of the CNS stage prevented the accumulation of GL7+ CD95+ GC-like B cells and brain-specific autoantibody deposition. Taken together, our data provide evidence that the meningeal immune response during chronic T. brucei infection results in the acquisition of lymphoid tissue-like properties, broadening our understanding of meningeal immunity in the context of chronic infections. These findings have wider implications for understanding the mechanisms underlying the formation ELAs during chronic inflammation resulting in autoimmunity in mice and humans, as observed in other autoimmune neurodegenerative disorders, including neuropsychiatric lupus and multiple sclerosis.
Collapse
Affiliation(s)
- Juan F. Quintana
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
- Division of Immunology, Immunity to Infection and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | - Matthew C. Sinton
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Praveena Chandrasegaran
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | | | - John Ogunsola
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | - Moumen Al Samman
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | - Michael Haley
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
- Division of Immunology, Immunity to Infection and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Gail McConnell
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
| | - Nono-Raymond Kuispond Swar
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Dieudonné Mumba Ngoyi
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - David Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Luis de Lecea
- Stanford University School of Medicine, Stanford, California, United States of America
| | - Annette MacLeod
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | - Neil A. Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
VSGs Expressed during Natural T. b. gambiense Infection Exhibit Extensive Sequence Divergence and a Subspecies-Specific Bias towards Type B N-Terminal Domains. mBio 2022; 13:e0255322. [PMID: 36354333 PMCID: PMC9765701 DOI: 10.1128/mbio.02553-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trypanosoma brucei gambiense is the primary causative agent of human African trypanosomiasis (HAT), a vector-borne disease endemic to West and Central Africa. The extracellular parasite evades antibody recognition within the host bloodstream by altering its variant surface glycoprotein (VSG) coat through a process of antigenic variation. The serological tests that are widely used to screen for HAT use VSG as one of the target antigens. However, the VSGs expressed during human infection have not been characterized. Here, we use VSG sequencing (VSG-seq) to analyze the VSGs expressed in the blood of patients infected with T. b. gambiense and compared them to VSG expression in Trypanosoma brucei rhodesiense infections in humans as well as Trypanosoma brucei brucei infections in mice. The 44 VSGs expressed during T. b. gambiense infection revealed a striking bias toward expression of type B N termini (82% of detected VSGs). This bias is specific to T. b. gambiense, which is unique among T. brucei subspecies in its chronic clinical presentation and anthroponotic nature. The expressed T. b. gambiense VSGs also share very little similarity to sequences from 36 T. b. gambiense whole-genome sequencing data sets, particularly in areas of the VSG protein exposed to host antibodies, suggesting the antigen repertoire is under strong selective pressure to diversify. Overall, this work demonstrates new features of antigenic variation in T. brucei gambiense and highlights the importance of understanding VSG repertoires in nature. IMPORTANCE Human African trypanosomiasis is a neglected tropical disease primarily caused by the extracellular parasite Trypanosoma brucei gambiense. To avoid elimination by the host, these parasites repeatedly replace their variant surface glycoprotein (VSG) coat. Despite the important role of VSGs in prolonging infection, VSG expression during human infections is poorly understood. A better understanding of natural VSG gene expression dynamics can clarify the mechanisms that T. brucei uses to alter its VSG coat. We analyzed the expressed VSGs detected in the blood of patients with trypanosomiasis. Our findings indicate that there are features of antigenic variation unique to human-infective T. brucei subspecies and that natural VSG repertoires may vary more than previously expected.
Collapse
|
4
|
First Molecular Identification of Trypanosomes and Absence of Babesia sp. DNA in Faeces of Non-Human Primates in the Ecuadorian Amazon. Pathogens 2022; 11:pathogens11121490. [PMID: 36558823 PMCID: PMC9785249 DOI: 10.3390/pathogens11121490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/20/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Trypanosomes are a group of pathogens distributed in the continents of Africa, America, Asia and Europe, and they affect all vertebrates including the neotropical primate group. Information about the trypanosome's diversity, phylogeny, ecology and pathology in non-human primates (NHPs) from the neotropical region is scarce. The objective of the study was to identify Trypanosoma and Babesia molecularly in NHPs under the phylogenetic species concept. We extracted DNA from a total of 76 faecal samples collected between 2019 and 2021, from a total of 11 non-human primate species of which 46 are from captive NHPs and 30 are free-living NHPs in the Western Amazon region of Ecuador. We did not detect DNA of Babesia sp. by polymerase chain reaction test in any of the faecal samples. However, the nested-PCR-based method revealed Trypanosoma parasites by ITS gene amplification in two faecal samples; one for the species Leontocebus lagonotus (from the captive population) and a second one for Cebus albifrons (from the free-ranging population). Maximum parsimony and likelihood methods with the Kimura2+G+I model inferred the evolutionary history of the two records, which showed an evolutionary relationship with the genus Trypanosoma. Two sequences are monophyletic with Trypanosoma. However, the number of sequences available in GenBank for their species identification is limited. The two samples present different molecular identifications and evolutionary origins in the tree topology. We are most likely referring to two different species, and two different localities of infection. We suggest that health management protocols should be implemented to prevent the transmission of blood-borne pathogens such as Trypanosoma sp. among captive populations. In addition, these protocols also protect the personnel of wildlife rehabilitation centers working in close proximity to NHPs and vice versa.
Collapse
|