1
|
Nakano T, Goto S, Chen CL. Mechanisms of Tolerance Induction in Liver Transplantation: Lessons Learned from Fetomaternal Tolerance, Autoimmunity and Tumor Immunity. Int J Mol Sci 2024; 25:9331. [PMID: 39273280 PMCID: PMC11395488 DOI: 10.3390/ijms25179331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Since the first published report of experimental kidney transplantation in dogs in 1902, there were many experimental and clinical trials of organ transplantation, with many sacrifices. After the establishment of the surgical technique and the discovery of immunosuppressive drugs, transplantation became the definitive treatment strategy for patients with terminal organ failure. However, this is not a common therapy method due to the difficulty of solving the fundamental issues behind organ transplantation, including the shortage of donor graft, potential risks of transplant surgery and economic capability. The pre- and post-transplant management of recipients is another critical issue that may affect transplant outcome. Most liver transplant recipients experience post-transplant complications, including infection, acute/chronic rejection, metabolic syndrome and the recurrence of hepatocellular carcinoma. Therefore, the early prediction and diagnosis of these complications may improve overall and disease-free survival. Furthermore, how to induce operational tolerance is the key to achieving the ultimate goal of transplantation. In this review, we focus on liver transplantation, which is known to achieve operational tolerance in some circumstances, and the mechanical similarities and differences between liver transplant immunology and fetomaternal tolerance, autoimmunity or tumor immunity are discussed.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Liver Transplantation Center and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Shigeru Goto
- Liver Transplantation Center and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Nobeoka Medical Check Center, Fukuoka Institution of Occupational Health, Nobeoka 882-0872, Japan
- School of Pharmacy, Shujitsu University, Okayama 703-8516, Japan
| | - Chao-Long Chen
- Liver Transplantation Center and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
2
|
Pourbagheri-Sigaroodi A, Momeny M, Rezaei N, Fallah F, Bashash D. Immune landscape of hepatocellular carcinoma: From dysregulation of the immune responses to the potential immunotherapies. Cell Biochem Funct 2024; 42:e4098. [PMID: 39034646 DOI: 10.1002/cbf.4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Hepatocellular carcinoma (HCC) presents a considerable global health burden due to its late diagnosis and high morbidity. The liver's specific anatomical and physiological features expose it to various antigens, requiring precise immune regulation. To the best of our knowledge, this is the first time that a comprehensive overview of the interactions between the immune system and gut microbiota in the development of HCC, as well as the relevant therapeutic approaches are discussed. Dysregulation of immune compartments within the liver microenvironment drives HCC pathogenesis, characterized by elevated regulatory cells such as regulatory T cells (Tregs), myeloid-derived suppressor cells, and M2 macrophages as well as suppressive molecules, alongside reduced number of effector cells like T cells, natural killer cells, and M1 macrophages. Dysbiosis of gut microbiota also contributes to HCC by disrupting intestinal barrier integrity and triggering overactivated immune responses. Immunotherapy approaches, particularly immune checkpoint inhibitors, have exhibited promise in HCC management, yet adoptive cell therapy and cancer vaccination research are in the early steps with relatively less favorable outcomes. Further understanding of immune dysregulation, gut microbiota involvement, and therapeutic combination strategies are essential for advancing precision immunotherapy in HCC.
Collapse
Affiliation(s)
- Atieh Pourbagheri-Sigaroodi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zarlashat Y, Abbas S, Ghaffar A. Hepatocellular Carcinoma: Beyond the Border of Advanced Stage Therapy. Cancers (Basel) 2024; 16:2034. [PMID: 38893154 PMCID: PMC11171154 DOI: 10.3390/cancers16112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/27/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the deadliest emergent health issue around the globe. The stronger oncogenic effect, proteins, and weakened immune response are precisely linked with a significant prospect of developing HCC. Several conventional systemic therapies, antiangiogenic therapy, and immunotherapy techniques have significantly improved the outcomes for early-, intermediate-, and advanced-stage HCC patients, giving new hope for effective HCC management and prolonged survival rates. Innovative therapeutic approaches beyond conventional treatments have altered the landscape of managing HCC, particularly focusing on targeted therapies and immunotherapies. The advancement in HCC treatment suggested by the Food and Drug Administration is multidimensional treatment options, including multikinase inhibitors (sorafenib, lenvatinib, regorafenib, ramucirumab, and cabozantinib) and immune checkpoint inhibitors (atezolizumab, pembrolizumab, durvalumab, tremelimumab, ipilimumab, and nivolumab), in monotherapy and in combination therapy to increase life expectancy of HCC patients. This review highlights the efficacy of multikinase inhibitors and immune checkpoint inhibitors in monotherapy and combination therapy through the analysis of phase II, and III clinical trials, targeting the key molecular pathways involved in cellular signaling and immune response for the prospective treatment of advanced and unresectable HCC and discusses the upcoming combinations of immune checkpoint inhibitors-tyrosine kinase inhibitors and immune checkpoint inhibitors-vascular endothelial growth factor inhibitors. Finally, the hidden challenges with pharmacological therapy for HCC, feasible solutions for the future, and implications of possible presumptions to develop drugs for HCC treatment are reported.
Collapse
Affiliation(s)
- Yusra Zarlashat
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Shakil Abbas
- Gomal Center of Biotechnology and Biochemistry (GCBB), Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Abdul Ghaffar
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| |
Collapse
|
4
|
Kosuta I, Kelava T, Ostojic A, Sesa V, Mrzljak A, Lalic H. Immunology demystified: A guide for transplant hepatologists. World J Transplant 2024; 14:89772. [PMID: 38576757 PMCID: PMC10989464 DOI: 10.5500/wjt.v14.i1.89772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/24/2024] [Accepted: 02/29/2024] [Indexed: 03/15/2024] Open
Abstract
Liver transplantation has become standard practice for treating end-stage liver disease. The success of the procedure relies on effective immunosuppressive medications to control the host's immune response. Despite the liver's inherent capacity to foster tolerance, the early post-transplant period is marked by significant immune reactivity. To ensure favorable outcomes, it is imperative to identify and manage various rejection types, encompassing T-cell-mediated, antibody-mediated, and chronic rejection. However, the approach to prescribing immunosuppressants relies heavily on clinical judgment rather than evidence-based criteria. Given that the majority of patients will require lifelong immuno suppression as the mechanisms underlying operational tolerance are still being investigated, healthcare providers must possess an understanding of immune responses, rejection mechanisms, and the pathways targeted by immunosuppressive drugs. This knowledge enables customization of treatments and improved patient care, even though a consensus on an optimal immunosuppressive regimen remains elusive.
Collapse
Affiliation(s)
- Iva Kosuta
- Department of Intensive Care Medicine, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Tomislav Kelava
- Department of Physiology, School of Medicine, Univeristy of Zagreb, Zagreb 10000, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, Zagreb 10000, Croatia
| | - Ana Ostojic
- Department of Gastroenterology and Hepatology, Liver Transplant Center, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Vibor Sesa
- Department of Gastroenterology and Hepatology, Liver Transplant Center, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Anna Mrzljak
- Department of Gastroenterology and Hepatology, University Hospital Centre Zagreb, Zagreb 10000, Croatia
- Department of Medicine, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Hrvoje Lalic
- Department of Physiology, University of Zagreb School of Medicine, Zagreb 10000, Croatia
- Laboratory for Cell Biology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
- Department of Laboratory Immunology, Clinical Department of Laboratory Diagnostics, University Hospital Center Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
5
|
Gazzillo A, Volponi C, Soldani C, Polidoro MA, Franceschini B, Lleo A, Bonavita E, Donadon M. Cellular Senescence in Liver Cancer: How Dying Cells Become "Zombie" Enemies. Biomedicines 2023; 12:26. [PMID: 38275386 PMCID: PMC10813254 DOI: 10.3390/biomedicines12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Liver cancer represents the fourth leading cause of cancer-associated death worldwide. The heterogeneity of its tumor microenvironment (TME) is a major contributing factor of metastasis, relapse, and drug resistance. Regrettably, late diagnosis makes most liver cancer patients ineligible for surgery, and the frequent failure of non-surgical therapeutic options orientates clinical research to the investigation of new drugs. In this context, cellular senescence has been recently shown to play a pivotal role in the progression of chronic inflammatory liver diseases, ultimately leading to cancer. Moreover, the stem-like state triggered by senescence has been associated with the emergence of drug-resistant, aggressive tumor clones. In recent years, an increasing number of studies have emerged to investigate senescence-associated hepatocarcinogenesis and its derived therapies, leading to promising results. In this review, we intend to provide an overview of the recent evidence that unveils the role of cellular senescence in the most frequent forms of primary and metastatic liver cancer, focusing on the involvement of this mechanism in therapy resistance.
Collapse
Affiliation(s)
- Aurora Gazzillo
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Camilla Volponi
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Eduardo Bonavita
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Matteo Donadon
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
- Department of General Surgery, University Maggiore Hospital della Carità, 28100 Novara, Italy
| |
Collapse
|
6
|
Zhao J, Zhang X, Li Y, Yu J, Chen Z, Niu Y, Ran S, Wang S, Ye W, Luo Z, Li X, Hao Y, Zong J, Xia C, Xia J, Wu J. Interorgan communication with the liver: novel mechanisms and therapeutic targets. Front Immunol 2023; 14:1314123. [PMID: 38155961 PMCID: PMC10754533 DOI: 10.3389/fimmu.2023.1314123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
The liver is a multifunctional organ that plays crucial roles in numerous physiological processes, such as production of bile and proteins for blood plasma, regulation of blood levels of amino acids, processing of hemoglobin, clearance of metabolic waste, maintenance of glucose, etc. Therefore, the liver is essential for the homeostasis of organisms. With the development of research on the liver, there is growing concern about its effect on immune cells of innate and adaptive immunity. For example, the liver regulates the proliferation, differentiation, and effector functions of immune cells through various secreted proteins (also known as "hepatokines"). As a result, the liver is identified as an important regulator of the immune system. Furthermore, many diseases resulting from immune disorders are thought to be related to the dysfunction of the liver, including systemic lupus erythematosus, multiple sclerosis, and heart failure. Thus, the liver plays a role in remote immune regulation and is intricately linked with systemic immunity. This review provides a comprehensive overview of the liver remote regulation of the body's innate and adaptive immunity regarding to main areas: immune-related molecules secreted by the liver and the liver-resident cells. Additionally, we assessed the influence of the liver on various facets of systemic immune-related diseases, offering insights into the clinical application of target therapies for liver immune regulation, as well as future developmental trends.
Collapse
Affiliation(s)
- Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
7
|
Li H, Yu S, Liu H, Chen L, Liu H, Liu X, Shen C. Immunologic barriers in liver transplantation: a single-cell analysis of the role of mesenchymal stem cells. Front Immunol 2023; 14:1274982. [PMID: 38143768 PMCID: PMC10748593 DOI: 10.3389/fimmu.2023.1274982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Background This study aimed to analyze the biomarkers that may reliably indicate rejection or tolerance and the mechanism that underlie the induction and maintenance of liver transplantation (LT) tolerance related to immunosuppressant or mesenchymal stem cells (MSCs). Methods LT models of Lewis-Lewis and F344-Lewis rats were established. Lewis-Lewis rats model served as a control (Syn). F344-Lewis rats were treated with immunosuppressant alone (Allo+IS) or in combination with MSCs (Allo+IS+MSCs). Intrahepatic cell composition particularly immune cells was compared between the groups by single-cell sequencing. Analysis of subclusters, KEGG pathway analysis, and pseudotime trajectory analysis were performed to explore the potential immunoregulatory mechanisms of immunosuppressant alone or combined with MSCs. Results Immunosuppressants alone or combined with MSCs increases the liver tolerance, to a certain extent. Single-cell sequencing identified intrahepatic cell composition signature, including cell subpopulations of B cells, cholangiocytes, endothelial cells, erythrocytes, hepatic stellate cells, hepatocytes, mononuclear phagocytes, neutrophils, T cells, and plasmacytoid dendritic cells. Immunosuppressant particularly its combination with MSCs altered the landscape of intrahepatic cells in transplanted livers, as well as gene expression patterns in immune cells. MSCs may be included in the differentiation of T cells, classical monocytes, and non-classical monocytes. Conclusion These findings provided novel insights for better understanding the heterogeneity and biological functions of intrahepatic immune cells after LT treated by IS alone or in combination with MSCs. The identified markers of immune cells may serve as the immunotherapeutic targets for MSC treatment of liver transplant rejection.
Collapse
Affiliation(s)
- Haitao Li
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Saihua Yu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Haiyan Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Lihong Chen
- Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Hongzhi Liu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xingwen Liu
- Department of Nursing, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Conglong Shen
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Que W, Ueta H, Hu X, Morita-Nakagawa M, Fujino M, Ueda D, Tokuda N, Huang W, Guo WZ, Zhong L, Li XK. Temporal and spatial dynamics of immune cells in spontaneous liver transplant tolerance. iScience 2023; 26:107691. [PMID: 37694154 PMCID: PMC10485166 DOI: 10.1016/j.isci.2023.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/11/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023] Open
Abstract
The liver has long been deemed a tolerogenic organ. We employed high-dimensional mass cytometry and immunohistochemistry to depict the temporal and spatial dynamics of immune cells in the spleen and liver in a murine model of spontaneous liver allograft acceptance. We depicted the immune landscape of spontaneous liver tolerance throughout the rejection and acceptance stages after liver transplantation and highlighted several points of importance. Of note, the CD4+/CD8+ T cell ratio remained low, even in the tolerance phase. Furthermore, a PhenoGraph clustering analysis revealed that exhausted CD8+ T cells were the most dominant metacluster in graft-infiltrating lymphocytes (GILs), which highly expressed the costimulatory molecule CD86. The temporal and spatial dynamics of immune cells revealed by high-dimensional analyses enable a fine-grained analysis of GIL subsets, contribute to new insights for the discovery of immunological mechanisms of liver tolerance, and provide potential ways to achieve clinical operational tolerance after liver transplantation.
Collapse
Affiliation(s)
- Weitao Que
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hisashi Ueta
- Department of Anatomy, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Miwa Morita-Nakagawa
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 814-0175, Japan
| | - Masayuki Fujino
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Daisuke Ueda
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8303, Japan
| | - Nobuko Tokuda
- Department of Anatomy, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Wenxin Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiao-Kang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
9
|
Zheng W, Yang L, Jiang S, Chen M, Li J, Liu Z, Wu Z, Gong J, Chen Y. Role of Kupffer cells in tolerance induction after liver transplantation. Front Cell Dev Biol 2023; 11:1179077. [PMID: 37601106 PMCID: PMC10435084 DOI: 10.3389/fcell.2023.1179077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Currently, liver transplantation has reached a level of maturity where it is considered an effective treatment for end-stage liver disease and can significantly prolong the survival time of patients. However, acute and chronic rejection remain major obstacles to its efficacy. Although long-term use of immunosuppressants can prevent rejection, it is associated with serious side effects and significant economic burden for patients. Therefore, the investigation of induced immune tolerance holds crucial theoretical significance and socio-economic value. In fact, the establishment of immune tolerance in liver transplantation is intricately linked to the unique innate immune system of the liver. Kupffer cells, as a crucial component of this system, play a pivotal role in maintaining the delicate balance between inflammatory response and immune tolerance following liver transplantation. The important roles of different functions of Kupffer cells, such as phagocytosis, cell polarization, antigen presentation and cell membrane proteins, in the establishment of immune tolerance after transplantation is comprehensively summarized in this paper. Providing theoretical basis for further study and clinical application of Kupffer cells in liver transplantation.
Collapse
Affiliation(s)
- Weixiong Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingxiang Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiming Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingxiang Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinzheng Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zuojing Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Alabdulaali B, Al-rashed F, Al-Onaizi M, Kandari A, Razafiarison J, Tonui D, Williams MR, Blériot C, Ahmad R, Alzaid F. Macrophages and the development and progression of non-alcoholic fatty liver disease. Front Immunol 2023; 14:1195699. [PMID: 37377968 PMCID: PMC10291618 DOI: 10.3389/fimmu.2023.1195699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The liver is the site of first pass metabolism, detoxifying and metabolizing blood arriving from the hepatic portal vein and hepatic artery. It is made up of multiple cell types, including macrophages. These are either bona fide tissue-resident Kupffer cells (KC) of embryonic origin, or differentiated from circulating monocytes. KCs are the primary immune cells populating the liver under steady state. Liver macrophages interact with hepatocytes, hepatic stellate cells, and liver sinusoidal endothelial cells to maintain homeostasis, however they are also key contributors to disease progression. Generally tolerogenic, they physiologically phagocytose foreign particles and debris from portal circulation and participate in red blood cell clearance. However as immune cells, they retain the capacity to raise an alarm to recruit other immune cells. Their aberrant function leads to the development of non-alcoholic fatty liver disease (NAFLD). NAFLD refers to a spectrum of conditions ranging from benign steatosis of the liver to steatohepatitis and cirrhosis. In NAFLD, the multiple hit hypothesis proposes that simultaneous influences from the gut and adipose tissue (AT) generate hepatic fat deposition and that inflammation plays a key role in disease progression. KCs initiate the inflammatory response as resident immune effectors, they signal to neighbouring cells and recruit monocytes that differentiated into recruited macrophages in situ. Recruited macrophages are central to amplifying the inflammatory response and causing progression of NAFLD to its fibro-inflammatory stages. Given their phagocytic capacity and their being instrumental in maintaining tissue homeostasis, KCs and recruited macrophages are fast-becoming target cell types for therapeutic intervention. We review the literature in the field on the roles of these cells in the development and progression of NAFLD, the characteristics of patients with NAFLD, animal models used in research, as well as the emerging questions. These include the gut-liver-brain axis, which when disrupted can contribute to decline in function, and a discussion on therapeutic strategies that act on the macrophage-inflammatory axis.
Collapse
Affiliation(s)
- Bader Alabdulaali
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Ministry of Health, Kuwait City, Kuwait
| | | | - Mohammed Al-Onaizi
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Anwar Kandari
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Ministry of Health, Kuwait City, Kuwait
| | - Joanna Razafiarison
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| | - Dorothy Tonui
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| | | | - Camille Blériot
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
- Inserm U1015, Gustave Roussy, Villejuif, France
| | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Kuwait City, Kuwait
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| |
Collapse
|
11
|
Vaisbourd Y, Dahhou M, Zhang X, Sapir-Pichhadze R, Cardinal H, Johnston O, Blydt-Hansen TD, Tibbles LA, Hamiwka L, Urschel S, Birk P, Bissonnette J, Matsuda-Abedini M, BScPhm JH, Schiff J, Phan V, De Geest S, Allen U, Avitzur Y, Mital S, Foster BJ. Differences in medication adherence by sex and organ type among adolescent and young adult solid organ transplant recipients. Pediatr Transplant 2023; 27:e14446. [PMID: 36478059 DOI: 10.1111/petr.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Identification of differences in medication adherence by sex or organ type may help in planning interventions to optimize outcomes. We compared immunosuppressive medication adherence between males and females, and between kidney, liver and heart transplant recipients. METHODS This multicenter study of prevalent kidney, liver and heart transplant recipients 14-25 years assessed adherence 3 times (0, 3, 6 months post-enrollment) with the BAASIS self-report tool. At each visit, participants were classified as adherent if they missed no doses in the prior 4 weeks and non-adherent otherwise. Adherence was also assessed using the coefficient of variation (CV) of tacrolimus trough levels; CV < 30% was classified as adherent. We used multivariable mixed effects logistic regression models adjusted for potential confounders to compare adherence by sex and by organ. RESULTS Across all visits, males (n = 150, median age 20.4 years, IQR 17.2-23.3) had lower odds of self-reported adherence than females (n = 120, median age 19.8 years, IQR 17.1-22.7) (OR 0.41, 95% CI 0.21-0.80) but higher odds of adherence by tacrolimus CV (OR 2.50, 95% CI 1.30-4.82). No significant differences in adherence (by self-report or tacrolimus CV) were noted between the 184 kidney, 58 liver, and 28 heart recipients. CONCLUSION Females show better self-reported adherence than males but greater variability in tacrolimus levels. Social desirability bias, more common in females than males, may contribute to better self-reported adherence among females. Higher tacrolimus variability among females may reflect biologic differences in tacrolimus metabolism between males and females rather than sex differences in adherence. There were no significant differences in adherence by organ type.
Collapse
Affiliation(s)
| | - Mourad Dahhou
- Research Institute of The McGill University Health Centre, Quebec, Canada
| | - Xun Zhang
- Research Institute of The McGill University Health Centre, Quebec, Canada
| | - Ruth Sapir-Pichhadze
- Research Institute of The McGill University Health Centre, Quebec, Canada.,Department of Medicine, McGill University, Quebec, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Quebec, Canada
| | | | - Olwyn Johnston
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tom D Blydt-Hansen
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lee Anne Tibbles
- Department of Medicine and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Lorraine Hamiwka
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Simon Urschel
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Patricia Birk
- Section of Pediatric Nephrology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Mina Matsuda-Abedini
- Department of Pediatrics, The Hospital for Sick Children and The University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Harrison BScPhm
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Ajmera Transplant Centre, Toronto General Hospital, Toronto, Ontario, Canada
| | - Jeffrey Schiff
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Ontario, Canada
| | | | - Sabina De Geest
- Department Public Health, Institute of Nursing Science, University of Basel, Basel, Switzerland.,Department of Primary Care and Public Health, Academic Center of Nursing and Midwifery, KU Leuven, Leuven, Belgium
| | - Upton Allen
- Department of Pediatrics, The Hospital for Sick Children and The University of Toronto, Toronto, Ontario, Canada
| | - Yaron Avitzur
- Department of Pediatrics, The Hospital for Sick Children and The University of Toronto, Toronto, Ontario, Canada
| | - Seema Mital
- Department of Pediatrics, The Hospital for Sick Children and The University of Toronto, Toronto, Ontario, Canada
| | - Bethany J Foster
- Department of Pediatrics, McGill University, Quebec, Canada.,Research Institute of The McGill University Health Centre, Quebec, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Quebec, Canada
| |
Collapse
|
12
|
Zahmatkesh E, Khoshdel Rad N, Hossein-Khannazer N, Mohamadnejad M, Gramignoli R, Najimi M, Malekzadeh R, Hassan M, Vosough M. Cell and cell-derivative-based therapy for liver diseases: current approaches and future promises. Expert Rev Gastroenterol Hepatol 2023; 17:237-249. [PMID: 36692130 DOI: 10.1080/17474124.2023.2172398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION According to the recent updates from World Health Organization, liver diseases are the 12th most common cause of mortality. Currently, orthotopic liver transplantation (OLT) is the most effective and the only treatment for end-stage liver diseases. Owing to several shortcomings like finite numbers of healthy organ donors, lifelong immunosuppression, and complexity of the procedure, cell and cell-derivatives therapies have emerged as a potential therapeutic alternative for liver diseases. Various cell types and therapies have been proposed and their therapeutic effects evaluated in preclinical or clinical studies, including hepatocytes, hepatocyte-like cells (HLCs) derived from stem cells, human liver stem cells (HLSCs), combination therapies with various types of cells, organoids, and implantable cell-biomaterial constructs with synthetic and natural polymers or even decellularized extracellular matrix (ECM). AREAS COVERED In this review, we highlighted the current status of cell and cell-derivative-based therapies for liver diseases. Furthermore, we discussed future prospects of using HLCs, liver organoids, and their combination therapies. EXPERT OPINION Promising application of stem cell-based techniques including iPSC technology has been integrated into novel techniques such as gene editing, directed differentiation, and organoid technology. iPSCs offer promising prospects to represent novel therapeutic strategies and modeling liver diseases.
Collapse
Affiliation(s)
- Ensieh Zahmatkesh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel Rad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohamadnejad
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Reza Malekzadeh
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
13
|
Pérez-Escobar J, Jimenez JV, Rodríguez-Aguilar EF, Servín-Rojas M, Ruiz-Manriquez J, Safar-Boueri L, Carrillo-Maravilla E, Navasa M, García-Juárez I. Immunotolerance in liver transplantation: a primer for the clinician. Ann Hepatol 2023; 28:100760. [PMID: 36179797 DOI: 10.1016/j.aohep.2022.100760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/08/2022] [Indexed: 02/04/2023]
Abstract
The use of immunosuppressive medications for solid organ transplantation is associated with cardiovascular, metabolic, and oncologic complications. On the other hand, the development of graft rejection is associated with increased mortality and graft dysfunction. Liver transplant recipients can withdraw from immunosuppression without developing graft injury while preserving an adequate antimicrobial response - a characteristic known as immunotolerance. Immunotolerance can be spontaneously or pharmacologically achieved. Contrary to the classic dogma, clinical studies have elucidated low rates of true spontaneous immunotolerance (no serologic or histological markers of immune injury) among liver transplant recipients. However, clinical, serologic, and tissue biomarkers can aid in selecting patients in whom immunosuppression can be safely withdrawn. For those who failed an immunosuppression withdrawal trial or are at high risk of rejection, pharmacological interventions for immunotolerance induction are under development. In this review, we provide an overview of the mechanisms of immunotolerance, the clinical studies investigating predictors and biomarkers of spontaneous immunotolerance, as well as the potential pharmacological interventions for inducing it.
Collapse
Affiliation(s)
- Juanita Pérez-Escobar
- Department of Hepatology and Liver Transplant, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jose Victor Jimenez
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Erika Faride Rodríguez-Aguilar
- Department of Hepatology and Liver Transplant, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Maximiliano Servín-Rojas
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jesus Ruiz-Manriquez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luisa Safar-Boueri
- Comprehensive Transplant Center, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Eduardo Carrillo-Maravilla
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Miquel Navasa
- Liver Transplant Unit, Hepatology Service, Hospital Clínic de Barcelona, IDIBAPS, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Ignacio García-Juárez
- Department of Hepatology and Liver Transplant, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
14
|
The Tumor Microenvironment of Hepatocellular Carcinoma: Untying an Intricate Immunological Network. Cancers (Basel) 2022; 14:cancers14246151. [PMID: 36551635 PMCID: PMC9776867 DOI: 10.3390/cancers14246151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
HCC, the most prevalent form of primary liver cancer, is prototypically an inflammation-driven cancer developing after years of inflammatory insults. Consequently, the hepatic microenvironment is a site of complex immunological activities. Moreover, the tolerogenic nature of the liver can act as a barrier to anti-tumor immunity, fostering cancer progression and resistance to immunotherapies based on immune checkpoint inhibitors (ICB). In addition to being a site of primary carcinogenesis, many cancer types have high tropism for the liver, and patients diagnosed with liver metastasis have a dismal prognosis. Therefore, understanding the immunological networks characterizing the tumor microenvironment (TME) of HCC will deepen our understanding of liver immunity, and it will underpin the dominant mechanisms controlling both spontaneous and therapy-induced anti-tumor immune responses. Herein, we discuss the contributions of the cellular and molecular components of the liver immune contexture during HCC onset and progression by underscoring how the balance between antagonistic immune responses can recast the properties of the TME and the response to ICB.
Collapse
|
15
|
Fodor M, Salcher S, Gottschling H, Mair A, Blumer M, Sopper S, Ebner S, Pircher A, Oberhuber R, Wolf D, Schneeberger S, Hautz T. The liver-resident immune cell repertoire - A boon or a bane during machine perfusion? Front Immunol 2022; 13:982018. [PMID: 36311746 PMCID: PMC9609784 DOI: 10.3389/fimmu.2022.982018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
The liver has been proposed as an important “immune organ” of the body, as it is critically involved in a variety of specific and unique immune tasks. It contains a huge resident immune cell repertoire, which determines the balance between tolerance and inflammation in the hepatic microenvironment. Liver-resident immune cells, populating the sinusoids and the space of Disse, include professional antigen-presenting cells, myeloid cells, as well as innate and adaptive lymphoid cell populations. Machine perfusion (MP) has emerged as an innovative technology to preserve organs ex vivo while testing for organ quality and function prior to transplantation. As for the liver, hypothermic and normothermic MP techniques have successfully been implemented in clinically routine, especially for the use of marginal donor livers. Although there is evidence that ischemia reperfusion injury-associated inflammation is reduced in machine-perfused livers, little is known whether MP impacts the quantity, activation state and function of the hepatic immune-cell repertoire, and how this affects the inflammatory milieu during MP. At this point, it remains even speculative if liver-resident immune cells primarily exert a pro-inflammatory and hence destructive effect on machine-perfused organs, or in part may be essential to induce liver regeneration and counteract liver damage. This review discusses the role of hepatic immune cell subtypes during inflammatory conditions and ischemia reperfusion injury in the context of liver transplantation. We further highlight the possible impact of MP on the modification of the immune cell repertoire and its potential for future applications and immune modulation of the liver.
Collapse
Affiliation(s)
- M. Fodor
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - S. Salcher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - H. Gottschling
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A. Mair
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - M. Blumer
- Department of Anatomy and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - S. Sopper
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - S. Ebner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A. Pircher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - R. Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - D. Wolf
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - S. Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - T. Hautz
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: T. Hautz,
| |
Collapse
|
16
|
Zhao Z, Wang C, Chu P, Lu X. Key Genes Associated with Tumor-Infiltrating Non-regulatory CD4- and CD8-Positive T Cells in Microenvironment of Hepatocellular Carcinoma. Biochem Genet 2022; 60:1762-1780. [PMID: 35092558 PMCID: PMC9470630 DOI: 10.1007/s10528-021-10175-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
The immune microenvironment in hepatocellular carcinoma (HCC), especially T-cell infiltration, plays a key role in the prognosis and drug sensitivity of HCC. Our study aimed to analyze genes related to non-regulatory CD4+ and CD8+ T cell in HCC. Data of HCC samples were downloaded from The Cancer Genome Atlas (TCGA) database. According to stromal and immune score retrieved by Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm, differentiated expressed genes (DEGs) between high and low stromal/immune scoring groups were collected. Using Cibersort algorithm, abundance of immune cells was calculated and genes related with CD4+ and CD8+ T cells were selected. Protein-protein interaction (PPI) networks and networks of microRNA (miRNA)-target gene interactions were illustrated, in which CD4+ and CD8+ T cell-related core genes were selected. Finally, Cox regression test and Kaplan-Meier (K-M) survival analysis were conducted. Totally, 1579 DEGs were identified, where 103 genes and 407 genes related with CD4+ and CD8+ T cell were selected, respectively. Each of 30 core genes related to CD4+ T cells and CD8+ T cells were selected by PPI network. Four genes each related with the two types of T cells had a significant impact on prognosis of HCC patients. Amongst, KLRB1 and IL18RAP were final two genes related to both two kinds of T cells and associated with overall survival of the HCC patients.
Collapse
Affiliation(s)
- Zijun Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Chaonan Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peishan Chu
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China.
| |
Collapse
|
17
|
Huang M, Cai H, Han B, Xia Y, Kong X, Gu J. Natural Killer Cells in Hepatic Ischemia-Reperfusion Injury. Front Immunol 2022; 13:870038. [PMID: 35418990 PMCID: PMC8996070 DOI: 10.3389/fimmu.2022.870038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemia-reperfusion injury can be divided into two phases, including insufficient supply of oxygen and nutrients in the first stage and then organ injury caused by immune inflammation after blood flow recovery. Hepatic ischemia-reperfusion is an important cause of liver injury post-surgery, consisting of partial hepatectomy and liver transplantation, and a central driver of graft dysfunction, which greatly leads to complications and mortality after liver transplantation. Natural killer (NK) cells are the lymphocyte population mainly involved in innate immune response in the human liver. In addition to their well-known role in anti-virus and anti-tumor defense, NK cells are also considered to regulate the pathogenesis of liver ischemia-reperfusion injury under the support of more and more evidence recently. The infiltration of NK cells into the liver exacerbates the hepatic ischemia-reperfusion injury, which could be significantly alleviated after depletion of NK cells. Interestingly, NK cells may contribute to both liver graft rejection and tolerance according to their origins. In this article, we discussed the development of liver NK cells, their role in ischemia-reperfusion injury, and strategies of inhibiting NK cell activation in order to provide potential possibilities for translation application in future clinical practice.
Collapse
Affiliation(s)
- Miao Huang
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Cai
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Han
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Xia
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Wang Y, Yang Y, Zhao Z, Sun H, Luo D, Huttad L, Zhang B, Han B. A new nomogram model for prognosis of hepatocellular carcinoma based on novel gene signature that regulates cross-talk between immune and tumor cells. BMC Cancer 2022; 22:379. [PMID: 35397536 PMCID: PMC8994280 DOI: 10.1186/s12885-022-09465-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Background The combined application of immune cells and specific biomarkers related to the tumor immune microenvironment has a better predictive value for the prognosis of HCC. The purpose of this study is to construct a new prognostic model based on immune-related genes that regulate cross-talk between immune and tumor cells to assess the prognosis and explore possible mechanisms. Method The immune cell abundance ratio of 424 cases in the TCGA-LIHC database is obtained through the CIBERSORT algorithm. The differential gene analysis and cox regression analysis is used to screen IRGs. In addition, the function of IRGs was preliminarily explored through the co-culture of M2 macrophages and HCC cell lines. The clinical validation, nomogram establishment and performing tumor microenvironment score were validated. Results We identified 4 immune cells and 9 hub genes related to the prognosis. Further, we identified S100A9, CD79B, TNFRSF11B as an IRGs signature, which is verified in the ICGC and GSE76427 database. Importantly, IRGs signature is closely related to the prognosis, tumor microenvironment score, clinical characteristics and immunotherapy, and nomogram combined with clinical characteristics is more conducive to clinical promotion. In addition, after co-culture with M2 macrophages, the migration capacity and cell pseudopod of MHCC97H increased significantly. And CD79B and TNFRSF11B were significantly down-regulated in MHCC97H, Huh7 and LM3, while S100A9 was up-regulated. Conclusion We constructed an IRGs signature and discussed possible mechanisms. The nomogram established based on IRGs can accurately predict the prognosis of HCC patients. These findings may provide a suitable therapeutic target for HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09465-9.
Collapse
|
19
|
Tang Y, Chen J, Chen B, Guo C. Clinical characteristics of immune tolerance after pediatric liver transplantation. BMC Surg 2022; 22:102. [PMID: 35305597 PMCID: PMC8933983 DOI: 10.1186/s12893-021-01402-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Clinical operational tolerance is the ultimate goal for liver transplantation. This study aimed to investigate the clinical characteristics of immune tolerance after pediatric liver transplantation and to identify the possible predictors.
Methods
The clinical data from 37 cases of pediatric patients 2 year later after liver transplantation surgery in the Children’s Hospital of Chongqing Medical University, China, were retrospectively analyzed. According to the status of the current immunosuppressant medications of the patients, they were divided into tolerance (n = 15) and Control (n = 22) groups. The current status regarding prope/operational tolerance was reviewed and screened based on the immunosuppressant medications.
Results
The patients in the tolerance group were younger than that of Controls (p < 0.001). The children in the tolerance group experienced no acute rejection episode and exhibited no obvious abnormalities in the liver function during the continuous follow-up period. The primary disease of the tolerance group were more often diagnosed with biliary atresia (p = 0.011), and received with a living donor liver graft (p = 0.005). There were less glomerular function, diabetes mellitus, arterial hypertension events presented in the tolerance group compared with the control group, indicating low toxicity profile.
Conclusion
In the current study, there were really certain quantity of recipients following liver transplantation attained long term immune tolerance, with low toxicity and satisfied liver graft function. The younger age of the recipient and maternal donor seems to promote long-term clinical immune tolerance. Further work in larger series should be required to describe the overall perspective of tolerance.
Collapse
|
20
|
Beyzaei Z, Shojazadeh A, Geramizadeh B. The role of regulatory T cells in liver transplantation. Transpl Immunol 2021; 70:101512. [PMID: 34871717 DOI: 10.1016/j.trim.2021.101512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
The liver is considered a tolerogenic organ that can induce peripheral tolerance. The exact mechanisms of tolerance in the liver remain undefined. Regulatory T cells (Tregs) have been demonstrated to be involved in inducing and maintaining peripheral tolerance. They play an important role in the prevention of immune responses and autoimmunity. The main focus of this review is the role of Tregs and their subpopulation in liver transplantation. More specifically, this manuscript will highlight the recent findings about using Treg cells as a biomarker in liver transplantation. There are some reports and animal models about the role of Tregs in the process of rejection of liver transplantation. Previous reports and studies have suggested that by increasing the number of Tregs better liver transplant outcomes will be accomplished by enhancing tolerance. It has been shown that the levels of CD4 + CD25 + FOXP3+ Treg cells correlate with the inhibition of acute allograft rejection in liver transplantation; however, further studies must be done to address the potential role of Treg cells in chronic rejection. Indeed, in the future, Treg cells may have potential use as a beneficial biomarker to screen long-term graft function.
Collapse
Affiliation(s)
- Zahra Beyzaei
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Shojazadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pathology, Medical School of Shiraz University, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Plasmacytoid dendritic cells mediate the tolerogenic effect of CD8 +regulatory T cells in a rat tolerant liver transplantation model. Transpl Immunol 2021; 70:101508. [PMID: 34843936 DOI: 10.1016/j.trim.2021.101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Tolerance is more easily induced in liver transplant models than in other organs; CD8+CD45RClowregulatory T cells (Tregs) have been shown to induce tolerance in heart allografts. Whether CD8+CD45RClowTregs could induce tolerance in a liver transplant model and how dendritic cells (DCs) mediate the CD8+CD45RClowTregs effect remains to be investigated. METHODS A rat liver transplantation model was established and used to test tolerance and acute rejection compared to control groups. Liver function and histopathological changes of allograft were examined by enzyme-linked immunosorbent assay (ELISA) and haematoxylin and eosin (H&E) staining, respectively. The distribution and proportion of CD8+CD45RClowTregs and plasmacytoid dendritic cells (pDCs) in the allografts and spleen were determined using flow cytometry. Cytokine secretion levels were determined using ELISA and real-time quantitative PCR (qRT-PCR). RESULTS The rat liver transplantation model was well established, with a success rate of 93.3% (28/30). The mean survival time of the tolerant and acute-rejection rats were 156 and 14 days, respectively. The proportions of CD8+CD45RClowTegs were higher in the allografts of tolerant rats than in those of acute-rejection rats (33.1 ± 4.3 and 12.4 ± 4.6, respectively; P = 0.04). Significant accumulation of pDCs was observed in tolerant liver graft rats compared to that in acute-rejection rats (1.46 ± 0.23 and 0.80 ± 0.20, respectively; P = 0.02). Importantly, CD8+CD45RClowTregs were positively associated with the frequency of pDCs (P = 0.001, r2 = 0.775). The protein and mRNA expression of IL-10 and TGF-β in the allograft group were increased, possibly being responsible for tolerance induction. CONCLUSION CD8+CD45RClowT cells interact with pDCs through the induction of IL-10 and TGF-β expression and are responsible for inducing immune tolerance in rat liver transplantation.
Collapse
|
22
|
Larson EL, Joo DJ, Nelson ED, Amiot BP, Aravalli RN, Nyberg SL. Fumarylacetoacetate hydrolase gene as a knockout target for hepatic chimerism and donor liver production. Stem Cell Reports 2021; 16:2577-2588. [PMID: 34678209 PMCID: PMC8581169 DOI: 10.1016/j.stemcr.2021.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
A reliable source of human hepatocytes and transplantable livers is needed. Interspecies embryo complementation, which involves implanting donor human stem cells into early morula/blastocyst stage animal embryos, is an emerging solution to the shortage of transplantable livers. We review proposed mutations in the recipient embryo to disable hepatogenesis, and discuss the advantages of using fumarylacetoacetate hydrolase knockouts and other genetic modifications to disable hepatogenesis. Interspecies blastocyst complementation using porcine recipients for primate donors has been achieved, although percentages of chimerism remain persistently low. Recent investigation into the dynamic transcriptomes of pigs and primates have created new opportunities to intimately match the stage of developing animal embryos with one of the many varieties of human induced pluripotent stem cell. We discuss techniques for decreasing donor cell apoptosis, targeting donor tissue to endodermal structures to avoid neural or germline chimerism, and decreasing the immunogenicity of chimeric organs by generating donor endothelium.
Collapse
Affiliation(s)
- Ellen L Larson
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Dong Jin Joo
- Department of Surgery, Division of Transplantation, Yonsei University College of Medicine, Seoul, South Korea
| | - Erek D Nelson
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Bruce P Amiot
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Scott L Nyberg
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
23
|
Goodall KJ, Nguyen A, Andrews DM, Sullivan LC. Ribosylation of the CD8αβ heterodimer permits binding of the nonclassical major histocompatibility molecule, H2-Q10. J Biol Chem 2021; 297:101141. [PMID: 34478713 PMCID: PMC8517849 DOI: 10.1016/j.jbc.2021.101141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
The CD8αβ heterodimer plays a crucial role in the stabilization between major histocompatibility complex class I molecules (MHC-I) and the T cell receptor (TCR). The interaction between CD8 and MHC-I can be regulated by posttranslational modifications, which are proposed to play an important role in the development of CD8 T cells. One modification that has been proposed to control CD8 coreceptor function is ribosylation. Utilizing NAD+, the ecto-enzyme adenosine diphosphate (ADP) ribosyl transferase 2.2 (ART2.2) catalyzes the addition of ADP-ribosyl groups onto arginine residues of CD8α or β chains and alters the interaction between the MHC and TCR complexes. To date, only interactions between modified CD8 and classical MHC-I (MHC-Ia), have been investigated and the interaction with non-classical MHC (MHC-Ib) has not been explored. Here, we show that ADP-ribosylation of CD8 facilitates the binding of the liver-restricted nonclassical MHC, H2-Q10, independent of the associated TCR or presented peptide, and propose that this highly regulated binding imposes an additional inhibitory leash on the activation of CD8-expressing cells in the presence of NAD+. These findings highlight additional important roles for nonclassical MHC-I in the regulation of immune responses.
Collapse
Affiliation(s)
- Katharine Jennifer Goodall
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.
| | - Angela Nguyen
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Daniel Mark Andrews
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | | |
Collapse
|
24
|
Chen XY, Du GS, Sun X. Targeting Lymphoid Tissues to Promote Immune Tolerance. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao Yan Chen
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| | - Guang Sheng Du
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| | - Xun Sun
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| |
Collapse
|
25
|
Mo C, Xie S, Liu B, Zhong W, Zeng T, Huang S, Lai Y, Deng G, Zhou C, Yan W, Chen Y, Huang S, Gao L, Lv Z. Indoleamine 2,3-dioxygenase 1 limits hepatic inflammatory cells recruitment and promotes bile duct ligation-induced liver fibrosis. Cell Death Dis 2021; 12:16. [PMID: 33414436 PMCID: PMC7791029 DOI: 10.1038/s41419-020-03277-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Liver fibrosis is a course of chronic liver dysfunction, can develop into cirrhosis and hepatocellular carcinoma. Inflammatory insult owing to pathogenic factors plays a crucial role in the pathogenesis of liver fibrosis. Indoleamine 2,3-dioxygenase 1 (IDO1) can affect the infiltration of immune cells in many pathology processes of diseases, but its role in liver fibrosis has not been elucidated completely. Here, the markedly elevated protein IDO1 in livers was identified, and dendritic cells (DCs) immune-phenotypes were significantly altered after BDL challenge. A distinct hepatic population of CD11c+DCs was decreased and presented an immature immune-phenotype, reflected by lower expression levels of co-stimulatory molecules (CD40, MHCII). Frequencies of CD11c+CD80+, CD11c+CD86+, CD11c+MHCII+, and CD11c+CD40+ cells in splenic leukocytes were reduced significantly. Notably, IDO1 overexpression inhibited hepatic, splenic CD11c+DCs maturation, mature DCs-mediated T-cell proliferation and worsened liver fibrosis, whereas above pathological phenomena were reversed in IDO1-/- mice. Our data demonstrate that IDO1 affects the process of immune cells recruitment via inhibiting DCs maturation and subsequent T cells proliferation, resulting in the promotion of hepatic fibrosis. Thus, amelioration of immune responses in hepatic and splenic microenvironment by targeting IDO1 might be essential for the therapeutic effects on liver fibrosis.
Collapse
Affiliation(s)
- Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Bin Liu
- Department of Emergency, Guangzhou Red Cross Hospital, Medical College, Jinan University, 510220, Guangzhou, China
| | - Weichao Zhong
- Shenzhen Traditional Chinese Medicine Hospital, No.1, Fuhua Road, Futian District, 518033, Shenzhen, Guangdong, People's Republic of China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Weixin Yan
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, People's Republic of China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|