1
|
Turudic D, Pokrajac D, Tasic V, Kasumovic D, Prohaszka Z, Milosevic D. The Rationale of Complement Blockade of the MCP ggaac Haplotype following Atypical Hemolytic Uremic Syndrome of Three Southeastern European Countries with a Literature Review. Int J Mol Sci 2023; 24:13041. [PMID: 37685848 PMCID: PMC10487996 DOI: 10.3390/ijms241713041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
We present eight cases of the homozygous MCPggaac haplotype, which is considered to increase the likelihood and severity of atypical hemolytic uremic syndrome (aHUS), especially in combination with additional risk aHUS mutations. Complement blockade (CBT) was applied at a median age of 92 months (IQR 36-252 months). The median number of relapses before CBT initiation (Eculizumab) was two. Relapses occurred within an average of 22.16 months (median 17.5, minimum 8 months, and maximum 48 months) from the first subsequent onset of the disease (6/8 patients). All cases were treated with PI/PEX, and rarely with renal replacement therapy (RRT). When complement blockade was applied, children had no further disease relapses. Children with MCPggaac haplotype with/without additional gene mutations can achieve remission through renal replacement therapy without an immediate need for complement blockade. If relapse of aHUS occurs soon after disease onset or relapses are repeated frequently, a permanent complement blockade is required. However, the duration of such a blockade remains uncertain. If complement inhibition is not applied within 4-5 relapses, proteinuria and chronic renal failure will eventually occur.
Collapse
Affiliation(s)
- Daniel Turudic
- Department of Pediatrics, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Danka Pokrajac
- Pediatric Clinic, Clinical Center, University of Sarajevo, Patriotske Lige 81, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Velibor Tasic
- Medical Faculty Skopje, University Children’s Hospital, 1010 Skopje, North Macedonia;
| | - Dino Kasumovic
- Department of Nephrology and Dialysis, Dubrava University Hospital, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Zoltan Prohaszka
- Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary;
- Research Group for Immunology and Haematology, Eotvos Lorand Research Network (Office for Supported Research Groups), Semmelweis University, 1085 Budapest, Hungary
| | - Danko Milosevic
- Croatian Academy of Medical Sciences, Kaptol ul. 15, 10000 Zagreb, Croatia;
- Department of Pediatrics, Zabok General Hospital, and the Croatian Veterans Hospital, Bračak 8, 49210 Bračak, Croatia
| |
Collapse
|
2
|
Liszewski MK, Atkinson JP. Membrane cofactor protein (MCP; CD46): deficiency states and pathogen connections. Curr Opin Immunol 2021; 72:126-134. [PMID: 34004375 PMCID: PMC8123722 DOI: 10.1016/j.coi.2021.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Membrane cofactor protein (MCP; CD46), a ubiquitously expressed complement regulatory protein, serves as a cofactor for serine protease factor I to cleave and inactivate C3b and C4b deposited on host cells. However, CD46 also plays roles in human reproduction, autophagy, modulating T cell activation and effector functions and is a member of the newly identified intracellular complement system (complosome). CD46 also is a receptor for 11 pathogens ('pathogen magnet'). While CD46 deficiencies contribute to inflammatory disorders, its overexpression in cancers and role as a receptor for some adenoviruses has led to its targeting by oncolytic agents and adenoviral-based therapeutic vectors, including coronavirus disease of 2019 (COVID-19) vaccines. This review focuses on recent advances in identifying disease-causing CD46 variants and its pathogen connections.
Collapse
Affiliation(s)
- M Kathryn Liszewski
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
3
|
Pollack S, Eisenstein I, Mory A, Paperna T, Ofir A, Baris-Feldman H, Weiss K, Veszeli N, Csuka D, Shemer R, Glaser F, Prohászka Z, Magen D. A Novel Homozygous In-Frame Deletion in Complement Factor 3 Underlies Early-Onset Autosomal Recessive Atypical Hemolytic Uremic Syndrome - Case Report. Front Immunol 2021; 12:608604. [PMID: 34248927 PMCID: PMC8264753 DOI: 10.3389/fimmu.2021.608604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/24/2021] [Indexed: 11/21/2022] Open
Abstract
Background and Objectives Atypical hemolytic uremic syndrome (aHUS) is mostly attributed to dysregulation of the alternative complement pathway (ACP) secondary to disease-causing variants in complement components or regulatory proteins. Hereditary aHUS due to C3 disruption is rare, usually caused by heterozygous activating mutations in the C3 gene, and transmitted as autosomal dominant traits. We studied the molecular basis of early-onset aHUS, associated with an unusual finding of a novel homozygous activating deletion in C3. Design, Setting, Participants, & Measurements A male neonate with eculizumab-responsive fulminant aHUS and C3 hypocomplementemia, and six of his healthy close relatives were investigated. Genetic analysis on genomic DNA was performed by exome sequencing of the patient, followed by targeted Sanger sequencing for variant detection in his close relatives. Complement components analysis using specific immunoassays was performed on frozen plasma samples from the patient and mother. Results Exome sequencing revealed a novel homozygous variant in exon 26 of C3 (c.3322_3333del, p.Ile1108_Lys1111del), within the highly conserved thioester-containing domain (TED), fully segregating with the familial disease phenotype, as compatible with autosomal recessive inheritance. Complement profiling of the patient showed decreased C3 and FB levels, with elevated levels of the terminal membrane attack complex, while his healthy heterozygous mother showed intermediate levels of C3 consumption. Conclusions Our findings represent the first description of aHUS secondary to a novel homozygous deletion in C3 with ensuing unbalanced C3 over-activation, highlighting a critical role for the disrupted C3-TED domain in the disease mechanism.
Collapse
Affiliation(s)
- Shirley Pollack
- Pediatric Nephrology Institute, Ruth Children's Hospital, Haifa, Israel.,Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Israel Eisenstein
- Pediatric Nephrology Institute, Ruth Children's Hospital, Haifa, Israel
| | - Adi Mory
- Genetic Institute, Haifa, Israel
| | | | | | | | | | - Nóra Veszeli
- Research Laboratory, Department of Internal Medicine and Haematology, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Dorottya Csuka
- Research Laboratory, Department of Internal Medicine and Haematology, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Revital Shemer
- Laboratory of Molecular Medicine, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Fabian Glaser
- Bioinformatics Knowledge Unit, The Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zoltán Prohászka
- Research Laboratory, Department of Internal Medicine and Haematology, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Daniella Magen
- Pediatric Nephrology Institute, Ruth Children's Hospital, Haifa, Israel.,Laboratory of Molecular Medicine, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|