1
|
Braun MR, Moore AC, Lindbloom JD, Hodgson KA, Dora EG, Tucker SN. Elimination of Human Papillomavirus 16-Positive Tumors by a Mucosal rAd5 Therapeutic Vaccination in a Pre-Clinical Murine Study. Vaccines (Basel) 2024; 12:955. [PMID: 39339987 PMCID: PMC11435741 DOI: 10.3390/vaccines12090955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Therapeutic vaccination can harness the body's cellular immune system to target and destroy cancerous cells. Several treatment options are available to eliminate pre-cancerous and cancerous lesions caused by human papillomaviruses (HPV), but may not result in a long-term cure. Therapeutic vaccination may offer an effective, durable, and minimally intrusive alternative. We developed mucosally delivered, recombinant, non-replicating human adenovirus type 5 (rAd5)-vectored vaccines that encode HPV16's oncogenic proteins E6 and E7 alongside a molecular dsRNA adjuvant. The induction of antigen-specific T cells and the therapeutic efficacy of rAd5 were evaluated in a mouse model of HPV tumorigenesis where E6E7-transformed cells, TC-1, were implanted subcutaneously in C57BL/6 mice. After tumor growth, mice were treated intranasally with rAd5 vaccines expressing the wildtype form of E6E7 (rAd5-16/E6E7Wt) in combination with an anti-PD-1 antibody or isotype control. Animals treated with rAd5-16/E6E7Wt with and without anti-PD-1 had significant reductions in tumor volume and increased survival compared to controls. Further, animals treated with rAd5-16/E6E7Wt had increased CD4+ and CD8+ tumor-infiltrating lymphocytes (TILs) and produced a cytotoxic tumor microenvironment. In a second study, the immunogenicity of a non-transformative form of E6E7 (rAd5-16/E6E7Mu) and a vaccine encoding predicted T cell epitopes of E6E7 (rAd5-16/E6E7epi) were evaluated. These vaccines elicited significant reductions in TC-1 tumor volume and increased survival of animals. Antigen-specific CD8+ T effector memory cells were observed in the animals treated with E6E7-encoding rAd5, but not in the rAd5-empty group. The work described here demonstrates that this mucosal vaccination can be used therapeutically to elicit specific cellular immunity and further identifies a clinical candidate with great potential for the treatment and prevention of human cervical cancer.
Collapse
Affiliation(s)
- Molly R Braun
- Vaxart Inc., 170 Harbor Way Suite 300, South San Francisco, CA 94080, USA
| | - Anne C Moore
- Vaxart Inc., 170 Harbor Way Suite 300, South San Francisco, CA 94080, USA
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland
- National Institute of Bioprocessing Research and Training, A94 X099 Dublin, Ireland
| | | | | | - Emery G Dora
- Vaxart Inc., 170 Harbor Way Suite 300, South San Francisco, CA 94080, USA
| | - Sean N Tucker
- Vaxart Inc., 170 Harbor Way Suite 300, South San Francisco, CA 94080, USA
| |
Collapse
|
2
|
Demidova A, Douguet L, Fert I, Wei Y, Charneau P, Majlessi L. Comparison of preclinical efficacy of immunotherapies against HPV-induced cancers. Expert Rev Vaccines 2024; 23:674-687. [PMID: 38978164 DOI: 10.1080/14760584.2024.2374287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Persistent infections with the human papilloma viruses, HPV16 and HPV18, are associated with multiple cancers. Although prophylactic vaccines that induce HPV-neutralizing antibodies are effective against primary infections, they have no effect on HPV-mediated malignancies against which there is no approved immuno-therapy. Active research is ongoing on immunotherapy of these cancers. AREAS COVERED In this review, we compared the preclinical efficacy of vaccine platforms used to treat HPV-induced tumors in the standard model of mice grafted with TC-1 cells, which express the HPV16 E6 and E7 oncoproteins. We searched for the key words, 'HPV,' 'vaccine,' 'therapy,' 'E7,' 'tumor,' 'T cells' and 'mice' for the period from 2005 to 2023 in PubMed and found 330 publications. Among them, we selected the most relevant to extract preclinical antitumor results to enable cross-sectional comparison of their efficacy. EXPERT OPINION SECTION We compared these studies for HPV antigen design, immunization regimen, immunogenicity, and antitumor effect, considering their drawbacks and advantages. Among all strategies used in murine models, certain adjuvanted proteins and viral vectors showed the strongest antitumor effects, with the use of lentiviral vectors being the only approach to result in complete tumor eradication in 100% of experimental individuals while providing the longest-lasting memory.
Collapse
Affiliation(s)
- Anastasia Demidova
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | - Laëtitia Douguet
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | - Ingrid Fert
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | - Yu Wei
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | - Pierre Charneau
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | | |
Collapse
|
3
|
Fert I, Douguet L, Vesin B, Moncoq F, Noirat A, Authié P, Ciret S, Le Chevalier F, Blanc C, Vitrenko Y, Charneau P, Majlessi L, Anna F. T-cell immunity induced and reshaped by an anti-HPV immuno-oncotherapeutic lentiviral vector. NPJ Vaccines 2024; 9:102. [PMID: 38858404 PMCID: PMC11164992 DOI: 10.1038/s41541-024-00894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
We recently developed an immuno-oncotherapy against human papillomavirus (HPV)-induced tumors based on a lentiviral vector encoding the Early E6 and E7 oncoproteins of HPV16 and HPV18 genotypes, namely "Lenti-HPV-07". The robust and long-lasting anti-tumor efficacy of Lenti-HPV-07 is dependent on CD8+ T-cell induction and remodeling of the tumor microenvironment. Here, we first established that anti-vector immunity induced by Lenti-HPV-07 prime has no impact on the efficacy of a homologous boost to amplify anti-HPV T-cell immunity. To longitudinally monitor the evolution of the T-cell repertoire generated after the prime, homologous or heterologous boost with Lenti-HPV-07, we tracked T-cell clonotypes by deep sequencing of T-Cell Receptor (TCR) variable β and α chain mRNA, applied to whole peripheral blood cells (PBL) and a T cell population specific of an immunodominant E7HPV16 epitope. We observed a hyper-expansion of clonotypes post prime, accompanied by increased frequencies of HPV-07-specific T cells. Additionally, there was a notable diversification of clonotypes post boost in whole PBL, but not in the E7HPV16-specific T cells. We then demonstrated that the effector functions of such Lenti-HPV-07-induced T cells synergize with anti-checkpoint inhibitory treatments by systemic administration of anti-TIM3 or anti-NKG2A monoclonal antibodies. While Lenti-HPV-07 is about to enter a Phase I/IIa clinical trial, these results will help better elucidate its mode of action in immunotherapy against established HPV-mediated malignancies.
Collapse
Affiliation(s)
- Ingrid Fert
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 Rue du Dr. Roux, F-75015, Paris, France
| | - Laëtitia Douguet
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 Rue du Dr. Roux, F-75015, Paris, France
| | - Benjamin Vesin
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 Rue du Dr. Roux, F-75015, Paris, France
| | - Fanny Moncoq
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 Rue du Dr. Roux, F-75015, Paris, France
| | - Amandine Noirat
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 Rue du Dr. Roux, F-75015, Paris, France
| | - Pierre Authié
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 Rue du Dr. Roux, F-75015, Paris, France
| | - Sylvain Ciret
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 Rue du Dr. Roux, F-75015, Paris, France
| | - Fabien Le Chevalier
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 Rue du Dr. Roux, F-75015, Paris, France
| | - Catherine Blanc
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 Rue du Dr. Roux, F-75015, Paris, France
| | - Yakov Vitrenko
- Institut Pasteur, Université Paris Cité, Biomics Technology Platform, F-75015, Paris, France
| | - Pierre Charneau
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 Rue du Dr. Roux, F-75015, Paris, France
| | - Laleh Majlessi
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 Rue du Dr. Roux, F-75015, Paris, France.
| | - François Anna
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 Rue du Dr. Roux, F-75015, Paris, France.
| |
Collapse
|
4
|
Ni C, Han Y, Wang Y, Ma T, Sha D, Xu Y, Cao W, Gao S. Human HLA prolongs the host inflammatory response in Streptococcus suis serotype 2 infection compared to mouse H2 molecules. Front Cell Infect Microbiol 2023; 13:1285055. [PMID: 38035330 PMCID: PMC10682707 DOI: 10.3389/fcimb.2023.1285055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Streptococcus suis (S. suis) is widely acknowledged as a significant zoonotic pathogen in Southeast Asia and China, which has led to a substantial number of fatalities in both swine and humans. Despite the prevalent use of mice as the primary animal model to study S. suis pathogenesis, the substantial differences in the major histocompatibility complex (MHC) between humans and mice underscore the ongoing exploration for a more suitable and effective animal model. In this study, humanized transgenic HLA-A11/DR1 genotypes mice were used to evaluate the differences between humanized HLA and murine H2 in S. suis infection. Following intravenous administration of S. suis suspensions, we investigated bacterial load, cytokine profiles, pathological alterations, and immune cell recruitment in both Wild-type (WT) and humanized mice across different post-infection time points. Relative to WT mice, humanized mice exhibited heightened pro-inflammatory cytokines, exacerbated tissue damage, increased granulocyte recruitment with impaired resolution, notably more pronounced during the late infection stage. Additionally, our examination of bacterial clearance rates suggests that HLA-A11/DR1 primarily influences cell recruitment and mitochondrial reactive oxygen species (ROS) production, which affects the bacterial killing capacity of macrophages in the late stage of infection. The reduced IL-10 production and lower levels of regulatory T cells in humanized mice could underlie their compromised resolution ability. Intervention with IL-10 promotes bacterial clearance and inflammatory regression in the late stages of infection in transgenic mice. Our findings underscore the heightened sensitivity of HLA-A11/DR1 mice with impaired resolution to S. suis infection, effectively mirroring the immune response seen in humans during infection. The humanized HLA-A11/DR1 mice could serve as an optimal animal model for investigating the pathogenic and therapeutic mechanisms associated with sepsis and other infectious diseases.
Collapse
Affiliation(s)
- Chengpei Ni
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Yi Han
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Yajing Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Ting Ma
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dan Sha
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Yanan Xu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Wenting Cao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Song Gao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
5
|
Douguet L, Fert I, Lopez J, Vesin B, Le Chevalier F, Moncoq F, Authié P, Nguyen T, Noirat A, Névo F, Blanc C, Bourgine M, Hardy D, Anna F, Majlessi L, Charneau P. Full eradication of pre-clinical human papilloma virus-induced tumors by a lentiviral vaccine. EMBO Mol Med 2023; 15:e17723. [PMID: 37675835 PMCID: PMC10565635 DOI: 10.15252/emmm.202317723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Human papillomavirus (HPV) infections are the cause of all cervical and numerous oropharyngeal and anogenital cancers. The currently available HPV vaccines, which induce neutralizing antibodies, have no therapeutic effect on established tumors. Here, we developed an immuno-oncotherapy against HPV-induced tumors based on a non-integrative lentiviral vector encoding detoxified forms of the Early E6 and E7 oncoproteins of HPV16 and 18 genotypes, namely, "Lenti-HPV-07". A single intramuscular injection of Lenti-HPV-07 into mice bearing established HPV-induced tumors resulted in complete tumor eradication in 100% of the animals and was also effective against lung metastases. This effect correlated with CD8+ T-cell induction and profound remodeling of the tumor microenvironment. In the intra-tumoral infiltrates of vaccinated mice, the presence of large amounts of activated effector, resident memory, and transcription factor T cell factor-1 (TCF-1)+ "stem-like" CD8+ T cells was associated with full tumor eradication. The Lenti-HPV-07-induced immunity was long-lasting and prevented tumor growth after a late re-challenge, mimicking tumor relapse. Lenti-HPV-07 therapy synergizes with an anti-checkpoint inhibitory treatment and therefore shows promise as an immuno-oncotherapy against established HPV-mediated malignancies.
Collapse
Affiliation(s)
- Laëtitia Douguet
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Ingrid Fert
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Jodie Lopez
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Benjamin Vesin
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Fabien Le Chevalier
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Fanny Moncoq
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Pierre Authié
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Trang‐My Nguyen
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Amandine Noirat
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Fabien Névo
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Catherine Blanc
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Maryline Bourgine
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - David Hardy
- Histopathology Platform, Institut PasteurUniversité de ParisParisFrance
| | - François Anna
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Laleh Majlessi
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Pierre Charneau
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| |
Collapse
|
6
|
Ramos da Silva J, Bitencourt Rodrigues K, Formoso Pelegrin G, Silva Sales N, Muramatsu H, de Oliveira Silva M, Porchia BFMM, Moreno ACR, Aps LRMM, Venceslau-Carvalho AA, Tombácz I, Fotoran WL, Karikó K, Lin PJC, Tam YK, de Oliveira Diniz M, Pardi N, de Souza Ferreira LC. Single immunizations of self-amplifying or non-replicating mRNA-LNP vaccines control HPV-associated tumors in mice. Sci Transl Med 2023; 15:eabn3464. [PMID: 36867683 DOI: 10.1126/scitranslmed.abn3464] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
As mRNA vaccines have proved to be very successful in battling the coronavirus disease 2019 (COVID-19) pandemic, this new modality has attracted widespread interest for the development of potent vaccines against other infectious diseases and cancer. Cervical cancer caused by persistent human papillomavirus (HPV) infection is a major cause of cancer-related deaths in women, and the development of safe and effective therapeutic strategies is urgently needed. In the present study, we compared the performance of three different mRNA vaccine modalities to target tumors associated with HPV-16 infection in mice. We generated lipid nanoparticle (LNP)-encapsulated self-amplifying mRNA as well as unmodified and nucleoside-modified non-replicating mRNA vaccines encoding a chimeric protein derived from the fusion of the HPV-16 E7 oncoprotein and the herpes simplex virus type 1 glycoprotein D (gDE7). We demonstrated that single low-dose immunizations with any of the three gDE7 mRNA vaccines induced activation of E7-specific CD8+ T cells, generated memory T cell responses capable of preventing tumor relapses, and eradicated subcutaneous tumors at different growth stages. In addition, the gDE7 mRNA-LNP vaccines induced potent tumor protection in two different orthotopic mouse tumor models after administration of a single vaccine dose. Last, comparative studies demonstrated that all three gDE7 mRNA-LNP vaccines proved to be superior to gDE7 DNA and gDE7 recombinant protein vaccines. Collectively, we demonstrated the immunogenicity and therapeutic efficacy of three different mRNA vaccines in extensive comparative experiments. Our data support further evaluation of these mRNA vaccines in clinical trials.
Collapse
Affiliation(s)
- Jamile Ramos da Silva
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karine Bitencourt Rodrigues
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Guilherme Formoso Pelegrin
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Natiely Silva Sales
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Hiromi Muramatsu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariângela de Oliveira Silva
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Bruna F M M Porchia
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,Laboratory of Tumor Immunology, Department of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP 05508-000, Brazil.,ImunoTera Soluções Terapêuticas Ltda., São Paulo, SP 05508-000, Brazil
| | - Ana Carolina Ramos Moreno
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Luana Raposo M M Aps
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,ImunoTera Soluções Terapêuticas Ltda., São Paulo, SP 05508-000, Brazil
| | - Aléxia Adrianne Venceslau-Carvalho
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - István Tombácz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wesley Luzetti Fotoran
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | | | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T1Z3, Canada
| | - Mariana de Oliveira Diniz
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Norbert Pardi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,Scientific Platform Pasteur USP, University of São Paulo, São Paulo, SP, 05508-020, Brazil
| |
Collapse
|
7
|
Schifflers C, Zottnick S, Förster JD, Kruse S, Yang R, Wiethoff H, Bozza M, Hoppe-Seyler K, Heikenwälder M, Harbottle RP, Michiels C, Riemer AB. Development of an Orthotopic HPV16-Dependent Base of Tongue Tumor Model in MHC-Humanized Mice. Pathogens 2023; 12:pathogens12020188. [PMID: 36839460 PMCID: PMC9958775 DOI: 10.3390/pathogens12020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) caused by infections with high-risk human papillomaviruses (HPV) are responsible for an increasing number of head and neck cancers, particularly in the oropharynx. Despite the significant biological differences between HPV-driven and HPV-negative HNSCC, treatment strategies are similar and not HPV targeted. HPV-driven HNSCC are known to be more sensitive to treatment, particularly to radiotherapy, which is at least partially due to HPV-induced immunogenicity. The development of novel therapeutic strategies that are specific for HPV-driven cancers requires tumor models that reflect as closely as possible the characteristics and complexity of human tumors and their response to treatment. Current HPV-positive cancer models lack one or more hallmarks of their human counterpart. This study presents the development of a new HPV16 oncoprotein-dependent tumor model in MHC-humanized mice, modeling the major biologic features of HPV-driven tumors and presenting HLA-A2-restricted HPV16 epitopes. Furthermore, this model was developed to be orthotopic (base of tongue). Thus, it also reflects the correct tumor microenvironment of HPV-driven HNSCC. The cancer cells are implanted in a manner that allows the exact control of the anatomical location of the developing tumor, thereby homogenizing tumor growth. In conclusion, the new model is suited to study HPV16-specific therapeutic vaccinations and other immunotherapies, as well as tumor-targeted interventions, such as surgery or radiotherapy, or a combination of all these modalities.
Collapse
Affiliation(s)
- Christoph Schifflers
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Cell Biology Research Unit (URBC)–Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Samantha Zottnick
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research, Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Jonas D. Förster
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research, Partner Site Heidelberg, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Sebastian Kruse
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research, Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Ruwen Yang
- Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hendrik Wiethoff
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Helmholtz-University Group Cell Plasticity and Epigenetic Remodeling, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Bozza
- DNA Vector Laboratory, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mathias Heikenwälder
- Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Richard P. Harbottle
- DNA Vector Laboratory, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Carine Michiels
- Cell Biology Research Unit (URBC)–Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Angelika B. Riemer
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research, Partner Site Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-42-3820
| |
Collapse
|
8
|
Mohan N, Wellach K, Özerdem C, Veits N, Förster JD, Foehr S, Bonsack M, Riemer AB. Effects of hypoxia on antigen presentation and T cell-based immune recognition of HPV16-transformed cells. Front Immunol 2022; 13:918528. [DOI: 10.3389/fimmu.2022.918528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Attempts to develop a therapeutic vaccine against human papillomavirus (HPV)-induced malignancies have mostly not been clinically successful to date. One reason may be the hypoxic microenvironment present in most tumors, including cervical cancer. Hypoxia dysregulates the levels of human leukocyte antigen (HLA) class I molecules in different tumor entities, impacts the function of cytotoxic T cells, and leads to decreased protein levels of the oncoproteins E6 and E7 in HPV-transformed cells. Therefore, we investigated the effect of hypoxia on the presentation of HPV16 E6- and E7-derived epitopes in cervical cancer cells and its effect on epitope-specific T cell cytotoxicity. Hypoxia induced downregulation of E7 protein levels in all analyzed cell lines, as assessed by Western blotting. However, contrary to previous reports, no perturbation of antigen processing and presentation machinery (APM) components and HLA-A2 surface expression upon hypoxia treatment was detected by mass spectrometry and flow cytometry, respectively. Cytotoxicity assays performed in hypoxic conditions showed differential effects on the specific killing of HPV16-positive cervical cancer cells by epitope-specific CD8+ T cell lines in a donor- and peptide-specific manner. Effects of hypoxia on the expression of PD-L1 were ruled out by flow cytometry analysis. Altogether, our results under hypoxia show a decreased expression of E6 and E7, but an intact APM, and epitope- and donor-dependent effects on T cell cytotoxicity towards HPV16-positive target cells. This suggests that successful immunotherapies can be developed for hypoxic HPV-induced cervical cancer, with careful choice of target epitopes, and ideally in combination with hypoxia-alleviating measures.
Collapse
|
9
|
Avdoshina DV, Kondrashova AS, Belikova MG, Bayurova EO. Murine Models of Chronic Viral Infections and Associated Cancers. Mol Biol 2022; 56:649-667. [PMID: 36217336 PMCID: PMC9534466 DOI: 10.1134/s0026893322050028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022]
Abstract
Viruses are now recognized as bona fide etiologic factors of human cancer. Carcinogenic viruses include Epstein– Barr virus (EBV), high-risk human papillomaviruses (HPVs), hepatitis B virus (HBV), hepatitis C virus (HCV), human T-cell leukemia virus type 1 (HTLV-1), human immunodeficiency virus type 1 (HIV-1, indirectly), and several candidate human cancer viruses. It is estimated that 15% of all human tumors worldwide are caused by viruses. Tumor viruses establish long-term persistent infections in humans, and cancer is an accidental side effect of viral replication strategies. Viruses are usually not complete carcinogens, supporting the concept that cancer results from the accumulation of multiple cooperating events, in which human cancer viruses display different, often opposing roles. The laboratory mouse Mus musculus is one of the best in vivo experimental systems for modeling human pathology, including viral infections and cancer. However, mice are unsusceptible to infection with the known carcinogenic viruses. Many murine models were developed to overcome this limitation and to address various aspects of virus-associated carcinogenesis, from tumors resulting from xenografts of human tissues and cells, including cancerous and virus infected, to genetically engineered mice susceptible to viral infections and associated cancer. The review considers the main existing models, analyzes their advantages and drawbacks, describes their applications, outlines the prospects of their further development.
Collapse
Affiliation(s)
- D. V. Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia
| | - A. S. Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia
| | - M. G. Belikova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia ,Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia ,Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - E. O. Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia ,Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| |
Collapse
|
10
|
Tu Q, Feng W, Chen Z, Li Q, Zhao Y, Chen J, Jiang P, Xue X, Zhang L, Zhao KN. Characterization of Episomal Replication of Bovine Papillomavirus Type 1 DNA in Long-Term Virion-Infected Saccharomyces Cerevisiae Culture. Virol Sin 2021; 36:1492-1502. [PMID: 34460066 PMCID: PMC8692549 DOI: 10.1007/s12250-021-00439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
We have previously reported that bovine papillomavirus type 1 (BPV-1) DNA can replicate its genome and produce infectious virus-like particles in short term virion-infected S. cerevisiae (budding yeast) cultures (Zhao and Frazer 2002, Journal of Virology, 76:3359–64 and 76:12265–73). Here, we report the episomal replications of BPV-1 DNA in long term virion-infected S. cerevisiae culture up to 108 days. Episomal replications of the BPV-1 DNA could be divided into three patterns at three stages, early active replication (day 3–16), middle weak replication (day 23–34/45) and late stable replication (day 45–82). Two-dimensional gel electrophoresis analysis and Southern blot hybridization have revealed further that multiple replication intermediates of BPV-1 DNA including linear form, stranded DNA, monomers and higher oligomers were detected in the virion-infected yeast cells over the time course. Higher oligomers shown as covalently closed circular DNAs (cccDNAs) are the most important replication intermediates that serve as the main nuclear transcription template for producing all viral RNAs in the viral life cycle. In this study, the cccDNAs were generated at the early active replication stage with the highest frequencies and then at late stable replication, but they appeared to be suppressed at the middle weak replication. Our data provided a novel insight that BPV-1 genomic DNA could replicate episomally for the long period and produce the key replication intermediates cccDNAs in S. cerevisiae system.
Collapse
Affiliation(s)
- Quanmei Tu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Weixu Feng
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhuo Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qijia Li
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, 325035, China.,Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Zhao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Jun Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Pengfei Jiang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiangyang Xue
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Kong-Nan Zhao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, 325035, China. .,Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China. .,Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, 4067, Australia.
| |
Collapse
|