1
|
Li W, Xia Y, Yang J, Sanyal AJ, Shah VH, Chalasani NP, Yu Q. Disrupted balance between pro-inflammatory lipid mediators and anti-inflammatory specialized pro-resolving mediators is linked to hyperinflammation in patients with alcoholic hepatitis. Front Immunol 2024; 15:1377236. [PMID: 39640267 PMCID: PMC11617321 DOI: 10.3389/fimmu.2024.1377236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Background Alcoholic hepatitis (AH) is characterized by intense systemic and liver inflammation, posing significant risks of health complications and mortality. While inflammation is a crucial defense mechanism against injury and infection, its timely resolution is essential to prevent tissue damage and restore tissue homeostasis. The resolution of inflammation is primarily governed by specialized pro-resolving mediators (SPMs), lipid metabolites derived from w-6 and w-3 poly-unsaturated fatty acids (PUFAs). Currently, the balance between pro-inflammatory lipid mediators (PLMs) and SPMs in the w-6 and w-3 PUFA metabolic pathways and the impact of alcohol abstinence on profiles of PLMs and SPMs in AH patients are not well studied. Methods In this study, we used LC-MS/MS and ELISA to quantify levels of lipid mediators (LMs) and their precursors in the plasma samples from 58 AH patients, 29 heavy drinkers without overt liver diseases (HDCs), and 35 healthy controls (HCs). Subsequently, we assessed correlations of altered LMs with clinical parameters and inflammatory mediators. Furthermore, we conducted a longitudinal study to analyze the effects of alcohol abstinence on LMs over 6- and 12-month follow-ups. Results AH patients exhibited significantly higher plasma levels of w-6 PLMs (PGD2 and LTB4) and SPM RvE1 compared to HDCs or HCs. Conversely, the SPM LXA4 was significantly downregulated in AH patients. Some of these altered LMs were found to correlate with AH disease severity and various inflammatory cytokines. Particularly, the LTB4/LXA4 ratio was substantially elevated in AH patients relative to HDCs and HCs. This altered ratio displayed a positive correlation with the MELD score. Importantly, the majority of dysregulated LMs, particularly PLMs, were normalized following alcohol abstinence.
Collapse
Affiliation(s)
- Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ying Xia
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jing Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Arun J. Sanyal
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Naga P. Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
2
|
Yang X, Chen H, Shen W, Chen Y, Lin Z, Zhuo J, Wang S, Yang M, Li H, He C, Zhang X, Hu Z, Lian Z, Yang M, Wang R, Li C, Pan B, Xu L, Chen J, Wei X, Wei Q, Xie H, Zheng S, Lu D, Xu X. FGF21 modulates immunometabolic homeostasis via the ALOX15/15-HETE axis in early liver graft injury. Nat Commun 2024; 15:8578. [PMID: 39362839 PMCID: PMC11449914 DOI: 10.1038/s41467-024-52379-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) is essential for modulating hepatic homeostasis, but the impact of FGF21 on liver graft injury remains uncertain. Here, we show that high FGF21 levels in liver graft and serum are associated with improved graft function and survival in liver transplantation (LT) recipients. FGF21 deficiency aggravates early graft injury and activates arachidonic acid metabolism and regional inflammation in male mouse models of hepatic ischemia/reperfusion (I/R) injury and orthotopic LT. Mechanistically, FGF21 deficiency results in abnormal activation of the arachidonate 15-lipoxygenase (ALOX15)/15-hydroxy eicosatetraenoic acid (15-HETE) pathway, which triggers a cascade of innate immunity-dominated pro-inflammatory responses in grafts. Notably, the modulating role of FGF21/ALOX15/15-HETE pathway is more significant in steatotic livers. In contrast, pharmacological administration of recombinant FGF21 effectively protects against hepatic I/R injury. Overall, our study reveals the regulatory mechanism of FGF21 and offers insights into its potential clinical application in early liver graft injury after LT.
Collapse
Affiliation(s)
- Xinyu Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Shen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanming Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyuan Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jianyong Zhuo
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Modan Yang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Chiyu He
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xuanyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengxing Lian
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Mengfan Yang
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, China
| | - Rui Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Changbiao Li
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Binhua Pan
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Chen
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Qiang Wei
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Di Lu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Mead AJ, Ahluwalia K, Ebright B, Zhang Z, Dave P, Li Z, Zhou E, Naik AA, Ngu R, Chester C, Lu A, Asante I, Pollalis D, Martinez JC, Humayun M, Louie S. Loss of 15-Lipoxygenase in Retinodegenerative RCS Rats. Int J Mol Sci 2024; 25:2309. [PMID: 38396985 PMCID: PMC10889776 DOI: 10.3390/ijms25042309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Retinitis pigmentosa (RP) is a retinal degenerative disease associated with a diversity of genetic mutations. In a natural progression study (NPS) evaluating the molecular changes in Royal College of Surgeons (RCS) rats using lipidomic profiling, RNA sequencing, and gene expression analyses, changes associated with retinal degeneration from p21 to p60 were evaluated, where reductions in retinal ALOX15 expression corresponded with disease progression. This important enzyme catalyzes the formation of specialized pro-resolving mediators (SPMs) such as lipoxins (LXs), resolvins (RvDs), and docosapentaenoic acid resolvins (DPA RvDs), where reduced ALOX15 corresponded with reduced SPMs. Retinal DPA RvD2 levels were found to correlate with retinal structural and functional decline. Retinal RNA sequencing comparing p21 with p60 showed an upregulation of microglial inflammatory pathways accompanied by impaired damage-associated molecular pattern (DAMP) clearance pathways. This analysis suggests that ALXR/FPR2 activation can ameliorate disease progression, which was supported by treatment with an LXA4 analog, NAP1051, which was able to promote the upregulation of ALOX12 and ALOX15. This study showed that retinal inflammation from activated microglia and dysregulation of lipid metabolism were central to the pathogenesis of retinal degeneration in RP, where ALXR/FPR2 activation was able to preserve retinal structure and function.
Collapse
Affiliation(s)
- Andrew James Mead
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Kabir Ahluwalia
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Brandon Ebright
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Zeyu Zhang
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Priyal Dave
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Zeyang Li
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Eugene Zhou
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Aditya Anil Naik
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Rachael Ngu
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Catherine Chester
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Angela Lu
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Isaac Asante
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dimitrios Pollalis
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Juan Carlos Martinez
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark Humayun
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stan Louie
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
4
|
Kaffe E, Tisi A, Magkrioti C, Aidinis V, Mehal WZ, Flavell RA, Maccarrone M. Bioactive signalling lipids as drivers of chronic liver diseases. J Hepatol 2024; 80:140-154. [PMID: 37741346 DOI: 10.1016/j.jhep.2023.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/25/2023]
Abstract
Lipids are important in multiple cellular functions, with most having structural or energy storage roles. However, a small fraction of lipids exert bioactive roles through binding to G protein-coupled receptors and induce a plethora of processes including cell proliferation, differentiation, growth, migration, apoptosis, senescence and survival. Bioactive signalling lipids are potent modulators of metabolism and energy homeostasis, inflammation, tissue repair and malignant transformation. All these events are involved in the initiation and progression of chronic liver diseases. In this review, we focus specifically on the roles of bioactive lipids derived from phospholipids (lyso-phospholipids) and poly-unsaturated fatty acids (eicosanoids, pro-resolving lipid mediators and endocannabinoids) in prevalent chronic liver diseases (alcohol-associated liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma). We discuss the balance between pathogenic and beneficial bioactive lipids as well as potential therapeutic targets related to the agonism or antagonism of their receptors.
Collapse
Affiliation(s)
- Eleanna Kaffe
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA.
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | - Vassilis Aidinis
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | - Wajahat Z Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, 06520, USA; Veterans Affairs Medical Center, West Haven, CT, 06516, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy; Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy.
| |
Collapse
|
5
|
Li W, Xia Y, Yang J, Sanyal AJ, Shah VH, Chalasani NP, Yu Q. Disrupted balance between pro-inflammatory lipid mediators and anti-inflammatory specialized pro-resolving mediators is linked to hyperinflammation in patients with alcoholic hepatitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.15.23300034. [PMID: 38168393 PMCID: PMC10760266 DOI: 10.1101/2023.12.15.23300034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background Chronic excessive alcohol consumption leads to a spectrum of alcohol-associated liver diseases (ALD), including alcoholic hepatitis (AH). AH is characterized by intense systemic and liver inflammation, posing significant risks of health complications and mortality. While inflammation is a crucial defense mechanism against injury and infection, its timely resolution is essential to prevent tissue damage and restore tissue homeostasis. The resolution of inflammation is an actively regulated process, primarily governed by specialized pro-resolving mediators (SPMs), lipid metabolites derived from ω-6 and ω-3 poly-unsaturated fatty acids (PUFAs). We investigated the balance between pro-inflammatory lipid mediators (PLMs) and SPMs in the ω-6 and ω-3 PUFA metabolic pathways and examined the impact of alcohol abstinence on rectifying the dysregulated biosynthesis of PLMs and SPMs in AH patients. Methods LC-MS/MS and ELISA were used to quantify levels of bioactive lipid mediators (LMs) and their precursors in the plasma samples from 58 AH patients, 29 heavy drinkers without overt liver diseases (HDCs), and 35 healthy controls (HCs). Subsequently, we assessed correlations of altered LMs with clinical parameters and various markers of inflammatory cascade andmicrobial translocation. Furthermore, we conducted a longitudinal study to track changes in levels of LMs over 6- and 12-month follow-ups in AH patients who underwent alcohol abstinence. Results AH patients exhibited significantly higher plasma levels of ω-6 PLMs (PGD 2 and LTB 4 ) and SPM RvE1 compared to HDCs and/or HCs. Conversely, key SPMs such as LXA4, RvD1, and several precursors in the ω-3 pathway were significantly downregulated in AH patients. Some of these altered LMs were found to correlate with AH disease severity, clinical parameters, and various inflammatory cytokines. In particular, the LTB4/LXA4 ratio was substantially elevated in AH patients relative to HDCs and HCs. This altered ratio displayed a positive correlation with the MELD score, suggesting its potential utility as an indicator of disease severity in AH patients. Importantly, the majority of dysregulated LMs, particularly PLMs, were normalized following alcohol abstinence. Conclusion Our study reveals significant dysregulation in the levels of PLM metabolites and anti-inflammatory SPMs in both ω-6 and ω-3 PUFA pathways in AH patients. This disrupted biosynthesis, characterized by an overabundance of PLMs and a deficiency in SPMs, is linked to the heightened inflammation observed in AH patients. Importantly, our findings suggest an important role of alcohol abstinence in restoring the balance of these LMs and the potential therapeutic benefits of SPM supplements in alleviating the inflammatory cascade in AH patients.
Collapse
|
6
|
Hu F, Qu Z, Chen K, Zhang P, Wang B, Jiang R, Zuo Y, Xia P, Chen H. Lipoxin A4 Ameliorates Imiquimod-Induced Psoriasis-Like Dermatitis via Promoting the Regression of Inflammation. Clin Cosmet Investig Dermatol 2023; 16:2103-2111. [PMID: 37575152 PMCID: PMC10422962 DOI: 10.2147/ccid.s418467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Introduction As a mediator of inflammation resolution, lipoxin A4 (LXA4) mainly plays an anti-inflammatory role and promotes inflammation resolution. LXA4 plays an inhibiting inflammatory role in a variety of diseases, tissues and cells, including keratinocytes. Psoriasis is a chronic inflammatory skin disease mediated by dysregulation of inflammation of immune cells and keratinocytes. However, the expression and role of LXA4 in psoriasis-like mouse models are still unclear. Methods Imiquimod (IMQ) topical treatment of dorsal skin induces psoriasis-like dermatitis in BALB/c mice, pretreated intraperitoneally with or without LXA4 prior to IMQ application. Severity of dorsal lesions is assessed by using a modified human scoring system and histopathology. The concentration of LXA4 and the expression of ALOX15 (a key gene in LXA4 metabolic synthesis) in lesional skins were detected by ELISA and Western blot. Quantitative PCR and ELISA were conducted to detect the mRNA and secretion levels of inflammatory cytokines. The proportion of IL-17A-producing γδT cells in skin and skin draining cervical lymph nodes and helper (Th) 17 cells in spleens was evaluated by flow cytometry. Western blotting was used to analyze the expressions of p-STAT3 and TRAF6. Results The concentration of LXA4 and the expression of ALOX15 were decreased in IMQ-induced lesional skin. LXA4 significantly relieved psoriasis-like lesions in IMQ-induced mouse models. Furthermore, LXA4 decreased IMQ-induced systemic inflammation, including reduced the proportion of IL-17A-producing gdT cells in skin and skin draining cervical lymph nodes and Th17 cells in spleens, the secretion and expression of CCL20, IL-17A, IL-1β, and TNF-α in skin and serum. LXA4 markedly inhibited IMQ-induced expression of TRAF6 and p-STAT3. Conclusion LXA4 significantly ameliorates IMQ-induced psoriasis-like inflammation, and LXA4 can be used as a target for psoriasis treatment.
Collapse
Affiliation(s)
- Feng Hu
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Province & Key Laboratory of Skin Infection and Immunity, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Zilu Qu
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Province & Key Laboratory of Skin Infection and Immunity, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Kai Chen
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Province & Key Laboratory of Skin Infection and Immunity, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Ping Zhang
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Bei Wang
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Ruili Jiang
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Yuyue Zuo
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Ping Xia
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Hongxiang Chen
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, People’s Republic of China
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
7
|
Heinrich L, Booijink R, Khurana A, Weiskirchen R, Bansal R. Lipoxygenases in chronic liver diseases: current insights and future perspectives. Trends Pharmacol Sci 2021; 43:188-205. [PMID: 34961619 DOI: 10.1016/j.tips.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver diseases (CLDs) caused by viral infections, alcohol/drug abuse, or metabolic disorders affect millions of people globally and have increased mortality owing to the lack of approved therapies. Lipoxygenases (LOXs) are a family of multifaceted enzymes that are responsible for the oxidation of polyunsaturated fatty acids (PUFAs) and are implicated in the pathogenesis of multiple disorders including liver diseases. This review describes the three main LOX signaling pathways - 5-, 12-, and 15-LOX - and their involvement in CLDs. We also provide recent insights and future perspectives on LOX-related hepatic pathophysiology, and discuss the potential of LOXs and LOX-derived metabolites as diagnostic biomarkers and therapeutic targets in CLDs.
Collapse
Affiliation(s)
- Lena Heinrich
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands
| | - Richell Booijink
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands
| | - Amit Khurana
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen 52074, Germany; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT), Hauz Khas, New Delhi 110016, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen 52074, Germany
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands.
| |
Collapse
|
8
|
Clària J, Flores-Costa R, Duran-Güell M, López-Vicario C. Proresolving lipid mediators and liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159023. [PMID: 34352389 DOI: 10.1016/j.bbalip.2021.159023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic feature of virtually all acute and chronic liver diseases. It intersects different liver pathologies from the early stages of liver injury, when the inflammatory burden is mild-to-moderate, to very advanced stages of liver disease, when the inflammatory response is very intense and drives multiple organ dysfunction and failure(s). The current review describes the most relevant features of the inflammatory process in two different clinical entities across the liver disease spectrum, namely non-alcoholic steatohepatitis (NASH) and acute-on-chronic liver failure (ACLF). Special emphasis is given within these two disease conditions to gather the most relevant data on the specialized pro-resolving mediators that orchestrate the resolution of inflammation, a tightly controlled process which dysregulation commonly associates with chronic inflammatory conditions.
Collapse
Affiliation(s)
- Joan Clària
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS and CIBERehd, Barcelona, Spain; Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain.
| | - Roger Flores-Costa
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS and CIBERehd, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain
| | - Marta Duran-Güell
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS and CIBERehd, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain
| | - Cristina López-Vicario
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS and CIBERehd, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain.
| |
Collapse
|
9
|
Lipoxin A4 activates ALX/FPR2 to attenuate inflammation in Aspergillus fumigatus keratitis. Int Immunopharmacol 2021; 96:107785. [PMID: 34162149 DOI: 10.1016/j.intimp.2021.107785] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE To explore the anti-inflammatory effect of lipoxin A4 (LXA4) in Aspergillus fumigatus (A. fumigatus) keratitis and the underlying mechanisms. METHODS In A. fumigatus keratitis mouse models, enzyme-linked immunosorbent assay (ELISA) was used to detect the level of LXA4. Clinical scores were utilized to evaluate fungal keratitis (FK) severity. Fungal load was assessed by plate count. Immunofluorescence staining, HE staining and myeloperoxidase (MPO) assays were carried out to evaluate the neutrophil infiltration and activity. In A. fumigatus infected mouse corneas and inactivated A. fumigatus-stimulated RAW264.7 cells, quantitative real time polymerase chain reaction (qRT-PCR) and ELISA were applied to assess the expression of pro-inflammatory mediators and anti-inflammatory factors.Reactive oxygen species (ROS) was determined by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining in RAW264.7 cells. RESULTS LXA4 level was significantly increased in mice with A. fumigatus keratitis. In an A. fumigatus keratitis mouse model, LXA4 treatment alleviated FK severity, reduced fungal load and repressed neutrophil infiltration and activity. Additionally, LXA4 inhibited the expression of pro-inflammatory mediators including IL-1β, TNF-α, IL-6, cyclooxygenase-2 (COX-2), TLR-2, TLR-4, Dectin-1 and iNOS, and promoted the expression of anti-inflammatory factors IL-10 and Arg-1. In RAW264.7 cells, LXA4 receptor/formyl peptide receptor 2 (ALX/FPR2) blockade reversed the anti-inflammatory effect of LXA4. LXA4 suppressed inactivated A. fumigatus induced elevated ROS production in RAW264.7 cells, which was abrogated by ALX/FPR2 antagonist Boc-2. CONCLUSION LXA4 ameliorated inflammatory response by suppressing neutrophil infiltration, downregulating the expression of pro-inflammatory mediators and ROS production through ALX/FPR2 receptor in A. fumigatus keratitis.
Collapse
|