1
|
Chen S, Liu J, He G, Tang N, Zeng Y. Research Hotspots and Trends in Global Cancer immunometabolism:A Bibliometric Analysis from 2000 to 2023. J Multidiscip Healthc 2024; 17:5117-5137. [PMID: 39553266 PMCID: PMC11568773 DOI: 10.2147/jmdh.s495330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Background Cancer poses a major global health challenge, and immunotherapy, known as the third revolution in cancer treatment, has brought new hope to patients. The emerging field of immunometabolism has further enhanced the safety and efficacy of immunotherapy. Over the past two decades, this field has rapidly evolved in oncology, leading to numerous significant findings. This review systematically examines the literature on immunometabolism in cancer, visualizing research trends and identifying future directions. Methods A comprehensive literature search was conducted in the Web of Science, PubMed, and Scopus databases, covering publications from January 2000 to December 2023. We employed tools like Citespace, VOSviewer, and RStudio for visual analysis of publication trends, regional contributions, institutions, authors, journals, and keywords. Results A total of 3320 articles were published by 8090 authors across 1738 institutions, involving 71 countries. Leading contributors were China (n=469), the United States (n=361), and Germany (n=82). Harvard University was the most influential institution, while Frontiers in Immunology had the highest number of publications. The top research areas included glucose, lipid, and amino acid metabolism, the tumor microenvironment, and immune cell regulation. Conclusion International collaboration and interdisciplinary efforts are advancing the field of cancer immunometabolism. Future research will likely focus on the interplay between metabolism and immunity, metabolic markers, immune cell reprogramming, and tumor-immune metabolic competition.
Collapse
Affiliation(s)
- Shupeng Chen
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Jie Liu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Guilian He
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Nana Tang
- Hematology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Yingjian Zeng
- Hematology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| |
Collapse
|
2
|
Yang C, Qian C, Zheng W, Dong G, Zhang S, Wang F, Wei Z, Xu Y, Wang A, Zhao Y, Lu Y. Ginsenoside Rh2 enhances immune surveillance of natural killer (NK) cells via inhibition of ERp5 in breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155180. [PMID: 38043385 DOI: 10.1016/j.phymed.2023.155180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/02/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND One critical component of the immune system that prevents breast cancer cells from forming distant metastasis is natural killer (NK) cells participating in immune responses to tumors. Ginsenoside Rh2 (GRh2) as one of the major active ingredients of ginseng has been employed in treatment of cancers, but the function of GRh2 in modulating the development of breast cancer remains elusive. PURPOSE This study was to dissect the effect of GRh2 against breast cancer and its potential mechanisms associated with NK cells, both in vitro and in vivo. METHODS MDA-MB-231 and 4T1 cells were used to establish in situ and hematogenous mouse models. MDA-MB-231 and MCF-7 were respectively co-cultured with NK92MI cells or primary NK cells in vitro. Anti-tumor efficacy of GRh2 was verified by immunohistochemistry (IHC), Cell Counting Kit-8 (CCK8), high resolution micro-computed tomography (micro-CT) scanning of lungs and hematoxylin and eosin (H&E) staining. Lactate dehydrogenase (LDH) cytotoxicity assay, flow cytometry, in vivo depletion of NK cells, enzyme-linked immunosorbent assay (ELISA), western blot, quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunofluorescence and cell transfection were performed for investigating the anti-tumor mechanisms of GRh2. Molecular docking, microscale thermophoresis (MST) and cellular thermal shift assay (CETSA) were employed to determine the binding between endoplasmic reticulum protein 5 (ERp5) and GRh2. RESULTS We demonstrated that GRh2 exerted prominent impacts on retarding the growth and metastasis of breast cancer through boosting the cytotoxic function of NK cells, as validated by the elevated release of perforin, granzyme B and interferon-γ (IFN-γ). Mechanistical studies revealed that GRh2 was capable of diminishing the expression of ERp5 and GRh2 directly bound to ERp5 in MDA-MB-231 cells as well as on a recombinant protein level. GRh2 prevented the formation of soluble MICA (sMICA) and upregulated the expression level of MICA in vivo and in vitro. Importantly, the reduced lung metastasis of breast cancer by GRh2 was almost abolished upon the depletion of NK cells. Moreover, GRh2 was able to insert into the binding pocket of ERp5 directly. CONCLUSION We firstly demonstrated that GRh2 played a pivotal role in augmenting NK cell activity by virtue of modulating the NKG2D-MICA signaling axis via directly binding to ERp5, and may be further optimized to a therapeutic agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Chunmei Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Zheng
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanglu Dong
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shan Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feihui Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuhua Xu
- Jiangsu Health Vocational College, Nanjing 211800, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Sun X, Feng Y, Ma Q, Wang Y, Ma F. Protein glycosylation: bridging maternal-fetal crosstalk during embryo implantation†. Biol Reprod 2023; 109:785-798. [PMID: 37658761 DOI: 10.1093/biolre/ioad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Infertility is a challenging health problem that affects 8-15% of couples worldwide. Establishing pregnancy requires successful embryo implantation, but about 85% of unsuccessful pregnancies are due to embryo implantation failure or loss soon after. Factors crucial for successful implantation include invasive blastocysts, receptive endometrium, invasion of trophoblast cells, and regulation of immune tolerance at the maternal-fetal interface. Maternal-fetal crosstalk, which relies heavily on protein-protein interactions, is a critical factor in implantation that involves multiple cellular communication and molecular pathways. Glycosylation, a protein modification process, is closely related to cell growth, adhesion, transport, signal transduction, and recognition. Protein glycosylation plays a crucial role in maternal-fetal crosstalk and can be divided into N-glycosylation and O-glycosylation, which are often terminated by sialylation or fucosylation. This review article examines the role of protein glycosylation in maternal-fetal crosstalk based on two transcriptome datasets from the GEO database (GSE139087 and GSE113790) and existing research, particularly in the context of the mechanism of protein glycosylation and embryo implantation. Dysregulation of protein glycosylation can lead to adverse pregnancy outcomes, such as missed abortion and recurrent spontaneous abortion, underscoring the importance of a thorough understanding of protein glycosylation in the diagnosis and treatment of female reproductive disorders. This knowledge could have significant clinical implications, leading to the development of more effective diagnostic and therapeutic approaches for these conditions.
Collapse
Affiliation(s)
- Xinrui Sun
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Feng
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qianhong Ma
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Madsen HB, Peeters MJ, Straten PT, Desler C. Nucleotide metabolism in the regulation of tumor microenvironment and immune cell function. Curr Opin Biotechnol 2023; 84:103008. [PMID: 37863018 DOI: 10.1016/j.copbio.2023.103008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/22/2023]
Abstract
Nucleotide metabolism plays a crucial role in the regulation of the tumor microenvironment (TME) and immune cell function. In the TME, limited availability of nucleotide precursors due to increased consumption by tumor cells and T cells affects both tumor development and immune function. Metabolic reprogramming in tumor cells favors pathways supporting growth and proliferation, including nucleotide synthesis. Additionally, extracellular nucleotides, such as ATP and adenosine, exhibit dual roles in modulating immune function and tumor cell survival. ATP stimulates antitumor immunity by activating purinergic receptors, while adenosine acts as a potent immunosuppressor. Targeting nucleotide metabolism in the TME holds immense promise for cancer therapy. Understanding the intricate relationship between nucleotide metabolism, the TME, and immune responses will pave the way for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Helena B Madsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Marlies Jw Peeters
- Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Per Thor Straten
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Copenhagen, Denmark; Department of Immunology and Microbiology, Inflammation and Cancer Group, University of Copenhagen, Denmark
| | - Claus Desler
- Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
5
|
Tan G, Spillane KM, Maher J. The Role and Regulation of the NKG2D/NKG2D Ligand System in Cancer. BIOLOGY 2023; 12:1079. [PMID: 37626965 PMCID: PMC10452210 DOI: 10.3390/biology12081079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
The family of human NKG2D ligands (NKG2DL) consists of eight stress-induced molecules. Over 80% of human cancers express these ligands on the surface of tumour cells and/or associated stromal elements. In mice, NKG2D deficiency increases susceptibility to some types of cancer, implicating this system in immune surveillance for malignancy. However, NKG2DL can also be shed, released via exosomes and trapped intracellularly, leading to immunosuppressive effects. Moreover, NKG2D can enhance chronic inflammatory processes which themselves can increase cancer risk and progression. Indeed, tumours commonly deploy a range of countermeasures that can neutralise or even corrupt this surveillance system, tipping the balance away from immune control towards tumour progression. Consequently, the prognostic impact of NKG2DL expression in human cancer is variable. In this review, we consider the underlying biology and regulation of the NKG2D/NKG2DL system and its expression and role in a range of cancer types. We also consider the opportunities for pharmacological modulation of NKG2DL expression while cautioning that such interventions need to be carefully calibrated according to the biology of the specific cancer type.
Collapse
Affiliation(s)
- Ge Tan
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK;
| | | | - John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK;
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
6
|
Wang W, Wong NK, Bok SL, Xu Y, Guo Y, Xu L, Zuo M, St. Croix CM, Mao G, Kapralov A, Bayir H, Kagan VE, Yang D. Visualizing Cardiolipin In Situ with HKCL-1M, a Highly Selective and Sensitive Fluorescent Probe. J Am Chem Soc 2023; 145:11311-11322. [PMID: 37103240 PMCID: PMC10214440 DOI: 10.1021/jacs.3c00243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Indexed: 04/28/2023]
Abstract
Reliable probing of cardiolipin (CL) content in dynamic cellular milieux presents significant challenges and great opportunities for understanding mitochondria-related diseases, including cancer, neurodegeneration, and diabetes mellitus. In intact respiring cells, selectivity and sensitivity for CL detection are technically demanding due to structural similarities among phospholipids and compartmental secludedness of the inner mitochondrial membrane. Here, we report a novel "turn-on" fluorescent probe HKCL-1M for detecting CL in situ. HKCL-1M displays outstanding sensitivity and selectivity toward CL through specific noncovalent interactions. In live-cell imaging, its hydrolyzed product HKCL-1 efficiently retained itself in intact cells independent of mitochondrial membrane potential (Δψm). The probe robustly co-localizes with mitochondria and outperforms 10-N-nonyl acridine orange (NAO) and Δψm-dependent dyes with superior photostability and negligible phototoxicity. Our work thus opens up new opportunities for studying mitochondrial biology through efficient and reliable visualization of CL in situ.
Collapse
Affiliation(s)
- Wei Wang
- Guangdong Provincial Key Laboratory
of Optical Fiber Sensing and Communication, Institute of Photonics
Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Kei Wong
- Clinical
Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Siu-Lun Bok
- Morningside
Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - You Xu
- Key
Laboratory of Structural Biology of Zhejiang Province, School of Life
Sciences, Westlake University, Hangzhou 310024, China
| | - Yang Guo
- Qingdao
Institute for Theoretical and Computational Sciences, Institute of
Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Lu Xu
- School
of
Life Sciences, Westlake University, Hangzhou 310024, China
| | - Meiling Zuo
- School
of
Life Sciences, Westlake University, Hangzhou 310024, China
| | - Claudette M. St. Croix
- Department
of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Gaowei Mao
- Department
of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Center
for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Alexandr Kapralov
- Department
of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Center
for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Hülya Bayir
- Center
for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Critical Care Medicine, University of
Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Valerian E. Kagan
- Department
of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Center
for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Dan Yang
- Morningside
Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- School
of
Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and
Biomedicine, Hangzhou 310024, China
| |
Collapse
|
7
|
Targeting hypoxia-related metabolism molecules: How to improve tumour immune and clinical treatment? Biomed Pharmacother 2022; 156:113917. [DOI: 10.1016/j.biopha.2022.113917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/20/2022] Open
|
8
|
Wordsworth J, O' Keefe H, Clark P, Shanley D. The damage-independent evolution of ageing by selective destruction. Mech Ageing Dev 2022; 207:111709. [PMID: 35868541 DOI: 10.1016/j.mad.2022.111709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 01/06/2023]
Abstract
Ageing is widely believed to reflect the accumulation of molecular damage due to energetic costs of maintenance, as proposed in disposable soma theory (DST). Here we use agent-based modelling to describe an alternative theory by which ageing could undergo positive selection independent of energetic costs. We suggest that the selective advantage of aberrant cells with fast growth might necessitate a mechanism of counterselection we name selective destruction that specifically removes the faster cells from tissues, preventing the morbidity and mortality risks they pose. The resulting survival advantage of slower mutants could switch the direction of selection, allowing them to outcompete both fast mutants and wildtype cells, causing them to spread and induce ageing in the form of a metabolic slowdown. Selective destruction could therefore provide a proximal cause of ageing that is both consistent with the gene expression hallmarks of ageing, and independent of accumulating damage. Furthermore, negligible senescence would acquire a new meaning of increased basal mortality.
Collapse
Affiliation(s)
- James Wordsworth
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Hannah O' Keefe
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peter Clark
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daryl Shanley
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
9
|
Jones AB, Rocco A, Lamb LS, Friedman GK, Hjelmeland AB. Regulation of NKG2D Stress Ligands and Its Relevance in Cancer Progression. Cancers (Basel) 2022; 14:2339. [PMID: 35565467 PMCID: PMC9105350 DOI: 10.3390/cancers14092339] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Under cellular distress, multiple facets of normal homeostatic signaling are altered or disrupted. In the context of the immune landscape, external and internal stressors normally promote the expression of natural killer group 2 member D (NKG2D) ligands that allow for the targeted recognition and killing of cells by NKG2D receptor-bearing effector populations. The presence or absence of NKG2D ligands can heavily influence disease progression and impact the accessibility of immunotherapy options. In cancer, tumor cells are known to have distinct regulatory mechanisms for NKG2D ligands that are directly associated with tumor progression and maintenance. Therefore, understanding the regulation of NKG2D ligands in cancer will allow for targeted therapeutic endeavors aimed at exploiting the stress response pathway. In this review, we summarize the current understanding of regulatory mechanisms controlling the induction and repression of NKG2D ligands in cancer. Additionally, we highlight current therapeutic endeavors targeting NKG2D ligand expression and offer our perspective on considerations to further enhance the field of NKG2D ligand biology.
Collapse
Affiliation(s)
- Amber B. Jones
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Abbey Rocco
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | | | - Gregory K. Friedman
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
10
|
Desler C, Durhuus JA, Hansen TLL, Anugula S, Zelander NT, Bøggild S, Rasmussen LJ. Partial inhibition of mitochondrial-linked pyrimidine synthesis increases tumorigenic potential and lysosome accumulation. Mitochondrion 2022; 64:73-81. [PMID: 35346867 DOI: 10.1016/j.mito.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
The correlation between mitochondrial function and oncogenesis is complex and is not fully understood. Here we determine the importance of mitochondrial-linked pyrimidine synthesis for the aggressiveness of cancer cells. The enzyme dihydroorotate dehydrogenase (DHODH) links oxidative phosphorylation to de novo synthesis of pyrimidines. We demonstrate that an inhibition of DHODH results in a respiration-independent significant increase of anchorage-independent growth but does not affect DNA repair ability. Instead, we show an autophagy-independent increase of lysosomes. The results of this study suggest that inhibition of mitochondrial-linked pyrimidine synthesis in cancer cells results in a more aggressive tumor phenotype.
Collapse
Affiliation(s)
- Claus Desler
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Jon Ambæk Durhuus
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark; Department of Clinical Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | | | - Sharath Anugula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Nadia Thaulov Zelander
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Sisse Bøggild
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
11
|
Seth A, Kar S. Understanding the Crosstalk Between Epigenetics and Immunometabolism to Combat Cancer. Subcell Biochem 2022; 100:581-616. [PMID: 36301507 DOI: 10.1007/978-3-031-07634-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The interaction between metabolic and epigenetic events shapes metabolic adaptations of cancer cells and also helps rewire the proliferation and activity of surrounding immune cells in the tumor microenvironment (TME). Recent studies indicate that the TME imposes metabolic constraints on immune cells, inducing them to attain a tolerogenic state, incompetent of mounting effective tumor eradication. Owing to extensive mutations acquired over repeated cell divisions, tumor cells selectively accumulate metabolites that regulate the activity of key epigenetic enzymes to mediate activation/suppression of genes associated with T-cell function and macrophage polarization. Further, multiple modulators connecting epigenetic and metabolic pathways help dictate the preferential induction of cytokines and expression of lineage-specifying genes associated with immunosuppressive T-cell differentiation.In this chapter, we attempt to discuss the mechanisms underpinning the metabolic and epigenetic interplay in immune cells of the TME and how modulating these events can boost the application of existing anticancer immunotherapy.
Collapse
Affiliation(s)
- Anuradha Seth
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, India
| | - Susanta Kar
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|