1
|
Abd El Baky H, Weinstock NI, Khan Sial GZ, Hicar MD. Comparison of B Cell Variable Region Gene Segment Characteristics in Neuro-autoantibodies. Immunohorizons 2024; 8:740-748. [PMID: 39446034 PMCID: PMC11532373 DOI: 10.4049/immunohorizons.2400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Autoimmune pediatric neurologic diseases have variable phenotypes and presentations, making diagnosis challenging. The pathologic mechanisms are also distinct, including cell-mediated and Ab-mediated autoimmunity, paraneoplastic syndromes, and postinfectious processes. In recent years a number of studies have described the characteristics of the autoantibodies involved in a number of these diseases. Some of the described Abs use a restricted set of variable gene segments. We sought to compare the Ab characteristics of autoantibodies related to some of the more common disorders to discover whether specific Ab signatures are universally associated with neuroautoimmune diseases. We initially performed a literature review to summarize the Ab characteristics of autoantibodies related to some of the more common disorders, including N-methyl-d-aspartate receptor (NMDAR) and leucine-rich, glioma-inactivated 1 (LGI-1). Next, we performed data analysis from selected studies that sequenced Ig genes to further characterize NMDAR and LGI-1 autoantibodies including CDR3 length distribution, variable gene sequence usage, and isotype use. We found that CDR3 length of NMDAR autoantibodies was normally distributed whereas the CDR3 length distribution of LGI-1 autoantibodies was skewed, suggesting that there is no global structural restriction on types of autoantibodies that can cause encephalitis. We also found that IgG1-IgG3 were the main NMDAR autoantibody isotypes detected, while IgG4 was the major isotype used in autoantibodies from LGI-1 encephalitis. These findings are useful for our understanding of autoimmune encephalitis and will help facilitate better diagnosis and treatment of these conditions in the future.
Collapse
Affiliation(s)
| | - Nadav I. Weinstock
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gull Zareen Khan Sial
- Department of Child Neurology, University of Pittsburgh Medical Center, Harrisburg Hospital, Harrisburg, PA
| | - Mark D. Hicar
- Department of Pediatrics, University at Buffalo, Buffalo, NY
| |
Collapse
|
2
|
Li S, Hu X, Wang M, Yu L, Zhang Q, Xiao J, Hong Z, Zhou D, Li J. Single-cell RNA sequencing reveals diverse B cell phenotypes in patients with anti-NMDAR encephalitis. Psychiatry Clin Neurosci 2024; 78:197-208. [PMID: 38063052 DOI: 10.1111/pcn.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUNDS Anti-N-methyl-D-aspartate receptor encephalitis (NMDAR-E) is a severe autoimmune disorder characterized by prominent psychiatric symptoms. Although the role of NMDAR antibodies in the disease has been extensively studied, the phenotype of B cell subsets is still not fully understood. METHODS We utilized single-cell RNA sequencing, single-cell B cell receptor sequencing (scBCR-seq), bulk BCR sequencing, flow cytometry, and enzyme-linked immunosorbent assay to analyze samples from both NMDAR-E patients and control individuals. RESULTS The cerebrospinal fluid (CSF) of NMDAR-E patients showed significantly increased B cell counts, predominantly memory B (Bm) cells. CSF Bm cells in NMDAR-E patients exhibited upregulated expression of differential expression genes (DEGs) associated with immune regulatory function (TNFRSF13B and ITGB1), whereas peripheral B cells upregulated DEGs related to antigen presentation. Additionally, NMDAR-E patients displayed higher levels of IgD- CD27- double negative (DN) cells and DN3 cells in peripheral blood (PB). In vitro, DN1 cell subsets from NMDAR-E patients differentiated into DN2 and DN3 cells, while CD27+ and/or IgD+ B cells (non-DN) differentiated into antibody-secreting cells (ASCs) and DN cells. NR1-IgG antibodies were found in B cell culture supernatants from patients. Differential expression of B cell IGHV genes in CSF and PB of NMDAR-E patients suggests potential antigen class switching. CONCLUSION B cell subpopulations in the CSF and PB of NMDAR-E patients exhibit distinct compositions and transcriptomic features. In vitro, non-DN cells from NMDAR-E can differentiate into DN cells and ASCs, potentially producing NR1-IgG antibodies. Further research is necessary to investigate the potential contribution of DN cell subpopulations to NR1-IgG antibody production.
Collapse
Affiliation(s)
- Sisi Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Department of Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiang Hu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Xiao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Hong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinmei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Jiang Y, Dai S, Jia L, Qin L, Zhang M, Liu H, Wang X, Pang R, Zhang J, Peng G, Li W. Single-cell transcriptomics reveals cell type-specific immune regulation associated with anti-NMDA receptor encephalitis in humans. Front Immunol 2022; 13:1075675. [PMID: 36544777 PMCID: PMC9762154 DOI: 10.3389/fimmu.2022.1075675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDARE) is a rare autoimmune disease, and the peripheral immune characteristics associated with anti-NMDARE antibodies remain unclear. Methods Herein, we characterized peripheral blood mononuclear cells from patients with anti-NMDARE and healthy individuals by single-cell RNA sequencing (scRNA-seq). Results The transcriptional profiles of 129,217 cells were assessed, and 21 major cell clusters were identified. B-cell activation and differentiation, plasma cell expansion, and excessive inflammatory responses in innate immunity were all identified. Patients with anti-NMDARE showed higher expression levels of CXCL8, IL1B, IL6, TNF, TNFSF13, TNFSF13B, and NLRP3. We observed that anti-NMDARE patients in the acute phase expressed high levels of DC_CCR7 in human myeloid cells. Moreover, we observed that anti-NMDARE effects include oligoclonal expansions in response to immunizing agents. Strong humoral immunity and positive regulation of lymphocyte activation were observed in acute stage anti-NMDARE patients. Discussion This high-dimensional single-cell profiling of the peripheral immune microenvironment suggests that potential mechanisms are involved in the pathogenesis and recovery of anti-NMDAREs.
Collapse
Affiliation(s)
- Yushu Jiang
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Wei Li, ; Yushu Jiang,
| | - Shuhua Dai
- Department of Neurology, Henan Provincial People’s Hospital, Xinxiang Medical University, Zhengzhou, Henan, China
| | - Linlin Jia
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lingzhi Qin
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Milan Zhang
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huiqin Liu
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaojuan Wang
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Pang
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiewen Zhang
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Gongxin Peng
- China Center for Bioinformatics, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and School of Basic Medicine, Beijing, China
| | - Wei Li
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Wei Li, ; Yushu Jiang,
| |
Collapse
|
4
|
Zheng B, Yang Y, Chen L, Wu M, Zhou S. B-Cell Receptor Repertoire Sequencing: Deeper Digging into the Mechanisms and Clinical Aspects of Immune-mediated Diseases. iScience 2022; 25:105002. [PMID: 36157582 PMCID: PMC9494237 DOI: 10.1016/j.isci.2022.105002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
B cells play an essential role in adaptive immunity and are intimately correlated with pleiotropic immune-mediated diseases. Each B cell occupies a unique B cell receptor (BCR), and all BCRs throughout our body form “BCR repertoire.” With the development of sequencing technology and coupled bioinformatics, accumulating evidence indicates that BCR repertoire largely varies under physiological and pathological conditions. Therefore, comprehensive grasp of BCR repertoire will provide new insights into the pathogenesis of immune-mediated diseases and help exploit efficient diagnostic and treatment strategies. In this review, we start with an overview of BCR repertoire and related sequencing technologies and summarize their current applications in immune-mediated diseases. We also underscore the challenges of this emerging field and propose promising future directions in advancing BCR repertoire exploration.
Collapse
Affiliation(s)
- Bohao Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, P. R. China
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Yuqing Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Lin Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Mengrui Wu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
- Corresponding author
| |
Collapse
|
5
|
Coronel-Castello SP, Lepennetier G, Diddens J, Friedrich V, Pfaller M, Hemmer B, Lehmann-Horn K. Intrathecally Expanding B Cell Clones in Herpes Simplex Encephalitis: A Case Report. Neurol Ther 2022; 11:905-913. [PMID: 35124795 PMCID: PMC9095784 DOI: 10.1007/s40120-022-00330-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Gildas Lepennetier
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jolien Diddens
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Verena Friedrich
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Monika Pfaller
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Klaus Lehmann-Horn
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
6
|
Zhang Y, Zhang H, Deng B, Lin K, Jin L, Liu X, Zhang Y, Chen X, Zhang Y, Lu S, Huang H, Wang Q, Feng T, Zhao W, Xue Q, Chen R, Zhang J, Qian X, Chen L, Ai J, Chen X, Zhang W. Optimal encephalitis/meningitis roadmap via precise diagnosis and treatment (IMPROVE): a study protocol for a randomized controlled trial. BMC Infect Dis 2022; 22:40. [PMID: 34998377 PMCID: PMC8742395 DOI: 10.1186/s12879-021-06943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Encephalitis/meningitis brings a heavy disease burden, and the origin of disease remains unknown in 30-40% of patients. It is greatly significant that combinations of nucleic acid amplification and autoimmune antibody testing improves the diagnosis and treatment of encephalitis/meningitis. Moreover, though several diagnostic methods are in clinical use, a recognized and unified diagnosis and treatment process for encephalitis management remains unclear. METHODS IMPROVE is a multicenter, open label, randomized controlled clinical trial that aims to evaluate the diagnostic performance, applications, and impact on patient outcomes of a new diagnostic algorithm that combines metagenomic next-generation sequencing (mNGS), multiplex polymerase chain reaction (PCR) and autoimmune antibody testing. The enrolled patients will be grouped into two parallel groups, multiplex PCR test plus autoimmune antibody group (Group I) or the mNGS plus autoimmune antibody group (Group II) with a patient ratio of 1:1. Both groups will be followed up for 12 months. The primary outcomes include the initial time of targeted treatment and the modified Rankin scale score on the 30th day of the trial. The secondary outcomes are the cerebrospinal fluid index remission rate on the 14th day, mortality rate on the 30th day, and an evaluation of diagnostic efficacy. The two groups are predicted to comprise of 484 people in total. DISCUSSION To optimize the roadmap of encephalitis/meningitis, precise diagnosis, and treatment are of great significance. The effect of rapid diagnosis undoubtedly depends on the progression of new diagnostic tests, such as the new multiplex PCR, mNGS, and examination of broad-spectrum autoimmune encephalitis antibodies. This randomized-controlled study could allow us to obtain an accurate atlas of the precise diagnostic ability of these tests and their effect on the treatment and prognosis of patients. Trial registration ClinicalTrial.gov, NCT04946682. Registered 29 June 2021, 'Retrospectively registered', https://clinicaltrials.gov/ct2/show/NCT04946682?term=NCT04946682&draw=2&rank=1.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Haocheng Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Bo Deng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke Lin
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lei Jin
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoni Liu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanlin Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiaohua Chen
- Department of Infectious Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai JiaoTong University, Shanghai, China
| | - Yanliang Zhang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Shengjia Lu
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Heqing Huang
- Department of Infectious Diseases, Zhuji People's Hospital of Zhejiang Province, Shaoxing, Zhejiang Province, China
| | - Qiujing Wang
- Department of Infectious Diseases, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang Province, China
| | - Tingting Feng
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Weifeng Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Renfang Chen
- Department of Infectious Diseases, Wuxi No.5 People 's Hospital, Wuxi, Jiangsu Province, China
| | - Jingbo Zhang
- Department of Neurology, Blue Cross Brain Hospital, Shanghai, China
| | - Xiaoyan Qian
- Department of Neurology, The first people's hospital of Kunshan, Suzhou, Jiangsu Province, China
| | - Lanlan Chen
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
| | - Jingwen Ai
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Wenhong Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
7
|
Feng J, Fan S, Sun Y, Ren H, Guan H, Wang J. Comprehensive B-Cell Immune Repertoire Analysis of Anti-NMDAR Encephalitis and Anti-LGI1 Encephalitis. Front Immunol 2021; 12:717598. [PMID: 34691026 PMCID: PMC8529218 DOI: 10.3389/fimmu.2021.717598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDARE) and anti-leucine-rich glioma-inactivated 1 encephalitis (anti-LGI1E) are the two most common types of antibody-mediated autoimmune encephalitis. We performed a comprehensive analysis of the B-cell immune repertoire in patients with anti-NMDARE (n = 7) and anti-LGI1E (n = 10) and healthy controls (n = 4). The results revealed the presence of many common clones between patients with these two types of autoimmune encephalitis, which were mostly class-switched. Additionally, many differences were found among the anti-NMDARE, anti-LGI1E, and healthy control groups, including the diversity of the B-cell immune repertoire and gene usage preference. These findings suggest that the same adaptive immune responses occur in patients with anti-NMDARE and anti-LGI1E, which deserves further exploration.
Collapse
Affiliation(s)
- Jingjing Feng
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Siyuan Fan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinwei Sun
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Haitao Ren
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongzhi Guan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Next Generation Sequencing of Cerebrospinal Fluid B Cell Repertoires in Multiple Sclerosis and Other Neuro-Inflammatory Diseases-A Comprehensive Review. Diagnostics (Basel) 2021; 11:diagnostics11101871. [PMID: 34679570 PMCID: PMC8534365 DOI: 10.3390/diagnostics11101871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
During the last few decades, the role of B cells has been well established and redefined in neuro-inflammatory diseases, including multiple sclerosis and autoantibody-associated diseases. In particular, B cell maturation and trafficking across the blood–brain barrier (BBB) has recently been deciphered with the development of next-generation sequencing (NGS) approaches, which allow the assessment of representative cerebrospinal fluid (CSF) and peripheral blood B cell repertoires. In this review, we perform literature research focusing on NGS studies that allow further insights into B cell pathophysiology during neuro-inflammation. Besides the analysis of CSF B cells, the paralleled assessment of peripheral blood B cell repertoire provides deep insights into not only the CSF compartment, but also in B cell trafficking patterns across the BBB. In multiple sclerosis, CSF-specific B cell maturation, in combination with a bidirectional exchange of B cells across the BBB, is consistently detectable. These data suggest that B cells most likely encounter antigen(s) within the CSF and migrate across the BBB, with further maturation also taking place in the periphery. Autoantibody-mediated diseases, such as neuromyelitis optica spectrum disorder and LGI1 / NMDAR encephalitis, also show features of a CSF-specific B cell maturation and clonal connectivity with peripheral blood. In conclusion, these data suggest an intense exchange of B cells across the BBB, possibly feeding autoimmune circuits. Further developments in sequencing technologies will help to dissect the exact pathophysiologic mechanisms of B cells during neuro-inflammation.
Collapse
|
9
|
Zhang JA, Zhou XY, Huang D, Luan C, Gu H, Ju M, Chen K. Development of an Immune-Related Gene Signature for Prognosis in Melanoma. Front Oncol 2021; 10:602555. [PMID: 33585219 PMCID: PMC7874014 DOI: 10.3389/fonc.2020.602555] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma remains a potentially deadly malignant tumor. The incidence of melanoma continues to rise. Immunotherapy has become a new treatment method and is widely used in a variety of tumors. Original melanoma data were downloaded from TCGA. ssGSEA was performed to classify them. GSVA software and the "hclust" package were used to analyze the data. The ESTIMATE algorithm screened DEGs. The edgeR package and Venn diagram identified valid immune-related genes. Univariate, LASSO and multivariate analyses were used to explore the hub genes. The "rms" package established the nomogram and calibrated the curve. Immune infiltration data were obtained from the TIMER database. Compared with that of samples in the high immune cell infiltration cluster, we found that the tumor purity of samples in the low immune cell infiltration cluster was higher. The immune score, ESTIMATE score and stromal score in the low immune cell infiltration cluster were lower. In the high immune cell infiltration cluster, the immune components were more abundant, while the tumor purity was lower. The expression levels of TIGIT, PDCD1, LAG3, HAVCR2, CTLA4 and the HLA family were also higher in the high immune cell infiltration cluster. Survival analysis showed that patients in the high immune cell infiltration cluster had shorter OS than patients in the low immune cell infiltration cluster. IGHV1-18, CXCL11, LTF, and HLA-DQB1 were identified as immune cell infiltration-related DEGs. The prognosis of melanoma was significantly negatively correlated with the infiltration of CD4+ T cells, CD8+ T cells, dendritic cells, neutrophils and macrophages. In this study, we identified immune-related melanoma core genes and relevant immune cell subtypes, which may be used in targeted therapy and immunotherapy of melanoma.
Collapse
Affiliation(s)
- Jia-An Zhang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Xu-Yue Zhou
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Dan Huang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Chao Luan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Heng Gu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Mei Ju
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Kun Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| |
Collapse
|