1
|
Li W, Chen H, Zhu X, Lin M. LncRNA-TUG1: Implications in the Myocardial and Endothelial Cell Oxidative Stress Injury Caused by Hemorrhagic Shock and Fluid Resuscitation. FRONT BIOSCI-LANDMRK 2024; 29:376. [PMID: 39614432 DOI: 10.31083/j.fbl2911376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND LncRNA taurine-upregulated gene 1 (TUG1) can regulate vascular endothelial cell injury, a critical mechanism in treating hemorrhagic shock and fluid resuscitation (HS/R). Therefore, this study explored the influence of TUG1 in HS/R. METHODS An in vivo rat model of ischemia-reperfusion (I/R) injury post-HS/R and an in vitro model of oxidative stress injury in rat cardiomyocyte cell line (H9C2) were constructed. In vivo, we silenced TUG1 and quantified its expression along with inflammatory factors through quantitative reverse transcription polymerase chain reaction (qRT-PCR), mean arterial pressure (MAP) detection and blood gas analysis. Myocardial functional impairment was assessed via Triphenyl-2H-Tetrazolium Chloride (TTC), Hematoxylin and eosin, and Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) stainings. Oxidative stress level in rat serum was measured. In vitro, we examined the changes of cell viability, apoptosis, oxidative stress levels, inflammatory factor secretion and nuclear factor-κB (NF-κB)/p65 expression by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, Enzyme-linked immunosorbent assay (ELISA) and Western blot. RESULTS TUG1 level was elevated in rats of I/R model caused by HS/R. TUG1 silencing ameliorated the decline in MAP, acid-base imbalance and myocardial tissue damage, and suppressed oxidative stress and inflammatory factor levels in model rat. TUG1 silencing enhanced viability, impeded apoptosis, and reduced oxidative stress, inflammatory factor contents and NF-κB/p65 expression in H2O2 treated H9C2 cells. CONCLUSION TUG1 participates in regulating oxidative stress damage and inflammation induced by HS/R.
Collapse
Affiliation(s)
- Wei Li
- Intensive Care Unit, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, 350004 Fuzhou, Fujian, China
| | - Huaiyu Chen
- Intensive Care Unit, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, 350004 Fuzhou, Fujian, China
| | - Xueli Zhu
- Intensive Care Unit, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, 350004 Fuzhou, Fujian, China
| | - Mingrui Lin
- Intensive Care Unit, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, 350004 Fuzhou, Fujian, China
| |
Collapse
|
2
|
Li CJ, Du HB, Zhao ZA, Sun Q, Li YM, Chen SJ, Zhang H, Zhang N, Niu CY, Zhao ZG. STELLATE GANGLION BLOCK REVERSES PHSML-INDUCED VASCULAR HYPOREACTIVITY THROUGH INHIBITING AUTOPHAGY-MEDIATED PHENOTYPIC TRANSFORMATION OF VSMCs. Shock 2024; 61:414-423. [PMID: 38150357 DOI: 10.1097/shk.0000000000002289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
ABSTRACT Posthemorrhagic shock mesenteric lymph (PHSML) return-contributed excessive autophagy of vascular smooth muscle cells (VSMCs) is involved in vascular hyporeactivity, which is inhibited by stellate ganglion block (SGB) treatment. The contractile phenotype of VSMCs transforms into a synthetic phenotype after stimulation with excessive autophagy. Therefore, we hypothesized that SGB ameliorates PHSML-induced vascular hyporeactivity by inhibiting autophagy-mediated phenotypic transformation of VSMCs. To substantiate this hypothesis, a hemorrhagic shock model in conscious rats was used to observe the effects of SGB intervention or intravenous infusion of the autophagy inhibitor 3-methyladenine (3-MA) on intestinal blood flow and the expression of autophagy- and phenotype-defining proteins in mesenteric secondary artery tissues. We also investigated the effects of intraperitoneal administration of PHSML intravenous infusion and the autophagy agonist rapamycin (RAPA) on the beneficial effect of SGB. The results showed that hemorrhagic shock decreased intestinal blood flow and enhanced the expression of LC3 II/I, Beclin 1, and matrix metalloproteinase 2, which were reversed by SGB or 3-MA treatment. In contrast, RAPA and PHSML administration abolished the beneficial effects of SGB. Furthermore, the effects of PHSML or PHSML obtained from rats treated with SGB (PHSML-SGB) on cellular contractility, autophagy, and VSMC phenotype were explored. Meanwhile, the effects of 3-MA on PHSML and RAPA on PHSML-SGB were observed. The results showed that PHSML, but not PHSML-SGB, incubation decreased VSMC contractility and induced autophagy activation and phenotype transformation. Importantly, 3-MA administration reversed the adverse effects of PHSML, and RAPA treatment attenuated the effects of PHSML-SGB incubation on VSMCs. Taken together, the protective effect of SGB on vascular reactivity is achieved by inhibiting excessive autophagy-mediated phenotypic transformation of VSMCs to maintain their contractile phenotype.
Collapse
Affiliation(s)
- Cai-Juan Li
- Institute of Microcirculation and Basic Medicine College, Hebei North University, Zhangjiakou, PR China
| | | | | | | | - Yi-Ming Li
- Institute of Microcirculation and Basic Medicine College, Hebei North University, Zhangjiakou, PR China
| | - Si-Jie Chen
- Institute of Microcirculation and Basic Medicine College, Hebei North University, Zhangjiakou, PR China
| | | | - Nan Zhang
- Institute of Microcirculation and Basic Medicine College, Hebei North University, Zhangjiakou, PR China
| | | | | |
Collapse
|
3
|
Sun Q, Zhang H, Du HB, Zhao ZA, Li CJ, Chen SJ, Li YM, Zhang SL, Liu JC, Niu CY, Zhao ZG. ESTROGEN ALLEVIATES POSTHEMORRHAGIC SHOCK MESENTERIC LYMPH-MEDIATED LUNG INJURY THROUGH AUTOPHAGY INHIBITION. Shock 2023; 59:754-762. [PMID: 36840514 DOI: 10.1097/shk.0000000000002102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
ABSTRACT Background: Hemorrhagic shock-induced acute lung injury (ALI) is commonly associated with the posthemorrhagic shock mesenteric lymph (PHSML) return. Whether excessive autophagy is involved in PHSML-mediated ALI remains unclear. The relationship between estrogen treatment and PHSML or autophagy needs to verify. The current study will clarify the role of estrogen in reducing PHSML-mediated ALI through inhibition of autophagy. Methods: First, a hemorrhagic shock model in conscious rats was used to observe the effects of 17β-estradiol (E2) on intestinal blood flow, pulmonary function, intestinal and pulmonary morphology, and expression of autophagy marker proteins. Meanwhile, the effect of PHSML and autophagy agonist during E2 treatment was also investigated. Secondly, rat primary pulmonary microvascular endothelial cells were used to observe the effect of PHSML, PHSML plus E2, and E2-PHSML (PHSML obtained from rats treated by E2) on the cell viability. Results: Hemorrhagic shock induced intestinal and pulmonary tissue damage and increased wet/dry ratio, reduced intestinal blood flow, along with pulmonary dysfunction characterized by increased functional residual capacity and lung resistance and decreased inspiratory capacity and peak expiratory flow. Hemorrhagic shock also enhanced the autophagy levels in intestinal and pulmonary tissue, which was characterized by increased expressions of LC3 II/I and Beclin-1 and decreased expression of p62. E2 treatment significantly attenuated these adverse changes after hemorrhagic shock, which was reversed by PHSML or rapamycin administration. Importantly, PHSML incubation decreased the viability of pulmonary microvascular endothelial cells, while E2 coincubation or E2-treated lymph counteracted the adverse roles of PHSML. Conclusions: The role of estrogen reducing PHSML-mediated ALI is associated with the inhibition of autophagy.
Collapse
Affiliation(s)
| | | | | | | | | | - Si-Jie Chen
- Institute of Microcirculation and Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Yi-Ming Li
- Institute of Microcirculation and Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Sen-Lu Zhang
- Institute of Microcirculation and Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Jun-Chao Liu
- The First Affiliated Hospital, Hebei North University, Zhangjiakou, China
| | | | | |
Collapse
|
4
|
Du HB, Jiang SB, Zhao ZA, Zhang H, Zhang LM, Wang Z, Guo YX, Zhai JY, Wang P, Zhao ZG, Niu CY, Jiang LN. TLR2/TLR4-Enhanced TIPE2 Expression Is Involved in Post-Hemorrhagic Shock Mesenteric Lymph-Induced Activation of CD4+T Cells. Front Immunol 2022; 13:838618. [PMID: 35572554 PMCID: PMC9101470 DOI: 10.3389/fimmu.2022.838618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Post hemorrhagic shock mesenteric lymph (PHSML) return contributes to CD4+ T cell dysfunction, which leads to immune dysfunction and uncontrolled inflammatory response. Tumor necrosis factor α induced protein 8 like-2 (TIPE2) is one of the essential proteins to maintain the immune homeostasis. This study investigated the role of TIPE2 in regulation of CD4+ T lymphocyte function in interaction of PHSML and TLR2/TLR4. Methods The splenic CD4+ T cells were isolated from various mice (WT, TLR2-/-, TLR4-/-) by immunomagnetic beads, and stimulated with PHSML, normal lymphatic fluid (NML), respectively. Application of TIPE2-carrying interfering fragments of lentivirus were transfected to WT, TLR4-/-, and TLR2-/- CD4+ T cells, respectively. After interference of TIPE2, they were stimulated with PHSML and NML for the examinations of TIPE2, TLR2, and TLR4 mRNA expressions, proliferation, activation molecules on surface, and cytokine secretion function. Results PHSML stimulation significantly upregulated TIPE2, TLR2, and TLR4 mRNA expressions, decreased proliferation, CD25 expression, and IFN-γ secretion, and increased the secretion ability of IL-4 in WT CD4+ T cells. TIPE2 silencing enhanced proliferative capacity, upregulated CD25 expression, and increased IFNγ secretion in CD4+ T cells. PHSML stimulated TLR2-/-CD4+ T or TLR4-/-CD4+ T cells of which TIPE2 were silenced. TLR2 or TLR4 knockout attenuated PHSML-induced CD4+ T cells dysfunction; PHSML stimulation of silent TIPE2-expressing TLR2-/-CD4+ T or TLR4-/-CD4+ T revealed that the coexistence of low TIPE2 expression with lack of TLR2 or TLR4 eliminated this beneficial effect. Conclusion TIPE2 improves the PHSML-mediated CD4+T cells dysfunction by regulating TLR2/TLR4 pathway, providing a new intervention target following hemorrhagic shock-induced immune dysfunction.
Collapse
Affiliation(s)
- Hui-Bo Du
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Sun-Ban Jiang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Hong Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Li-Min Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Zhao Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Ya-Xiong Guo
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Jia-Yi Zhai
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Peng Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Chun-Yu Niu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Li-Na Jiang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| |
Collapse
|
5
|
Wang C, Du HB, Zhao ZA, Zhai JY, Zhang LM, Niu CY, Zhao ZG. Autophagy Is Involved in Stellate Ganglion Block Reversing Posthemorrhagic Shock Mesenteric Lymph-Mediated Vascular Hyporeactivity. Front Physiol 2021; 12:728191. [PMID: 34621184 PMCID: PMC8491623 DOI: 10.3389/fphys.2021.728191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/23/2021] [Indexed: 12/05/2022] Open
Abstract
Objective: The aim of this study was to clarify the role of autophagy in stellate ganglion block (SGB) reversing posthemorrhagic shock mesenteric lymph (PHSML)-mediated vascular hyporeactivity. Methods: Hemorrhagic shock model in conscious rats was employed to observe the effects of SGB (0.2 ml of 0.25% ropivacaine hydrochloride hydrate) and autophagy inhibitor 3-methyladenine (3-MA; 30 mg/kg) on the vascular reactivity of second-order rat mesenteric arteries in vitro, while the effects of PHSML (1 ml/kg) and autophagy agonist rapamycin (Rapa, 10 mg/kg) on the beneficial effect of SGB were investigated. The cellular viability, contractility, and autophagy-related protein expressions in vascular smooth muscle cells (VSMCs) were detected following treatments of PHSML, PHSML obtained from the rats that underwent hemorrhagic shock plus SGB (PHSML-SGB), and PHSML plus 3-MA (5 mM), respectively. Results: Hemorrhagic shock significantly decreased the vascular reactivity to gradient norepinephrine (NE), which is reversed by the SGB treatment and 3-MA administration. On the contrary, PHSML intravenous infusion and Rapa administration inhibited the vascular contractile responses in rats that underwent hemorrhagic shock plus SGB treatment. PHSML treatment significantly inhibited the cellular viability and contractility in VSMCs, increased the expressions of LC3-II and Beclin 1, and decreased the expression of p62, along with opposite appearances in these indices following PHSML-SGB treatment. In addition, 3-MA counteracted the adverse roles of PHSML in these indices in VSMCs. Conclusion: SGB inhibits PHSML-mediated vascular hyporeactivity by reducing the excessive autophagy in VSMCs.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Hui-Bo Du
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, China.,Key Laboratory of Critical Disease Mechanism and Intervention in Hebei, Hebei Medical University & Hebei North University, Shijiazhuang & Zhangjiakou, China
| | - Jia-Yi Zhai
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Li-Min Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, China.,Key Laboratory of Critical Disease Mechanism and Intervention in Hebei, Hebei Medical University & Hebei North University, Shijiazhuang & Zhangjiakou, China
| | - Chun-Yu Niu
- Key Laboratory of Critical Disease Mechanism and Intervention in Hebei, Hebei Medical University & Hebei North University, Shijiazhuang & Zhangjiakou, China.,Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, China.,Key Laboratory of Critical Disease Mechanism and Intervention in Hebei, Hebei Medical University & Hebei North University, Shijiazhuang & Zhangjiakou, China
| |
Collapse
|