1
|
Ito K, Ogawa T, Tanigaki T, Kameda K, Hashimoto H, Kawana A, Kimizuka Y. Eosinophilic pleural effusion due to Staphylococcus epidermidis infection: A case report. Respir Med Case Rep 2024; 51:102075. [PMID: 39006194 PMCID: PMC11245978 DOI: 10.1016/j.rmcr.2024.102075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/16/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Eosinophilic pleural effusion is rare, and the cause is often obscure. A 73-year-old man with no relevant medical history presented with exertional dyspnea. Chest imaging revealed left-sided pleural effusion, and pleural fluid examination revealed eosinophilic pleural effusion. Blood tests revealed an increased peripheral blood eosinophil count and elevated Immunoglobulin E levels. Staphylococcus epidermidis was detected in pleural specimens collected via thoracoscopy. Antimicrobial therapy targeting Staphylococcus epidermidis resolved the eosinophilic pleural effusion and elevated peripheral blood eosinophil count. Staphylococcus epidermidis infection may be considered as a cause of eosinophilic pleural effusion when the diagnosis is difficult.
Collapse
Affiliation(s)
- Koki Ito
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Takunori Ogawa
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Tomomi Tanigaki
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Koji Kameda
- Division of Thoracic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Hiroshi Hashimoto
- Division of Thoracic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Akihiko Kawana
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Yoshifumi Kimizuka
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
2
|
Bai Y, Zhou R, Xie X, Zhu A, Nan Y, Wu T, Hu X, Cao Z, Ju D, Fan J. A Novel Bifunctional Fusion Protein (Anti-IL-17A-sST2) Protects against Acute Liver Failure, Modulating the TLR4/MyD88 Pathway and NLRP3 Inflammasome Activation. Biomedicines 2024; 12:1118. [PMID: 38791080 PMCID: PMC11117730 DOI: 10.3390/biomedicines12051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Acute liver failure (ALF) is a serious inflammatory disorder with high mortality rates, which poses a significant threat to human health. The IL-33/ST2 signal is a crucial regulator in inflammation responses associated with lipopolysaccharide (LPS)-induced macrophages. The IL-17A signaling pathway promotes the release of chemokines and inflammatory cytokines, recruiting neutrophils and T cells under LPS stimulation, thus facilitating inflammatory responses. Here, the potential therapeutic benefits of neutralizing the IL-17A signal and modulating the IL-33/ST2 signal in ALF were investigated. A novel dual-functional fusion protein, anti-IL-17A-sST2, was constructed, which displayed high purity and biological activities. The administration of anti-IL-17A-sST2 resulted in significant anti-inflammatory benefits in ALF mice, amelioration of hepatocyte necrosis and interstitial congestion, and reduction in TNF-α and IL-6. Furthermore, anti-IL-17A-sST2 injection downregulated the expression of TLR4 and NLRP3 as well as important molecules such as MyD88, caspase-1, and IL-1β. The results suggest that anti-IL-17A-sST2 reduced the secretion of inflammatory factors, attenuated the inflammatory response, and protected hepatic function by regulating the TLR4/MyD88 pathway and inhibiting the NLRP3 inflammasome, providing a new therapeutic approach for ALF.
Collapse
Affiliation(s)
- Yu Bai
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Rongrui Zhou
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xinlei Xie
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - An Zhu
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yanyang Nan
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tao Wu
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiaozhi Hu
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhonglian Cao
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Dianwen Ju
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Jiajun Fan
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
- Shanghai Hailu Biological Technology Co., Ltd., Shanghai 201200, China
| |
Collapse
|
3
|
He PY, Wu MY, Zheng LY, Duan Y, Fan Q, Zhu XM, Yao YM. Interleukin-33/serum stimulation-2 pathway: Regulatory mechanisms and emerging implications in immune and inflammatory diseases. Cytokine Growth Factor Rev 2024; 76:112-126. [PMID: 38155038 DOI: 10.1016/j.cytogfr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Interleukin (IL)- 33, a nuclear factor and pleiotropic cytokine of the IL-1 family, is gaining attention owing to its important role in chronic inflammatory and autoimmune diseases. This review extends our knowledge of the effects exerted by IL-33 on target cells by binding to its specific receptor serum stimulation-2 (ST2). Depending on the tissue context, IL-33 performs multiple functions encompassing host defence, immune response, initiation and amplification of inflammation, tissue repair, and homeostasis. The levels and activity of IL-33 in the body are controlled by complex IL-33-targeting regulatory pathways. The unique temporal and spatial expression patterns of IL-33 are associated with host homeostasis and the development of immune and inflammatory disorders. Therefore, understanding the origin, function, and processes of IL-33 under various conditions is crucial. This review summarises the regulatory mechanisms underlying the IL-33/ST2 signalling axis and its potential role and clinical significance in immune and inflammatory diseases, and discusses the current complex and conflicting findings related to IL-33 in host responses.
Collapse
Affiliation(s)
- Peng-Yi He
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Meng-Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Duan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Fan
- Emergency Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Xiao-Mei Zhu
- Tissue Repair and Regeneration Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Zhou Y, Xu Z, Liu Z. Role of IL-33-ST2 pathway in regulating inflammation: current evidence and future perspectives. J Transl Med 2023; 21:902. [PMID: 38082335 PMCID: PMC10714644 DOI: 10.1186/s12967-023-04782-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Interleukin (IL)-33 is an alarmin of the IL-1 superfamily localized to the nucleus of expressing cells, such as endothelial cells, epithelial cells, and fibroblasts. In response to cellular damage or stress, IL-33 is released and activates innate immune responses in some immune and structural cells via its receptor interleukin-1 receptor like-1 (IL-1RL1 or ST2). Recently, IL-33 has become a hot topic of research because of its role in pulmonary inflammation. The IL-33-ST2 signaling pathway plays a pro-inflammatory role by activating the type 2 inflammatory response, producing type 2 cytokines and chemokines. Elevated levels of IL-33 and ST2 have been observed in chronic pulmonary obstructive disease (COPD). Notably, IL-33 is present in COPD induced by cigarette smoke or acute inflammations. The role of IL-33 in sepsis is becoming increasingly prominent, and understanding its significance in the treatment of sepsis associated with high mortality is critical. In addition to its pro-inflammatory effects, the IL-33-ST2 axis appears to play a role in bacterial clearance and tissue repair. In this review, we focused on the role of the IL-33-ST2 axis in sepsis, asthma, and COPD and summarized the therapeutic targets associated with this axis, providing a basis for future treatment.
Collapse
Affiliation(s)
- Yilu Zhou
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhendong Xu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zhiqiang Liu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Parsons ES, Liu F, Kaushik A, Lee A, Schuetz J, Dunham D, Seastedt H, Ogulur I, Heider A, Tan G, Shah A, Cao S, Smith E, Kost L, Acharya S, Prunicki M, Rothenberg M, Sindher S, Leib R, Akdis CA, Nadeau K, Lejeune S. Detection of gut and mucosal peptides through TOMAHAQ in healthy individuals. Allergy 2023. [PMID: 36872560 DOI: 10.1111/all.15698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Affiliation(s)
- E S Parsons
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Palo Alto, California, USA
| | - F Liu
- Mass Spectrometry Center, Stanford University, Palo Alto, California, USA
| | - A Kaushik
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Palo Alto, California, USA
| | - A Lee
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Palo Alto, California, USA
| | - J Schuetz
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Palo Alto, California, USA
| | - D Dunham
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Palo Alto, California, USA
| | - H Seastedt
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Palo Alto, California, USA
| | - I Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - A Heider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - G Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - A Shah
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Palo Alto, California, USA
| | - S Cao
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Palo Alto, California, USA
| | - E Smith
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Palo Alto, California, USA
| | - L Kost
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Palo Alto, California, USA
| | - S Acharya
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Palo Alto, California, USA
| | - M Prunicki
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Palo Alto, California, USA
| | - M Rothenberg
- Department of Pediatrics, Department of Allergy and Immunology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - S Sindher
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Palo Alto, California, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, California, USA
| | - R Leib
- Mass Spectrometry Center, Stanford University, Palo Alto, California, USA
| | - C A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - K Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Palo Alto, California, USA.,Department of Environmental Health Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - S Lejeune
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Palo Alto, California, USA.,INSERM U1019, CNRS UMR 9017, Center for infection and immunity of Lille (CIIL), Univ. Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
6
|
Liu X, An L, Zhou Y, Peng W, Huang C. Antibacterial Mechanism of Patrinia scabiosaefolia Against Methicillin Resistant Staphylococcus epidermidis. Infect Drug Resist 2023; 16:1345-1355. [PMID: 36925724 PMCID: PMC10013587 DOI: 10.2147/idr.s398227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 03/18/2023] Open
Abstract
Purpose Staphylococcus epidermidis has become one of the most common causes of septicemia. Meanwhile, S. epidermidis has acquired resistance to many antibiotics. Among these, methicillin-resistant S. epidermidis (MRSE) were frequently isolated. Similar to methicillin resistant Staphylococcus aureus (MRSA), they also exhibited multi-resistance, which presented a danger to human health. Patrinia scabiosaefolia as traditional Chinese medicine had strong antibacterial activity against MRSE. However, the mechanism of P. scabiosaefolia against MRSE is not clear. Methods Here, the morphology of cell wall and cell membrane, production of β-lactamase and PBP2, energy metabolism, antioxidant system were systematically studied. Results The data showed that P. scabiosaefolia damaged the cell wall and membrane. In addition, β-lactamase, energy metabolism and antioxidant system were involved in mechanisms of P. scabiosaefolia against MRSE. Conclusion These observations provided new understanding of P. scabiosaefolia against MRSE to control MRSE infections.
Collapse
Affiliation(s)
- Xin Liu
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang City, People's Republic of China
| | - Lili An
- Dermatology Department, the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang City, People's Republic of China
| | - Yonghui Zhou
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang City, People's Republic of China
| | - Wei Peng
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang City, People's Republic of China
| | - Cong Huang
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang City, People's Republic of China
| |
Collapse
|