1
|
Weng M, Zhang R, Zhang Z, Wu J, Zheng W, Lu Q, Long S, Liu R, Wang Z, Cui J. A Novel Trichinella spiralis Galectin Strengthens the Macrophage ADCC Killing of Larvae via Driving M1 Polarization. Int J Mol Sci 2024; 25:10920. [PMID: 39456703 PMCID: PMC11506943 DOI: 10.3390/ijms252010920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Galectin recognizes β-galactosides through its carbohydrate recognition domains (CRDs). This study aimed to determine the biological features of a novel Trichinella spiralis galectin (galactoside-binding lectin family protein, TsGLFP) and its role in driving macrophage M1 polarization and enhancing ADCC killing of larvae. TsGLFP belongs to the galectin family and has two CRDs. The complete TsGLFP cDNA sequence was cloned and then expressed in Escherichia coli BL21. The results of qPCR, Western blot, and indirect immunofluorescence tests (IIFTs) revealed that TsGLFP was expressed in various stages of T. spiralis worms and principally localized at the cuticle and around the female embryos of the nematode. rTsGLFP had the function of agglutinating mouse erythrocytes, and this agglutination activity could be inhibited by lactose. After the mouse macrophage RAW264.7 was incubated with rTsGLFP, the expression level of the M1 genes (iNOS, IL-6, and TNF-α) and NO production were obviously increased. After incubating macrophages with rTsGLFP, there was a noticeable rise in the expression levels of p-IκB-α and p-NF-κB p65. Additionally, rTsGLFP enhanced the macrophage's ability to kill newborn larvae by ADCC cytotoxicity. When the macrophages were pretreated with the specific p-NF-κB p65 inhibitor PDTC, and then stimulated with rTsGLFP, the expression levels of iNOS, NO, and p-NF-κB p65 and the macrophages' ADCC cytotoxicity were distinctly decreased. These findings indicated that rTsGLFP enhanced the macrophage ADCC killing of larvae by driving M1 polarization through activating the NF-κB pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhongquan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.W.); (R.Z.); (Z.Z.); (J.W.); (W.Z.); (Q.L.); (S.L.); (R.L.)
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.W.); (R.Z.); (Z.Z.); (J.W.); (W.Z.); (Q.L.); (S.L.); (R.L.)
| |
Collapse
|
2
|
Zhang R, Zhang Y, Yan SW, Cheng YK, Zheng WW, Long SR, Wang ZQ, Cui J. Galactomannan inhibits Trichinella spiralis invasion of intestinal epithelium cells and enhances antibody-dependent cellular cytotoxicity related killing of larvae by driving macrophage polarization. Parasite 2024; 31:6. [PMID: 38334686 PMCID: PMC10854486 DOI: 10.1051/parasite/2024002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
Previous studies have shown that recombinant Trichinella spiralis galectin (rTsgal) is characterized by a carbohydrate recognition domain sequence motif binding to beta-galactoside, and that rTsgal promotes larval invasion of intestinal epithelial cells. Galactomannan is an immunostimulatory polysaccharide composed of a mannan backbone with galactose residues. The aim of this study was to investigate whether galactomannan inhibits larval intrusion of intestinal epithelial cells and enhances antibody-dependent cellular cytotoxicity (ADCC), killing newborn larvae by polarizing macrophages to the M1 phenotype. The results showed that galactomannan specially binds to rTsgal, and abrogated rTsgal facilitation of larval invasion of intestinal epithelial cells. The results of qPCR, Western blotting, and flow cytometry showed that galactomannan and rTsgal activated macrophage M1 polarization, as demonstrated by high expression of iNOS (M1 marker) and M1 related genes (IL-1β, IL-6, and TNF-α), and increased CD86+ macrophages. Galactomannan and rTsgal also increased NO production. The killing ability of macrophage-mediated ADCC on larvae was also significantly enhanced in galactomannan- and rTsgal-treated macrophages. The results demonstrated that Tsgal may be considered a potential vaccine target molecule against T. spiralis invasion, and galactomannan may be a novel adjuvant therapeutic agent and potential vaccine adjuvant against T. spiralis infection.
Collapse
Affiliation(s)
- Ru Zhang
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Yao Zhang
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Shu Wei Yan
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Yong Kang Cheng
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Wen Wen Zheng
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Shao Rong Long
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Zhong Quan Wang
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Jing Cui
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|
3
|
Sun XM, Hao CY, Wu AQ, Luo ZN, El-Ashram S, Alouffi A, Gu Y, Liu S, Huang JJ, Zhu XP. Trichinella spiralis -induced immunomodulation signatures on gut microbiota and metabolic pathways in mice. PLoS Pathog 2024; 20:e1011893. [PMID: 38166140 PMCID: PMC10786400 DOI: 10.1371/journal.ppat.1011893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/12/2024] [Accepted: 12/11/2023] [Indexed: 01/04/2024] Open
Abstract
The hygiene hypothesis proposes that decreased exposure to infectious agents in developed countries may contribute to the development of allergic and autoimmune diseases. Trichinella spiralis, a parasitic roundworm, causes trichinellosis, also known as trichinosis, in humans. T. spiralis had many hosts, and almost any mammal could become infected. Adult worms lived in the small intestine, while the larvae lived in muscle cells of the same mammal. T. spiralis was a significant public health threat because it could cause severe illness and even death in humans who eat undercooked or raw meat containing the parasite. The complex interactions between gastrointestinal helminths, gut microbiota, and the host immune system present a challenge for researchers. Two groups of mice were infected with T. spiralis vs uninfected control, and the experiment was conducted over 60 days. The 16S rRNA gene sequences and untargeted LC/MS-based metabolomics of fecal and serum samples, respectively, from different stages of development of the Trichinella spiralis-mouse model, were examined in this study. Gut microbiota alterations and metabolic activity accompanied by parasite-induced immunomodulation were detected. The inflammation parameters of the duodenum (villus/crypt ratio, goblet cell number and size, and histological score) were involved in active inflammation and oxidative metabolite profiles. These profiles included increased biosynthesis of phenylalanine, tyrosine, and tryptophan while decreasing cholesterol metabolism and primary and secondary bile acid biosynthesis. These disrupted metabolisms adapted to infection stress during the enteral and parenteral phases and then return to homeostasis during the encapsulated phase. There was a shift from an abundance of Bacteroides in the parenteral phase to an abundance of probiotic Lactobacillus and Treg-associated-Clostridia in the encapsulated phase. Th2 immune response (IL-4/IL-5/IL-13), lamina propria Treg, and immune hyporesponsiveness metabolic pathways (decreased tropane, piperidine and pyridine alkaloid biosynthesis and biosynthesis of alkaloids derived from ornithine, lysine, and nicotinic acid) were all altered. These findings enhanced our understanding of gut microbiota and metabolic profiles of Trichinella -infected mice, which could be a driving force in parasite-shaping immune system maintenance.
Collapse
Affiliation(s)
- Xi-Meng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chun-Yue Hao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - An-Qi Wu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ze-Ni Luo
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Saeed El-Ashram
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong province, China
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Yuan Gu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sha Liu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing-Jing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xin-Ping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Thammasonthijarern N, Boonnak K, Reamtong O, Krasae T, Thankansakul J, Phongphaew W, Ampawong S, Adisakwattana P. Amelioration of ovalbumin-induced lung inflammation in a mouse model by Trichinella spiralis novel cystatin. Vet World 2023; 16:2366-2373. [PMID: 38152266 PMCID: PMC10750734 DOI: 10.14202/vetworld.2023.2366-2373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/23/2023] [Indexed: 12/29/2023] Open
Abstract
Background and Aims Asthma, a chronic disease affecting humans and animals, has recently become increasingly prevalent and steadily widespread. The alternative treatment of asthma using helminth infections or helminth-derived immunomodulatory molecules (IMs) has been evaluated and demonstrated significant amelioration of disease severity index in vitro and in vivo. Trichinella spiralis, a parasitic nematode and its IMs, elicits a potential to relieve asthma and other immune-related disorders. In this study, we investigated the immunomodulatory function of recombinant T. spiralis novel cystatin (rTsCstN) in ameliorating acute inflammatory asthma disorders in a murine model. Materials and Methods Female BALB/c mice were sensitized using intraperitoneal injection of ovalbumin (OVA)/alum and subsequently challenged with intranasal administration of OVA alone or OVA + rTsCstN for 3 consecutive days, producing OVA-induced allergic asthma models. To evaluate the therapeutic efficacy of rTsCstN, the inflammatory cells and cytokines in bronchoalveolar lavage fluid (BALF) and OVA-specific immunoglobulin E levels in serum were assessed. Histological alterations in the lung tissues were determined by hematoxylin and eosin (H&E) staining and eventually scored for the extent of inflammatory cell infiltration. Results The asthmatic mouse models challenged with OVA + rTsCstN demonstrated a significant reduction of eosinophils (p < 0.01), macrophages (p < 0.05), and cytokines tumor necrosis factor-α (p < 0.05) and interferon (IFN)-γ (p < 0.05) in BALF when compared with the mice challenged with OVA alone. However, the levels of interleukin (IL)-4 and IL-10 remained unchanged. Histological examination revealed that mice administered OVA + rTsCstN were less likely to have inflammatory cell infiltration in their perivascular and peribronchial lung tissues than those administered OVA alone. Conclusion Recombinant T. spiralis novel cystatin demonstrated immunomodulatory effects to reduce severe pathogenic alterations in asthma mouse models, encouraging a viable alternative treatment for asthma and other immunoregulatory disorders in humans and animals in the future.
Collapse
Affiliation(s)
- Nipa Thammasonthijarern
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Kobporn Boonnak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thanyaluk Krasae
- Laboratory Animal Science Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Janyaporn Thankansakul
- Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Wallaya Phongphaew
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Yan SW, Zhang R, Guo X, Wang BN, Long SR, Liu RD, Wang ZQ, Cui J. Trichinella spiralis dipeptidyl peptidase 1 suppressed macrophage cytotoxicity by promoting M2 polarization via the STAT6/PPARγ pathway. Vet Res 2023; 54:77. [PMID: 37705099 PMCID: PMC10500742 DOI: 10.1186/s13567-023-01209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/31/2023] [Indexed: 09/15/2023] Open
Abstract
Trichinella spiralis dipeptidyl peptidase 1 (TsDPP1), or cysteine cathepsin C, is a secretory protein that is highly expressed during the infective larvae and adult worm stages in the intestines. The aim of this study was to investigate the mechanism by which recombinant TsDPP1 (rTsDPP1) activates macrophages M2 polarization and decreases macrophage cytotoxicity to kill newborn larvae via ADCC. RAW264.7 macrophages and murine peritoneal macrophages were used in this study. The results of the immunofluorescence test (IFT) and confocal microscopy showed that rTsDPP1 specifically bound to macrophages, and the binding site was localized on the cell membrane. rTsDPP1 activated macrophage M2 polarization, as demonstrated by high expression levels of Arg1 (M2 marker) and M2-related genes (IL-10, TGF-β, CD206 and Arg1) and high numbers of CD206+ macrophages. Furthermore, the expression levels of p-STAT6, STAT6 and PPARγ were obviously increased in rTsDPP1-treated macrophages, which were evidently abrogated by using a STAT6 inhibitor (AS1517499) and PPARγ antagonist (GW9662). The results indicated that rTsDPP1 promoted macrophage M2 polarization through the STAT6/PPARγ pathway. Griess reaction results revealed that rTsDPP1 suppressed LPS-induced NO production in macrophages. qPCR and flow cytometry results showed that rTsDPP1 downregulated the expression of FcγR I (CD64) in macrophages. The ability of ADCC to kill newborn larvae was significantly decreased in rTsDPP1-treated macrophages, but AS1517499 and GW9662 restored its killing capacity. Our results demonstrated that rTsDPP1 induced macrophage M2 polarization, upregulated the expression of anti-inflammatory cytokines, and inhibited macrophage-mediated ADCC via activation of the STAT6/PPARγ pathway, which is beneficial to the parasitism and immune evasion of this nematode.
Collapse
Affiliation(s)
- Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Bo Ning Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
6
|
Xiong L, Chen L, Chen Y, Shen N, Hua R, Yang G. Evaluation of the immunoprotective effects of eight recombinant proteins from Baylisascaris schroederi in mice model. Parasit Vectors 2023; 16:254. [PMID: 37501169 PMCID: PMC10375773 DOI: 10.1186/s13071-023-05886-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Baylisascaris schroederi is the most common and harmful intestinal parasitic nematode of giant pandas, causing ascariasis. Although drug deworming is the main measure to control ascariasis in captive giant pandas, prolonged and repeated use of deworming drugs might induce resistance in nematodes and drug residues in giant pandas. Therefore, developing a safe and effective vaccine might provide a novel strategy to prevent ascariasis in captive giant pandas. METHODS Four highly expressed secretome genes encoding excretory and secretory proteins of B. schroederi, including transthyretin-like protein 46 (BsTLP), uncharacterized protein (BsUP), hypothetical protein 1 (BsHP1), and hypothetical protein 2 (BsHP2) and four functional genes [(encoding Galectin (BsGAL), glutathione S-transferase (BsGST), fatty acid-binding protein (BsFABP), and thioredoxin peroxidase (BsTPX)] were identified based on genome and transcriptome databases of B. schroederi and used to construct recombinant proteins via prokaryotic expression. Kunming mice were vaccinated subcutaneously twice with the recombinant proteins (50 μg/mouse) mixed with Quil A adjuvant with a 2-week interval and then orally challenged with 3000 infective eggs. The immunoprotective effects of the eight recombinant proteins on mice were assessed comprehensively using surface lesion histology scores of the mouse liver and lung, larval worm reduction, serum antibody levels (IgG, IgE, IgA, IgG1, and IgG2a), and cytokine production [interferon gamma (IFN-γ), interleukin (IL)-2, IL-4, IL-5, and IL-10]. RESULTS Mice vaccinated with recombinant (r)BsUP (76.5%), rBsGAL (74.7%), and rBsHP2 (71.5%) showed a significant (P < 0.001) reduction in the larval worm rate compared with that in the adjuvant control. Besides, the surface lesions in the liver and lung of the vaccinated mice were alleviated. Serum levels of total IgG, IgE, IgA, IgG1, IgG2a, and cytokines, including IL-10, IL-5, and IFN-γ, were significantly higher (P < 0.001) than those in the control group. CONCLUSIONS The results showed that candidate three vaccines (rBsUP, rBsGAL, and rBsHP2) could provide effective protection against egg infection in mice associated with a mixed Th1/2-type immune response.
Collapse
Affiliation(s)
- Lang Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ling Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanxin Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Doolan R, Putananickal N, Tritten L, Bouchery T. How to train your myeloid cells: a way forward for helminth vaccines? Front Immunol 2023; 14:1163364. [PMID: 37325618 PMCID: PMC10266106 DOI: 10.3389/fimmu.2023.1163364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Soil-transmitted helminths affect approximately 1.5 billion people worldwide. However, as no vaccine is currently available for humans, the current strategy for elimination as a public health problem relies on preventive chemotherapy. Despite more than 20 years of intense research effort, the development of human helminth vaccines (HHVs) has not yet come to fruition. Current vaccine development focuses on peptide antigens that trigger strong humoral immunity, with the goal of generating neutralizing antibodies against key parasite molecules. Notably, this approach aims to reduce the pathology of infection, not worm burden, with only partial protection observed in laboratory models. In addition to the typical translational hurdles that vaccines struggle to overcome, HHVs face several challenges (1): helminth infections have been associated with poor vaccine responses in endemic countries, probably due to the strong immunomodulation caused by these parasites, and (2) the target population displays pre-existing type 2 immune responses to helminth products, increasing the likelihood of adverse events such as allergy or anaphylaxis. We argue that such traditional vaccines are unlikely to be successful on their own and that, based on laboratory models, mucosal and cellular-based vaccines could be a way to move forward in the fight against helminth infection. Here, we review the evidence for the role of innate immune cells, specifically the myeloid compartment, in controlling helminth infections. We explore how the parasite may reprogram myeloid cells to avoid killing, notably using excretory/secretory (ES) proteins and extracellular vesicles (EVs). Finally, learning from the field of tuberculosis, we will discuss how anti-helminth innate memory could be harnessed in a mucosal-trained immunity-based vaccine.
Collapse
Affiliation(s)
- Rory Doolan
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Namitha Putananickal
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Lucienne Tritten
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tiffany Bouchery
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Li L, He W, Fan X, Liu M, Luo B, Yang F, Jiang N, Wang L, Zhou B. Proteomic analysis of Taenia solium cysticercus and adult stages. Front Vet Sci 2023; 9:934197. [PMID: 36699330 PMCID: PMC9868161 DOI: 10.3389/fvets.2022.934197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
Taenia solium (T. solium) cysticercosis is a neglected parasitic zoonosis that occurs in developing countries. Since T. solium has a complex life cycle that includes eggs, oncospheres, cysticerci, and adults, presumably many proteins are produced that enable them to survive and establish an infection within the host. The objectives of this study were to perform a comparative proteomic analysis of two ontogenetic stages of T. solium (cysticerci and adult) and to analyze their differential expression of proteins. Methods proteins were separated by High Performance Liquid Chromatography (HPLC) fractionation, and protein samples were also digested in liquid and identified by liquid chromatography tandem mass spectrometry (LC-MS/MS); the differentially expressed proteins were then processed by a bioinformatics analysis and verified by parallel reaction monitoring (PRM). Results we identified 2,481 proteins by label-free quantitative proteomics. Then differentially expressed proteins were screened under P values < 0.05 and 2 fold change, we found that 293 proteins up-regulated and 265 proteins down-regulated. Discussion through the bioinformatics analysis, we analyzed the differences types and functions of proteins in the Taenia solium and cysticercus, the data will provide reference value for studying the pathogenic mechanism of the two stages and the interaction with the host, and also support for further experimental verification.
Collapse
|
9
|
He W, Sun X, Luo B, Liu M, Li L, Fan X, Ye J, Zhou B. Regulation of piglet T-cell immune responses by thioredoxin peroxidase from Cysticercus cellulosae excretory-secretory antigens. Front Microbiol 2022; 13:1019810. [PMID: 36466695 PMCID: PMC9718028 DOI: 10.3389/fmicb.2022.1019810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 12/27/2023] Open
Abstract
Taenia solium (T. solium) cysticercosis is a serious threat to human health and animal husbandry. During parasitization, Cysticercus cellulosae (C. cellulosae) can excrete and secrete antigens that modulate the host's T-cell immune responses. However, the composition of C. cellulosae excretory-secretory antigens (ESAs) is complex. This study sought to identify the key molecules in C. cellulosae ESAs involved in regulating T-cell immune responses. Thus, we screened for thioredoxin peroxidase (TPx), with the highest differential expression, as the key target by label-free quantification proteomics of C. cellulosae and its ESAs. In addition, we verified whether TPx protein mainly exists in C. cellulosae ESAs. The TPx recombinant protein was prepared by eukaryotic expression, and ESAs were used as the experimental group to further investigate the effect of TPx protein on the immune response of piglet T cells in vitro. TPx protein induced an increase in CD4+ T cells in piglet peripheral blood mononuclear cells (PBMCs), while CD8+ T cells did not change significantly. This resulted in an imbalance in the CD4+/CD8+ T-cell ratio and an increase in CD4+CD25+Foxp3+ Treg cells in the PBMCs. In addition, TPx protein initiated T helper 2 (Th2)-type immune responses by secreting IL-4 and IL-10 and suppressed Th1/Th17-type immune responses. The results showed that ESAs were involved in regulating piglet T-cell immune responses cells. This suggests that TPx protein found in ESAs plays an essential role to help the parasite evade host immune attack. Moreover, this lays a foundation for the subsequent exploration of the mechanism through which TPx protein regulates signaling molecules to influence T-cell differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Biying Zhou
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
10
|
Immunization with EmCRT-Induced Protective Immunity against Echinococcus multilocularis Infection in BALB/c Mice. Trop Med Infect Dis 2022; 7:tropicalmed7100279. [PMID: 36288020 PMCID: PMC9610995 DOI: 10.3390/tropicalmed7100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Alveolar echinococcosis (AE) is a severe parasitic zoonosis caused by the larval stage of Echinococcus multilocularis. The identification of the antigens eliciting acquired immunity during infection is important for vaccine development against Echinococcus infection. Here, we identified that E. multilocularis calreticulin (EmCRT), a ubiquitous protein with a Ca2+-binding ability, could be recognized by the sera of mice infected with E. multilocularis. The native EmCRT was expressed on the surface of E. multilocularis larvae as well as in the secreted products of metacestode vesicles and protoscoleces (PSCs). The coding DNA for EmCRT was cloned from the mRNA of the E. multilocularis metacestode vesicles and a recombinant EmCRT protein (rEmCRT) was expressed in E. coli. Mice immunized with soluble rEmCRT formulated with Freund’s adjuvant (FA) produced a 43.16% larval vesicle weight reduction against the challenge of E. multilocularis PSCs compared to those that received the PBS control associated with a high titer of IgG, IgG1 and IgG2a antibody responses as well as high levels of Th1 cytokines (IFN-γ and IL-2) and Th2 cytokines (IL-4, IL-5 and IL-10), produced by splenocytes. Our results suggest that EmCRT is an immunodominant protein secreted by E. multilocularis larvae and a vaccine candidate that induces partial protective immunity in vaccinated mice against Echinococcus infection.
Collapse
|
11
|
Wu J, Liao Y, Li D, Zhu Z, Zhang L, Wu Z, He P, Wang L. Extracellular vesicles derived from Trichinella Spiralis larvae promote the polarization of macrophages to M2b type and inhibit the activation of fibroblasts. Front Immunol 2022; 13:974332. [PMID: 36211336 PMCID: PMC9532625 DOI: 10.3389/fimmu.2022.974332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/05/2022] [Indexed: 11/14/2022] Open
Abstract
Trichinella spiralis (T. spiralis) is a globally distributed food-borne parasite that can coexist with the host for a long time after infection. Trichinella-derived secretions can regulate the immune response and fibroblasts of the host, but the specific mechanisms involved are still unclear. The purpose of this study was to investigate the role of T. spiralis larvae-derived extracellular vesicles (EVs) and their key miRNAs in the process of T. spiralis–host interaction. In this study, we found that the EVs of T. spiralis larvae, as well as miR-1-3p and let-7-5p, expressed in T. spiralis larvae-derived EVs, can promote the polarization of bone marrow macrophages to M2b type while inhibiting the activation of fibroblasts. These findings will contribute to further understanding of the molecular mechanisms underlying T. spiralis–host interactions.
Collapse
Affiliation(s)
- Ji Wu
- Medical Department of Xizang Minzu University, Xianyang, China
| | - Yao Liao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Dinghao Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zifeng Zhu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lichao Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
- *Correspondence: Lifu Wang, ; Ping He, ; Zhongdao Wu,
| | - Ping He
- Medical Department of Xizang Minzu University, Xianyang, China
- *Correspondence: Lifu Wang, ; Ping He, ; Zhongdao Wu,
| | - Lifu Wang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Lifu Wang, ; Ping He, ; Zhongdao Wu,
| |
Collapse
|
12
|
Bruschi F, Ashour D, Othman A. Trichinella-induced immunomodulation: Another tale of helminth success. Food Waterborne Parasitol 2022; 27:e00164. [PMID: 35615625 PMCID: PMC9125654 DOI: 10.1016/j.fawpar.2022.e00164] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023] Open
Abstract
Trichinella spiralis is a unique parasite in that both the adults and larvae survive in two different intracellular niches in the same host. The immune response, albeit intense, is highly modulated to ensure the survival of both the host and the parasite. It is skewed to T helper 2 and regulatory arms. Diverse cells from both the innate and adaptive compartments of immunity, including dendritic cells, T regulatory cells, and alternatively activated macrophages are thought to mediate such immunomodulation. The parasite has also an outstanding ability to evade the immune system by several elaborate processes. The molecules derived from the parasites including Trichinella, particularly the components of the excretory-secretory products, are being continually identified and explored for the potential of ameliorating the immunopathology in animal models of diverse inflammatory and autoimmune human diseases. Herein we discuss the various aspects of Trichinella-induced immunomodulation with a special reference to the practical implications of the immune system manipulation in alleviating or possibly curing human diseases.
Collapse
Key Words
- AAM, alternatively activated macrophage
- AW, adult worm
- Allergy
- Autoimmune diseases
- Breg, regulatory B cell
- CAM, classically activated macrophage
- Cancer
- ES L1, ES product of T. spiralis muscle larva
- ES, excretory–secretory
- IFN- γ, interferon-γ
- IIL, intestinal infective larva
- IL, interleukin
- Immune evasion
- Immunomodulation
- ML, muscle larva
- NBL, newborn larva
- NOS, nitric oxide synthase
- TGF-β, transforming growth factor-β
- TLR, toll-like receptor
- TNF- α, tumor necrosis factor-α
- Th, T helper
- Tol-DC, tolerogenic dendritic cell
- Treg, regulatory T cell
- Trichinella
- Trichinella-derived molecules
- Ts-AES, ES from adult T. spiralis
Collapse
Affiliation(s)
- F. Bruschi
- School of Medicine, Department of Translational Research, N.T.M.S., Università di Pisa, Pisa, Italy
| | - D.S. Ashour
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - A.A. Othman
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
13
|
Sun Q, Huang J, Gu Y, Liu S, Zhu X. Dynamic changes of macrophage activation in mice infected with Trichinella spiralis. Int Immunopharmacol 2022; 108:108716. [PMID: 35344812 DOI: 10.1016/j.intimp.2022.108716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023]
Abstract
Trichinellosis is a serious food-borne parasitic zoonosis worldwide. Different host macrophage subsets play various roles during helminth infection; however, the dynamic changes in macrophage subsets following Trichinella spiralis infection have not been reported. Here, flow cytometry and immunofluorescence were used to assess macrophage activation in mesenteric lymph nodes (MLN), spleen, intestine, and muscle from T. spiralis-infected mice at 1, 5, 15, and 30 days post infection (dpi). Macrophages in the intestine, MLN, and spleen tended to be activated M1-type at 1 and 5 dpi, while at 15 dpi, M2-type macrophages started to become a major constituent of the spleen macrophage population, and in the intestine and MLN, macrophages were primarily mixed M1 and M2 type. At 30 dpi, macrophages in the intestine, muscle, MLN, and spleen were all mainly activated M2 cells. Additionally, mouse macrophages were cleared and the adult T. spiralis load were determined to evaluate the impact of macrophages on adult parasite expulsion. The results suggested that predominantly M1 macrophages contribute to adult T. spiralis expulsion in the enteral stage of infection. At the newborn larvae migration stage, M2 macrophage-mediated immunity had a weak scavenging effect on adults, but primarily promoted tissue repair and assisted muscle larva immune escape. Our study reveals further details of the interaction between T. spiralis and the host immune system.
Collapse
Affiliation(s)
- Qing Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuan Gu
- Experimental Center for Basic Medical Teaching, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Sha Liu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
14
|
Goretzki A, Zimmermann J, Lin YJ, Schülke S. Immune Metabolism–An Opportunity to Better Understand Allergic Pathology and Improve Treatment of Allergic Diseases? FRONTIERS IN ALLERGY 2022; 3:825931. [PMID: 35386646 PMCID: PMC8974690 DOI: 10.3389/falgy.2022.825931] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 01/16/2023] Open
|
15
|
Shi W, Xu N, Wang X, Vallée I, Liu M, Liu X. Helminth Therapy for Immune-Mediated Inflammatory Diseases: Current and Future Perspectives. J Inflamm Res 2022; 15:475-491. [PMID: 35087284 PMCID: PMC8789313 DOI: 10.2147/jir.s348079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Affiliation(s)
- Wenjie Shi
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Ning Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Xuelin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Isabelle Vallée
- UMR BIPAR, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
- Correspondence: Xiaolei Liu; Mingyuan Liu, Tel +86-15943092280; +86-13019125996, Email ;
| |
Collapse
|
16
|
Goretzki A, Lin Y, Schülke S. Immune metabolism in allergies, does it matter?-A review of immune metabolic basics and adaptations associated with the activation of innate immune cells in allergy. Allergy 2021; 76:3314-3331. [PMID: 33811351 DOI: 10.1111/all.14843] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/11/2021] [Accepted: 03/28/2021] [Indexed: 12/11/2022]
Abstract
Type I allergies are pathological, type 2 inflammatory immune responses against otherwise harmless environmental allergens that arise from complex interactions between different types of immune cells. Activated immune cells undergo extensive changes in phenotype and function to fulfill their effector functions. Hereby, activation, differentiation, proliferation, migration, and mounting of effector responses require metabolic reprogramming. While the metabolic changes associated with activation of dendritic cells, macrophages, and T cells are extensively studied, data about the metabolic phenotypes of the other cell types critically involved in allergic responses (epithelial cells, eosinophils, basophils, mast cells, and ILC2s) are rather limited. This review briefly covers the basics of cellular energy metabolism and its connection to immune cell function. In addition, it summarizes the current state of knowledge in terms of dendritic cell and macrophage metabolism and subsequently focuses on the metabolic changes associated with activation of epithelial cells, eosinophils, basophils, mast cells, as well as ILC2s in allergy. Interestingly, the innate key cell types in allergic inflammation were reported to change their metabolic phenotype during activation, shifting to either glycolysis (epithelial cells, M1 macrophages, DCs, eosinophils, basophils, acutely activated mast cells), oxidative phosphorylation (M2 macrophages, longer term activated mast cells), or fatty acid oxidation (ILC2s). Therefore, immune metabolism is of relevance in allergic diseases and its connection to immune cell effector function needs to be considered to better understand induction and maintenance of allergic responses. Further progress in this field will likely improve both our understanding of disease pathology and enable new treatment targets/strategies.
Collapse
Affiliation(s)
| | - Yen‐Ju Lin
- Molecular Allergology Paul‐Ehrlich‐Institut Langen Germany
| | - Stefan Schülke
- Molecular Allergology Paul‐Ehrlich‐Institut Langen Germany
| |
Collapse
|
17
|
Molecular cloning and functional characterization of a thioredoxin peroxidase gene in Echinococcus multilocularis. Mol Biochem Parasitol 2021; 245:111408. [PMID: 34343548 DOI: 10.1016/j.molbiopara.2021.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 11/24/2022]
Abstract
Thioredoxin peroxidase (TPx) plays an important role in protecting parasites against oxidative damage. However, studies on the role of TPxs in Echinococcus multilocularis are limited. In this study, one tpx gene of E. multilocularis, named as emtpx-1, was identified. EmTPx-1 shares two positionally conserved cysteine residues (Cys48 and Cys169) with orthologs from other platyhelminths. EmTPx-1 is highly expressed in the germinal layer and present in exosome-like vesicles secreted by E. multilocularis metacestodes. EmTPx-1 displays peroxidase activity, which removes hydrogen peroxide in the presence of dithiothreitol. Furthermore, EmTPx-1 could protect DNA from oxidative damages, and EmTPx-1-expressing E. coli cells had an enhanced resistance to oxidative stress. In addition, EmTPx-1 enhanced the expression of arg1, ym1, and il-10, but suppressed inos, tnf-α, and il-1β expression in LPS-stimulated macrophages. Our data suggest a critical role for EmTPx-1 in oxidative stresses and M2 macrophage polarization.
Collapse
|