1
|
Schoenfeld K, Harwardt J, Habermann J, Elter A, Kolmar H. Conditional activation of an anti-IgM antibody-drug conjugate for precise B cell lymphoma targeting. Front Immunol 2023; 14:1258700. [PMID: 37841262 PMCID: PMC10569071 DOI: 10.3389/fimmu.2023.1258700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Cancerous B cells are almost indistinguishable from their non-malignant counterparts regarding their surface antigen expression. Accordingly, the challenge to be faced consists in elimination of the malignant B cell population while maintaining a functional adaptive immune system. Here, we present an IgM-specific antibody-drug conjugate masked by fusion of the epitope-bearing IgM constant domain. Antibody masking impaired interaction with soluble pentameric as well as cell surface-expressed IgM molecules rendering the antibody cytotoxically inactive. Binding capacity of the anti-IgM antibody drug conjugate was restored upon conditional protease-mediated demasking which consequently enabled target-dependent antibody internalization and subsequent induction of apoptosis in malignant B cells. This easily adaptable approach potentially provides a novel mechanism of clonal B cell lymphoma eradication to the arsenal available for non-Hodgkin's lymphoma treatment.
Collapse
Affiliation(s)
- Katrin Schoenfeld
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Jan Habermann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Adrian Elter
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
2
|
Takeda H, Ozawa T, Zenke H, Ohnuki Y, Umeda Y, Zhou W, Tomoda H, Takechi A, Narita K, Shimizu T, Miyakawa T, Ito Y, Sawasaki T. VNAR development through antigen immunization of Japanese topeshark ( Hemitriakis japanica). Front Bioeng Biotechnol 2023; 11:1265582. [PMID: 37771574 PMCID: PMC10522858 DOI: 10.3389/fbioe.2023.1265582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
The VNAR (Variable New Antigen Receptor) is the smallest single-domain antibody derived from the variable domain of IgNAR of cartilaginous fishes. Despite its biomedical and diagnostic potential, research on VNAR has been limited due to the difficulties in obtaining and maintaining immune animals and the lack of research tools. In this study, we investigated the Japanese topeshark as a promising immune animal for the development of VNAR. This shark is an underutilized fishery resource readily available in East Asia coastal waters and can be safely handled without sharp teeth or venomous stingers. The administration of Venus fluorescent protein to Japanese topesharks markedly increased antigen-specific IgM and IgNAR antibodies in the blood. Both the phage-display library and the yeast-display library were constructed using RNA from immunized shark splenocytes. Each library was enriched by biopanning, and multiple antigen-specific VNARs were acquired. The obtained antibodies had affinities of 1 × 10-8 M order and showed high plasticity, retaining their binding activity even after high-temperature or reducing-agent treatment. The dissociation rate of a low-affinity VNAR was significantly improved via dimerization. These results demonstrate the potential utility of the Japanese topeshark for the development of VNAR. Furthermore, we conducted deep sequencing analysis to reveal the quantitative changes in the CDR3-coding sequences, revealing distinct enrichment bias between libraries. VNARs that were primarily enriched in the phage display had CDR3 coding sequences with fewer E. coli rare codons, suggesting translation machinery on the selection and enrichment process during biopanning.
Collapse
Affiliation(s)
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
- Center for Advanced Antibody Drug Development, University of Toyama, Toyama, Japan
| | - Hiroki Zenke
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Yoh Ohnuki
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yuri Umeda
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Wei Zhou
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Honoka Tomoda
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Iyo, Japan
| | - Akihiko Takechi
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Iyo, Japan
| | - Kimiyoshi Narita
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Iyo, Japan
| | - Takaaki Shimizu
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Iyo, Japan
| | - Takuya Miyakawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuji Ito
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | | |
Collapse
|
3
|
Burciaga-Flores M, Márquez-Aguirre AL, Dueñas S, Gasperin-Bulbarela J, Licea-Navarro AF, Camacho-Villegas TA. First pan-specific vNAR against human TGF-β as a potential therapeutic application: in silico modeling assessment. Sci Rep 2023; 13:3596. [PMID: 36869086 PMCID: PMC9982792 DOI: 10.1038/s41598-023-30623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Immunotherapies based on antibody fragments have been developed and applied to human diseases, describing novel antibody formats. The vNAR domains have a potential therapeutic use related to their unique properties. This work used a non-immunized Heterodontus francisci shark library to obtain a vNAR with recognition of TGF-β isoforms. The isolated vNAR T1 selected by phage display demonstrated binding of the vNAR T1 to TGF-β isoforms (-β1, -β2, -β3) by direct ELISA assay. These results are supported by using for the first time the Single-Cycle kinetics (SCK) method for Surface plasmon resonance (SPR) analysis for a vNAR. Also, the vNAR T1 shows an equilibrium dissociation constant (KD) of 9.61 × 10-8 M against rhTGF-β1. Furthermore, the molecular docking analysis revealed that the vNAR T1 interacts with amino acid residues of TGF-β1, which are essential for interaction with type I and II TGF-β receptors. The vNAR T1 is the first pan-specific shark domain reported against the three hTGF-β isoforms and a potential alternative to overcome the challenges related to the modulation of TGF-β levels implicated in several human diseases such as fibrosis, cancer, and COVID-19.
Collapse
Affiliation(s)
- Mirna Burciaga-Flores
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, México
| | - Ana Laura Márquez-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, México
| | - Salvador Dueñas
- División de Biología Experimental y Aplicada, Centro de Investigación y Educación Superior de Ensenada (CICESE), Ensenada, B.C, México
| | - Jahaziel Gasperin-Bulbarela
- División de Biología Experimental y Aplicada, Centro de Investigación y Educación Superior de Ensenada (CICESE), Ensenada, B.C, México
| | - Alexei F Licea-Navarro
- División de Biología Experimental y Aplicada, Centro de Investigación y Educación Superior de Ensenada (CICESE), Ensenada, B.C, México.
| | - Tanya A Camacho-Villegas
- CONACYT - Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, México.
| |
Collapse
|
4
|
Xi X, Xiao G, An G, Liu L, Liu X, Hao P, Wang JY, Song D, Yu W, Gu Y. A novel shark single-domain antibody targeting OGT as a tool for detection and intracellular localization. Front Immunol 2023; 14:1062656. [PMID: 36855630 PMCID: PMC9968394 DOI: 10.3389/fimmu.2023.1062656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/09/2023] [Indexed: 02/14/2023] Open
Abstract
Introduction O-GlcNAcylation is a type of reversible post-translational modification on Ser/Thr residues of intracellular proteins in eukaryotic cells, which is generated by the sole O-GlcNAc transferase (OGT) and removed by O-GlcNAcase (OGA). Thousands of proteins, that are involved in various physiological and pathological processes, have been found to be O-GlcNAcylated. However, due to the lack of favorable tools, studies of the O-GlcNAcylation and OGT were impeded. Immunoglobulin new antigen receptor (IgNAR) derived from shark is attractive to research tools, diagnosis and therapeutics. The variable domain of IgNARs (VNARs) have several advantages, such as small size, good stability, low-cost manufacture, and peculiar paratope structure. Methods We obtained shark single domain antibodies targeting OGT by shark immunization, phage display library construction and panning. ELISA and BIACORE were used to assess the affinity of the antibodies to the antigen and three shark single-domain antibodies with high affinity were successfully screened. The three antibodies were assessed for intracellular function by flow cytometry and immunofluorescence co-localization. Results In this study, three anti-OGT VNARs (2D9, 3F7 and 4G2) were obtained by phage display panning. The affinity values were measured using surface plasmon resonance (SPR) that 2D9, 3F7 and 4G2 bound to OGT with KD values of 35.5 nM, 53.4 nM and 89.7 nM, respectively. Then, the VNARs were biotinylated and used for the detection and localization of OGT by ELISA, flow cytometry and immunofluorescence. 2D9, 3F7 and 4G2 were exhibited the EC50 values of 102.1 nM, 40.75 nM and 120.7 nM respectively. VNAR 3F7 was predicted to bind the amino acid residues of Ser375, Phe377, Cys379 and Tyr 380 on OGT. Discussion Our results show that shark single-domain antibodies targeting OGT can be used for in vitro detection and intracellular co-localization of OGT, providing a powerful tool for the study of OGT and O-GlcNAcylation.
Collapse
Affiliation(s)
- Xiaozhi Xi
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Guokai Xiao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Guiqi An
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lin Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaochun Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Peiyu Hao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Jennifer Yiyang Wang
- College of Letters and Science Dept. of Microbiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Dandan Song
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Yuchao Gu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Kolmar H, Grzeschik J, Könning D, Krah S, Zielonka S. Construction of Semisynthetic Shark vNAR Yeast Surface Display Antibody Libraries. Methods Mol Biol 2023; 2702:227-243. [PMID: 37679622 DOI: 10.1007/978-1-0716-3381-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The adaptive immune system of sharks comprises a unique heavy chain-only antibody isotype, termed immunoglobulin new antigen receptor (IgNAR), in which antigen binding is mediated by a single variable domain, referred to as vNAR. In recent years, efforts were made to harness these domains for biomedical and biotechnological applications particularly due to their high affinity and specificity combined with a small size and high stability. Herein, we describe protocols for the construction of semisynthetic, CDR3-randomized vNAR libraries for the isolation of target-specific paratopes by yeast surface display. Additionally, we provide guidance for affinity maturation of a panel of antigen-enriched vNAR domains through CDR1 diversification of the FACS-selected, antigen-enriched population and sublibrary establishment.
Collapse
Affiliation(s)
- Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.
| | - Julius Grzeschik
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Doreen Könning
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany
| | - Simon Krah
- Antibody Discovery & Protein Engineering, Merck KGaA, Darmstadt, Germany
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.
- Antibody Discovery & Protein Engineering, Merck KGaA, Darmstadt, Germany.
| |
Collapse
|
6
|
Wei L, Wang M, Xiang H, Jiang Y, Gong J, Su D, Al Azad MAR, Dong H, Feng L, Wu J, Chan LL, Yang N, Shi J. Bamboo Shark as a Small Animal Model for Single Domain Antibody Production. Front Bioeng Biotechnol 2021; 9:792111. [PMID: 34957081 PMCID: PMC8692893 DOI: 10.3389/fbioe.2021.792111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
The development of shark single domain antibodies (sdAbs) is hindered by the high cost and tediousness of large-sized shark farming. Here, we demonstrated white-spotted bamboo sharks (Chiloscyllium plagiosum) being cultivated commercially as a promising small animal model to produce sdAbs. We found that immunoglobulin new antigen receptor (IgNAR) presented in bamboo shark genome, transcriptome, and plasma. Four complete IgNAR clusters including variable domains (vNARs) were discovered in the germline, and the Variable–Joining pair from IgNAR1 cluster was dominant from immune repertoires in blood. Bamboo sharks developed effective immune responses upon green fluorescent protein (GFP), near-infrared fluorescent protein iRFP713, and Freund’s adjuvant immunization revealed by elevated lymphocyte counts and antigen specific IgNAR. Before and after immunization, the complementarity determining region 3 (CDR3) of IgNAR were the major determinant of IgNAR diversity revealed by 400-bp deep sequencing. To prove that bamboo sharks could produce high-affinity IgNAR, we isolated anti-GFP and anti-iRFP713 vNARs with up to 0.3 and 3.8 nM affinities, respectively, from immunized sharks. Moreover, we constructed biparatopic vNARs with the highest known affinities (20.7 pM) to GFP and validated the functions of anti-GFP vNARs as intrabodies in mammalian cells. Taken together, our study will accelerate the discovery and development of bamboo shark sdAbs for biomedical industry at low cost and easy operation.
Collapse
Affiliation(s)
- Likun Wei
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Meiniang Wang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Haitao Xiang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Jiang
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jinhua Gong
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Dan Su
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - M A R Al Azad
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hongming Dong
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Limin Feng
- Shen Zhen Research Institute, City University of Hong Kong, Shen Zhen, China
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Shen Zhen Research Institute, City University of Hong Kong, Shen Zhen, China
| | - Naibo Yang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,Complete Genomics Inc., San Jose, CA, United States
| | - Jiahai Shi
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Shen Zhen Research Institute, City University of Hong Kong, Shen Zhen, China.,Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Schneider H, Englert S, Macarrón Palacios A, Lerma Romero JA, Ali A, Avrutina O, Kolmar H. Synthetic Integrin-Targeting Dextran-Fc Hybrids Efficiently Inhibit Tumor Proliferation In Vitro. Front Chem 2021; 9:693097. [PMID: 34368077 PMCID: PMC8339797 DOI: 10.3389/fchem.2021.693097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Herein, we present the design, synthesis, and biological evaluation of novel integrin-targeting molecular hybrids combining RGD peptides and a potent cytotoxin presented on dextran polysaccharides. Based on an aglycosylated Fc as a centerpiece, endosomal-cleavable cytotoxic agent monomethyl auristatin E (MMAE) and dextran as multimerization site were covalently connected by two bioorthogonal enzyme-mediated reactions site-specifically. Decoration of dextran with cyclic RGD peptides, introduced by copper “click” reaction, resulted in the final constructs with the potential to kill integrin-overexpressing tumor cells. We found that these modifications had little impact on the stability of the Fc scaffold and the RGD-bearing construct showed good binding properties of αvβ3-expressing U87MG cells. Furthermore, the construct showed a remarkable antiproliferative activity. These results demonstrate the general capability of our design to provoke receptor-mediated endocytosis upon binding to the cellular surface, followed by endosomal cleavage of the linkage between Fc-dextran and MMAE and its subsequent release. Our approach opens new avenues to transcribe small molecule binders into tailor-made multimeric molecular hybrids with antitumor potential.
Collapse
Affiliation(s)
- Hendrik Schneider
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Simon Englert
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Arturo Macarrón Palacios
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | | | - Ataurehman Ali
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| |
Collapse
|