1
|
Xu F, Zheng H, Dong X, Zhou A, Emu Q. miRNA expression signatures induced by pasteurella multocida infection in goats lung. Sci Rep 2024; 14:19626. [PMID: 39179681 PMCID: PMC11343864 DOI: 10.1038/s41598-024-69654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression and are involved in bacterial pathogenesis and host-pathogen interactions. In this study, we investigated the function of miRNAs in the regulation of host responses to Pasteurella multocida infection. Using next-generation sequencing, we analyzed miRNA expression pattern and identified differentially expressed miRNAs in Pasteurella multocida-infected goat lungs. In addition, we investigated the function of differentially expressed miRNAs andtheir targeted signaling pathways in bacterial infection processes. The results showed that Pasteurella multocida infection led to 69 significantly differentially expressed miRNAs, including 28 known annotated miRNAs with miR-497-3p showing the most significant difference. Gene target prediction and functional enrichment analyses showed that the target genes were mainly involved in cell proliferation, regulation of the cellular metabolic process, positive regulation of cellular process, cellular senescence, PI3K-Akt signaling pathway, FoxO signaling pathway and infection-related pathways. In conclusion, these data provide a new perspective on the roles of miRNAs in Pasteurella multocida infection.
Collapse
Affiliation(s)
- Feng Xu
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Animal Science Academy of Sichuan Province, Chengdu, China
| | - Hao Zheng
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, China
| | - Xia Dong
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, China
| | - Ao Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, China.
| | - Quzhe Emu
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Animal Science Academy of Sichuan Province, Chengdu, China.
| |
Collapse
|
2
|
Xue J, Zhou D, Zhou J, Du X, Zhang X, Liu X, Ding L, Cheng Z. miR-155 facilitates the synergistic replication between avian leukosis virus subgroup J and reticuloendotheliosis virus by targeting a dual pathway. J Virol 2023; 97:e0093723. [PMID: 37909729 PMCID: PMC10688374 DOI: 10.1128/jvi.00937-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/01/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE The synergy of two oncogenic retroviruses is an essential phenomenon in nature. The synergistic replication of ALV-J and REV in poultry flocks increases immunosuppression and pathogenicity, extends the tumor spectrum, and accelerates viral evolution, causing substantial economic losses to the poultry industry. However, the mechanism of synergistic replication between ALV-J and REV is still incompletely elusive. We observed that microRNA-155 targets a dual pathway, PRKCI-MAPK8 and TIMP3-MMP2, interacting with the U3 region of ALV-J and REV, enabling synergistic replication. This work gives us new targets to modulate ALV-J and REV's synergistic replication, guiding future research on the mechanism.
Collapse
Affiliation(s)
- Jingwen Xue
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
| | - Jing Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
| | - Xusheng Du
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Xinyue Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
| | - Xiaoyang Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
| | - Longying Ding
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
| |
Collapse
|
3
|
Wang D, Wang S, Liu W, Li M, Zheng Q, Li D. Hydroxysafflor yellow B induces apoptosis via mitochondrial pathway in human gastric cancer cells. J Pharm Pharmacol 2022; 74:rgac044. [PMID: 35942897 DOI: 10.1093/jpp/rgac044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/02/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Hydroxysafflor yellow B (HSYB) is extracted from the petals of the safflower, a Chinese medicine. Relevant research results have demonstrated that HSYA can suppress the abnormal tumour cell proliferation and induce cell apoptosis. However, the properties of HSYB have rarely been reported, especially its antitumour effects on gastric cancer (GC). METHODS SGC-7901 and BGC-823 cells were treated with different concentrations of HSYB. Cell proliferation inhibition rate was detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and colony formation detection. The changes in morphology of cells was observed by Hoechst 33258 staining. Cell apoptosis was evaluated by Annexin V-FITC/PI (fluoresceinisothiocyanate/propidium iodide) double staining. JC-1 was used to detect the level of mitochondrial membrane potential (MMP). The protein levels of cleaved-caspase-3, cleaved-caspase-9, APAF-1, cytoplasmic cytochrome C, BAX and BCL-2 were examined by western blot. KEY FINDINGS HSYB significantly suppressed the proliferation of SGC-7901 and BGC-823 cells. Hoechst 33258 staining assay showed that HSYB treatment triggered apoptotic morphology and the apoptotic rates were significantly increased after being treated with HSYB and the mitochondrial membrane potential was gradually decreased in human GC cells. In addition, Western blot analysis revealed that the levels of cleaved-caspase-3 and cleaved-caspase-9 were remarkably increased in HSYB-treated BGC-823 and SGC-7901 cells. And, the levels of apoptotic protease activating factor-1 (APAF-1) and cytoplasmic cytochrome C were remarkably up-regulated in HSYB-treated cells. At the same time, HSYB could up-regulate the level of BAX and down-regulate the level of BCL-2. CONCLUSIONS Our data suggest that HSYB could induce GC cell apoptosis via the mitochondrial pathway.
Collapse
Affiliation(s)
- Dan Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, P. R. China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, P. R. China
| | - Shasha Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, P. R. China
| | - Wenjing Liu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, P. R. China
| | - Minjing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, P. R. China
| | - Qiusheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, P. R. China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, P. R. China
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, P. R. China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, P. R. China
| |
Collapse
|
4
|
Zhong C, Liao Z, Zhang B, Xiao L, Li J, Zhu X. Bta-miR-677 contribute to interferon pathway affecting the proliferation of caprine parainfluenza virus type 3. Microb Pathog 2022; 169:105642. [PMID: 35710089 DOI: 10.1016/j.micpath.2022.105642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/09/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Caprine parainfluenza virus type 3 (CPIV3), a new strain of virus, was isolated from the goats in 2014 in China. Studies have shown that viral infection can induce changes in the expression profile of host miRNAs, which modulate natural immune responses and viral infection. In this study, we report that bta-miR-677 suppressed CPIV3 replication in Madin-Darby bovine kidney (MDBK) cells and guinea pigs. Bta-miR-677 overexpression promoted type I interferon (IFN-I) and IFN-stimulated genes (ISGs) production, thereby inhibiting CPIV3 replication, while bta-miR-677 inhibitor suppressed the antiviral innate immune response to promoted viral replication in MDBK cells. We showed that bta-miR-677 suppresses CPIV3 replication via directly targeted the 3'-untranslated region (3'-UTR) of mitochondrial antiviral signaling protein (MAVS) thus enhancing IFN pathway in MDBK cells. We also demonstrated that bta-miR-677 agomir could inhibit CPIV3 proliferation in guinea pigs, with much lower viral RNA levels in lung and trachea. Guinea pigs showed no obvious pathological changes and less severe lung lesions in bta-miR-677 agomir treated group at 7 dpi. This study contributes to our understanding of the molecular mechanisms underlying CPIV3 pathogenesis.
Collapse
Affiliation(s)
- Chunyan Zhong
- Biological Engineering Department, Southwest Guizhou Vocational and Technical College for Nationalitie, Xingyi, 562400, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Zheng Liao
- College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Baotai Zhang
- College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Li Xiao
- College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Xing Zhu
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Research Progress on Emerging Viral Pathogens of Small Ruminants in China during the Last Decade. Viruses 2022; 14:v14061288. [PMID: 35746759 PMCID: PMC9228844 DOI: 10.3390/v14061288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022] Open
Abstract
China is the country with the largest number of domestic small ruminants in the world. Recently, the intensive and large-scale sheep/goat raising industry has developed rapidly, especially in nonpastoral regions. Frequent trading, allocation, and transportation result in the introduction and prevalence of new pathogens. Several new viral pathogens (peste des petits ruminants virus, caprine parainfluenza virus type 3, border disease virus, enzootic nasal tumor virus, caprine herpesvirus 1, enterovirus) have been circulating and identified in China, which has attracted extensive attention from both farmers and researchers. During the last decade, studies examining the etiology, epidemiology, pathogenesis, diagnostic methods, and vaccines for these emerging viruses have been conducted. In this review, we focus on the latest findings and research progress related to these newly identified viral pathogens in China, discuss the current situation and problems, and propose research directions and prevention strategies for different diseases in the future. Our aim is to provide comprehensive and valuable information for the prevention and control of these emerging viruses and highlight the importance of surveillance of emerging or re-emerging viruses.
Collapse
|
6
|
Jiang H, Kan X, Ding C, Sun Y. The Multi-Faceted Role of Autophagy During Animal Virus Infection. Front Cell Infect Microbiol 2022; 12:858953. [PMID: 35402295 PMCID: PMC8990858 DOI: 10.3389/fcimb.2022.858953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/01/2022] [Indexed: 01/17/2023] Open
Abstract
Autophagy is a process of degradation to maintain cellular homeostatic by lysosomes, which ensures cellular survival under various stress conditions, including nutrient deficiency, hypoxia, high temperature, and pathogenic infection. Xenophagy, a form of selective autophagy, serves as a defense mechanism against multiple intracellular pathogen types, such as viruses, bacteria, and parasites. Recent years have seen a growing list of animal viruses with autophagy machinery. Although the relationship between autophagy and human viruses has been widely summarized, little attention has been paid to the role of this cellular function in the veterinary field, especially today, with the growth of serious zoonotic diseases. The mechanisms of the same virus inducing autophagy in different species, or different viruses inducing autophagy in the same species have not been clarified. In this review, we examine the role of autophagy in important animal viral infectious diseases and discuss the regulation mechanisms of different animal viruses to provide a potential theoretical basis for therapeutic strategies, such as targets of new vaccine development or drugs, to improve industrial production in farming.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
| | - Xianjin Kan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- *Correspondence: Yingjie Sun, ; Chan Ding,
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
- *Correspondence: Yingjie Sun, ; Chan Ding,
| |
Collapse
|
7
|
Yildiz Gulhan P, Eroz R, Ataoglu O, İnce N, Davran F, Öztürk CE, Gamsızkan Z, Balbay OA. The evaluation of both the expression and serum protein levels of Caspase-3 gene in patients with different degrees of SARS-CoV2 infection. J Med Virol 2022; 94:897-905. [PMID: 34585746 PMCID: PMC8662079 DOI: 10.1002/jmv.27362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/18/2021] [Accepted: 09/27/2021] [Indexed: 01/15/2023]
Abstract
To evaluate the effects of Caspase-3 (CASP3) gene expression and serum levels on preventing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A total of 41 individuals (male: 21; female: 20) with SARS-CoV-2 infection were included in the current study. Hemograms were examined from patient blood samples, and CASP3 gene expression levels were detected. Also, human CASP3 levels were determined from the serum samples of patients. The mean age of patients was 56.220 ± 18.937 years. Significant differences were detected among all groups for CASP3 2 - ΔΔ C t (p = 0.014) and CASP3 concentration (p = 0.024). The relationship between CASP3 2 - ΔΔ C t levels and hemoglobin (p = 0.023), between CASP3 2 - ΔΔ C t levels and C-reactive protein (CRP) (p = 0.001), between CASP3 2 - ΔΔ C t levels and ferritin (p = 0.003), between CASP3 2 - ΔΔ C t levels and lactate dehydrogenase (p = 0.001), and between CASP3 2 - ΔΔ C t levels and SpO2 (p = 0.006) were statistically significant. Also, the relationship between CASP3 concentration levels and SpO2 was statistically significant (p < 0.046). The CASP3 gene and/or its products have an important function to prevent injury caused by SARS-CoV-2 infection. They play crucial roles in maintaining cellular homeostasis and viability. Perhaps CASP3 levels may provide information about the severity of the disease.
Collapse
Affiliation(s)
| | - Recep Eroz
- Department of Medical GeneticsDuzce University Medical FacultyDuzceTurkey
| | | | - Nevin İnce
- Department of Infection DiseasesDuzce University Medical FacultyDuzceTurkey
| | - Fatih Davran
- Department of BiochemistryDuzce University Medical FacultyDuzceTurkey
| | | | - Zerrin Gamsızkan
- Department of Family MedicineDuzce University Medical FacultyDuzceTurkey
| | | |
Collapse
|
8
|
Ma Y, Wang Y, Zan X, Wu Y, Wang J, Li G, Chai C, Fu C, Wang S, Yin H, Wang W. Phylogenetic and pathogenicity analysis of a novel lineage of caprine parainfluenza virus type 3. Microb Pathog 2021; 154:104854. [PMID: 33757898 DOI: 10.1016/j.micpath.2021.104854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/09/2021] [Indexed: 12/01/2022]
Abstract
Caprine parainfluenza virus type 3 (CPIV3) was first identified in goats named JS2013 in China. In 2019, a sheep herd broke a disease with respiratory disease in Hebei province, China. In order to confirm the pathogen of the disease, the nasal swabs, stool swabs and blood samples were collected from the sheep. Virus isolation was performed on MDBK cells and identification was conducted by RT-PCR. The complete genome of the isolate was sequenced and phylogenetic analyzed. In order to evaluate the pathogenicity of the virus, five seronegative sheep were experimental infected with the virus suspension. The phylogenetic analyses based on the complete genome and the M gene indicated that the isolate strain was distinguished distinct from previously reported CPIV3 lineage of JS2013. The virus-inoculated sheep displayed the syndrome with depression, cough, and fever. Virus shedding were detected by RT-PCR from nasal swabs. All infected showed virus shedding during 2 - 21dpi and viremia could be detected in serum samples. Gross pathological assessment of sheep in infected group showed gross lesion in the lungs. Histopathological observation results indicated that lungs had mild to moderate interstitial pneumonia, with thickened alveolar walls, decreased alveolar space, and increased amounts of inflammatory cells infiltration. This is the first report of pathogenicity of the novel lineage of sheep-derived CPIV3. The results would be helpful for further studies on the prevention and control strategies for CPIV3 infections in goat and sheep.
Collapse
Affiliation(s)
- Yanhua Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China; Basic Medical School, Inner Mongolia Medical University, Hohhot, China
| | - Yan Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiaohui Zan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Youzhi Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jialei Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Gairu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chunxia Chai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Cun Fu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shirong Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hua Yin
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wei Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|