1
|
Al Shboul S, Singh A, Kobetic R, Goodlett DR, Brennan PM, Hupp T, Dapic I. Mass Spectrometry Advances in Analysis of Glioblastoma. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39529217 DOI: 10.1002/mas.21912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Some cancers such as glioblastoma (GBM), show minimal response to medical interventions, often only capable of mitigating tumor growth or alleviating symptoms. High metabolic activity in the tumor microenvironment marked by immune responses and hypoxia, is a crucial factor driving tumor progression. The many developments in mass spectrometry (MS) over the last decades have provided a pivotal tool for studying proteins, along with their posttranslational modifications. It is known that the proteomic landscape of GBM comprises a wide range of proteins involved in cell proliferation, survival, migration, and immune evasion. Combination of MS imaging and microscopy has potential to reveal the spatial and molecular characteristics of pathological tissue sections. Moreover, integration of MS in the surgical process in form of techniques such as DESI-MS or rapid evaporative ionization MS has been shown as an effective tool for rapid measurement of metabolite profiles, providing detailed information within seconds. In immunotherapy-related research, MS plays an indispensable role in detection and targeting of cancer antigens which serve as a base for antigen-specific therapies. In this review, we aim to provide detailed information on molecular profile in GBM and to discuss recent MS advances and their clinical benefits for targeting this aggressive disease.
Collapse
Affiliation(s)
- Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ashita Singh
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - David R Goodlett
- University of Victoria-Genome BC Proteomics Centre, Victoria, British Columbia, Canada
| | - Paul M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ted Hupp
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | | |
Collapse
|
2
|
Hu X, Zhang G, Xie R, Wang Y, Zhu Y, Ding H. Contrast-enhanced ultrasound can differentiate the level of glioma infiltration and correlate it with biological behavior: a study based on local pathology. J Ultrasound 2024:10.1007/s40477-024-00961-1. [PMID: 39489864 DOI: 10.1007/s40477-024-00961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/12/2024] [Indexed: 11/05/2024] Open
Abstract
PURPOSE The objective of this study is to assess the diagnostic efficacy of contrast-enhanced ultrasound (CEUS) in determining the level of glioma infiltration and to investigate its correlation with pathological markers. METHODS A prospective study involving 16 adult glioma patients was conducted. Preoperative US-(Magnetic Resonance)MR fusion imaging was utilized for tumor infiltration localization, while CEUS was employed to assess hemodynamic alterations. Parameters such as peak intensity (PI), rise time (RT), time to peak (TTP), and area under the curve (AUC) were measured. Utilizing contralateral normal brain tissue as the reference standard. The Kruskal-Wallis H-test was conducted to compare CEUS and pathological parameters (significance level, p < 0.05; bonferroni correction) among tumor margins, infiltration zones, and normal tissues, as well as between low-grade glioma (LGG) and high-grade glioma (HGG) within the infiltration zone, based on whole slide pathological images analysis. Spearman correlation analysis was employed to determine the correlation coefficient between hemodynamics and pathology. Receiver operating characteristic (ROC) curves were drawn to evaluate the performance of CEUS in tumor classification. RESULTS From tumor margin to normal tissue, PI, AUC, Ki67, EGFR, and 1p/19q showed a significant decreasing trend, while TTP, IDH-1, and MGMT gradually increased. RT was lower at the tumor margin but did not show statistically significant differences. In the infiltration zones, there was a significant increase in parameters such as PI, normalized PI (Nor_PI), AUC, and Ki67 from LGG to HGG, while RT, Nor_RT, TTP, Nor_TTP, IDH-1, and MGMT significantly decreased. Nor_AUC and EGFR increased but were not significant, and 1p/19q decreased but was not significant. RT and Nor_TTP were independent risk factors for distinguishing between LGG and HGG in the infiltration zone, with a combined diagnostic efficacy ROC of 0.891. The sensitivity reached 96.64% and the specificity reached 82.35%. There was a significant correlation between hemodynamic indicators and pathological indicators. CEUS can effectively differentiate levels of infiltration zones, which correlates with their biological behavior, with RT + Nor_TTP showing particularly highest diagnostic efficacy. CONCLUSION These findings contribute to improving the accuracy of diagnosing infiltration zones and provide essential biological insights for subsequent treatments.
Collapse
Affiliation(s)
- Xing Hu
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Gaobo Zhang
- Academy for Engineering and Technology, Fudan University, Shanghai, 200438, China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yong Wang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yingfeng Zhu
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
3
|
Chirizzi C, Pellegatta S, Gori A, Falco J, Rubiu E, Acerbi F, Bombelli FB. Next-generation agents for fluorescence-guided glioblastoma surgery. Bioeng Transl Med 2024; 9:e10608. [PMID: 38818124 PMCID: PMC11135154 DOI: 10.1002/btm2.10608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 06/01/2024] Open
Abstract
Glioblastoma is a fast-growing and aggressive form of brain cancer. Even with maximal treatment, patients show a low median survival and are often subjected to a high recurrence incidence. The currently available treatments require multimodal management, including maximal safe surgical resection, followed by radiation and chemotherapy. Because of the infiltrative glioblastoma nature, intraoperative differentiation of cancer tissue from normal brain parenchyma is very challenging, and this accounts for the low rate of complete tumor resection. For these reasons, clinicians have increasingly used various intraoperative adjuncts to improve surgical results, such as fluorescent agents. However, most of the existing fluorophores show several limitations such as poor selectivity, photostability, photosensitization and high costs. This could limit their application to successfully improve glioblastoma resection. In the present perspective, we highlight the possibility to develop next-generation fluorescent tools able to more selectively label cancer cells during surgical resection.
Collapse
Affiliation(s)
- Cristina Chirizzi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilanoItaly
| | - Serena Pellegatta
- Unit of Immunotherapy of Brain TumorsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
- Unit of NeuroncologyFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Alessandro Gori
- National Research Council of Italy, Istituto di Scienze e Tecnologie Chimiche (SCITEC‐CNR)MilanItaly
| | - Jacopo Falco
- Neurosurgical Unit 2, Department of NeurosurgeryFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Emanuele Rubiu
- Neurosurgical Unit 2, Department of NeurosurgeryFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Francesco Acerbi
- Neurosurgical Unit 2, Department of NeurosurgeryFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
- Experimental Microsurgical Laboratory, Department of NeurosurgeryFondazione IRCCS Istituto Neurologico Carlo BestaMilanoItaly
| | | |
Collapse
|
4
|
Thenuwara G, Javed B, Singh B, Tian F. Biosensor-Enhanced Organ-on-a-Chip Models for Investigating Glioblastoma Tumor Microenvironment Dynamics. SENSORS (BASEL, SWITZERLAND) 2024; 24:2865. [PMID: 38732975 PMCID: PMC11086276 DOI: 10.3390/s24092865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Glioblastoma, an aggressive primary brain tumor, poses a significant challenge owing to its dynamic and intricate tumor microenvironment. This review investigates the innovative integration of biosensor-enhanced organ-on-a-chip (OOC) models as a novel strategy for an in-depth exploration of glioblastoma tumor microenvironment dynamics. In recent years, the transformative approach of incorporating biosensors into OOC platforms has enabled real-time monitoring and analysis of cellular behaviors within a controlled microenvironment. Conventional in vitro and in vivo models exhibit inherent limitations in accurately replicating the complex nature of glioblastoma progression. This review addresses the existing research gap by pioneering the integration of biosensor-enhanced OOC models, providing a comprehensive platform for investigating glioblastoma tumor microenvironment dynamics. The applications of this combined approach in studying glioblastoma dynamics are critically scrutinized, emphasizing its potential to bridge the gap between simplistic models and the intricate in vivo conditions. Furthermore, the article discusses the implications of biosensor-enhanced OOC models in elucidating the dynamic features of the tumor microenvironment, encompassing cell migration, proliferation, and interactions. By furnishing real-time insights, these models significantly contribute to unraveling the complex biology of glioblastoma, thereby influencing the development of more accurate diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Gayathree Thenuwara
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Institute of Biochemistry, Molecular Biology, and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Bilal Javed
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland;
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
5
|
Hoggarth AR, Muthukumar S, Thomas SM, Crowley J, Kiser J, Witcher MR. Clinical Theranostics in Recurrent Gliomas: A Review. Cancers (Basel) 2024; 16:1715. [PMID: 38730666 PMCID: PMC11083317 DOI: 10.3390/cancers16091715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Gliomas represent the most commonly occurring tumors in the central nervous system and account for approximately 80% of all malignant primary brain tumors. With a high malignancy and recurrence risk, the prognosis of high-grade gliomas is poor, with a mean survival time of 12-18 months. While contrast-enhanced MRI serves as the standard diagnostic imaging modality for gliomas, it faces limitations in the evaluation of recurrent gliomas, failing to distinguish between treatment-related changes and tumor progression, and offers no direct therapeutic options. Recent advances in imaging modalities have attempted to address some of these limitations, including positron emission tomography (PET), which has demonstrated success in delineating tumor margins and guiding the treatment of recurrent gliomas. Additionally, with the advent of theranostics in nuclear medicine, PET tracers, when combined with therapeutic agents, have also evolved beyond a purely diagnostic modality, serving both diagnostic and therapeutic roles. This review will discuss the growing involvement of theranostics in diagnosing and treating recurrent gliomas and address the associated impact on quality of life and functional recovery.
Collapse
Affiliation(s)
- Austin R. Hoggarth
- Department of Neurosurgery, Carilion Clinic, 1906 Belleview Avenue, Roanoke, VA 24014, USA;
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA 24016, USA; (S.M.); (S.M.T.)
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sankar Muthukumar
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA 24016, USA; (S.M.); (S.M.T.)
| | - Steven M. Thomas
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA 24016, USA; (S.M.); (S.M.T.)
| | - James Crowley
- Carilion Clinic Radiology, Roanoke, VA 24016, USA; (J.C.); (J.K.)
| | - Jackson Kiser
- Carilion Clinic Radiology, Roanoke, VA 24016, USA; (J.C.); (J.K.)
| | - Mark R. Witcher
- Department of Neurosurgery, Carilion Clinic, 1906 Belleview Avenue, Roanoke, VA 24014, USA;
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA 24016, USA; (S.M.); (S.M.T.)
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
6
|
Katole VR, Kaple M. Unraveling the Landscape of Pediatric Glioblastoma Biomarkers: A Comprehensive Review of Enhancing Diagnostics and Therapeutic Insights. Cureus 2024; 16:e57272. [PMID: 38686271 PMCID: PMC11057698 DOI: 10.7759/cureus.57272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma, the most common and aggressive form of primary brain tumor, poses significant challenges to patients, caregivers, and clinicians alike. Pediatric glioblastoma is a rare and aggressive brain tumor that presents unique challenges in treatment. It differs from its adult counterpart in terms of genetic and molecular characteristics. Its incidence is relatively low, but the prognosis remains grim due to its aggressive behavior. Diagnosis relies on imaging techniques and histopathological analysis. The rarity of the disease underscores the need for effective treatment strategies. In recent years, the quest to understand and manage pediatric glioblastoma has seen a significant shift towards unraveling the intricate landscape of biomarkers. Surgery remains a cornerstone of glioblastoma management, aiming to resect as much of the tumor as possible. Glioblastoma's infiltrative nature presents challenges in achieving a complete surgical resection. This comprehensive review delves into the realm of pediatric glioblastoma biomarkers, shedding light on their potential to not only revolutionize diagnostics but also shape therapeutic strategies. From personalized treatment selection to the development of targeted therapies, the potential impact of these biomarkers on clinical outcomes is undeniable. Moreover, this review underscores the substantial implications of biomarker-driven approaches for therapeutic interventions. All advancements in targeted therapies and immunotherapy hold promise for the treatment of pediatric glioblastoma. The genetic profiling of tumors allows for personalized approaches, potentially improving treatment efficacy. The ethical dilemmas surrounding pediatric cancer treatment, particularly balancing potential benefits with risks, are complex. Ongoing clinical trials and preclinical research suggest exciting avenues for future interventions.
Collapse
Affiliation(s)
- Vedant R Katole
- Department of Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Meghali Kaple
- Department of Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
7
|
Nafe R, Hattingen E. Cellular Components of the Tumor Environment in Gliomas-What Do We Know Today? Biomedicines 2023; 12:14. [PMID: 38275375 PMCID: PMC10813739 DOI: 10.3390/biomedicines12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
A generation ago, the molecular properties of tumor cells were the focus of scientific interest in oncology research. Since then, it has become increasingly apparent that the tumor environment (TEM), whose major components are non-neoplastic cell types, is also of utmost importance for our understanding of tumor growth, maintenance and resistance. In this review, we present the current knowledge concerning all cellular components within the TEM in gliomas, focusing on their molecular properties, expression patterns and influence on the biological behavior of gliomas. Insight into the TEM of gliomas has expanded considerably in recent years, including many aspects that previously received only marginal attention, such as the phenomenon of phagocytosis of glioma cells by macrophages and the role of the thyroid-stimulating hormone on glioma growth. We also discuss other topics such as the migration of lymphocytes into the tumor, phenotypic similarities between chemoresistant glioma cells and stem cells, and new clinical approaches with immunotherapies involving the cells of TEM.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
8
|
Thenuwara G, Curtin J, Tian F. Advances in Diagnostic Tools and Therapeutic Approaches for Gliomas: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:9842. [PMID: 38139688 PMCID: PMC10747598 DOI: 10.3390/s23249842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Gliomas, a prevalent category of primary malignant brain tumors, pose formidable clinical challenges due to their invasive nature and limited treatment options. The current therapeutic landscape for gliomas is constrained by a "one-size-fits-all" paradigm, significantly restricting treatment efficacy. Despite the implementation of multimodal therapeutic strategies, survival rates remain disheartening. The conventional treatment approach, involving surgical resection, radiation, and chemotherapy, grapples with substantial limitations, particularly in addressing the invasive nature of gliomas. Conventional diagnostic tools, including computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), play pivotal roles in outlining tumor characteristics. However, they face limitations, such as poor biological specificity and challenges in distinguishing active tumor regions. The ongoing development of diagnostic tools and therapeutic approaches represents a multifaceted and promising frontier in the battle against this challenging brain tumor. The aim of this comprehensive review is to address recent advances in diagnostic tools and therapeutic approaches for gliomas. These innovations aim to minimize invasiveness while enabling the precise, multimodal targeting of localized gliomas. Researchers are actively developing new diagnostic tools, such as colorimetric techniques, electrochemical biosensors, optical coherence tomography, reflectometric interference spectroscopy, surface-enhanced Raman spectroscopy, and optical biosensors. These tools aim to regulate tumor progression and develop precise treatment methods for gliomas. Recent technological advancements, coupled with bioelectronic sensors, open avenues for new therapeutic modalities, minimizing invasiveness and enabling multimodal targeting with unprecedented precision. The next generation of multimodal therapeutic strategies holds potential for precision medicine, aiding the early detection and effective management of solid brain tumors. These innovations offer promise in adopting precision medicine methodologies, enabling early disease detection, and improving solid brain tumor management. This review comprehensively recognizes the critical role of pioneering therapeutic interventions, holding significant potential to revolutionize brain tumor therapeutics.
Collapse
Affiliation(s)
- Gayathree Thenuwara
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland;
- Institute of Biochemistry, Molecular Biology, and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - James Curtin
- Faculty of Engineering and Built Environment, Technological University Dublin, Bolton Street, D01 K822 Dublin, Ireland;
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland;
| |
Collapse
|
9
|
Zoi V, Giannakopoulou M, Alexiou GA, Bouziotis P, Thalasselis S, Tzakos AG, Fotopoulos A, Papadopoulos AN, Kyritsis AP, Sioka C. Nuclear Medicine and Cancer Theragnostics: Basic Concepts. Diagnostics (Basel) 2023; 13:3064. [PMID: 37835806 PMCID: PMC10572920 DOI: 10.3390/diagnostics13193064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer theragnostics is a novel approach that combines diagnostic imaging and radionuclide therapy. It is based on the use of a pair of radiopharmaceuticals, one optimized for positron emission tomography imaging through linkage to a proper radionuclide, and the other bearing an alpha- or beta-emitter isotope that can induce significant damage to cancer cells. In recent years, the use of theragnostics in nuclear medicine clinical practice has increased considerably, and thus investigation has focused on the identification of novel radionuclides that can bind to molecular targets that are typically dysregulated in different cancers. The major advantages of the theragnostic approach include the elimination of multi-step procedures, reduced adverse effects to normal tissues, early diagnosis, better predictive responses, and personalized patient care. This review aims to discuss emerging theragnostic molecules that have been investigated in a series of human malignancies, including gliomas, thyroid cancer, neuroendocrine tumors, cholangiocarcinoma, and prostate cancer, as well as potent and recently introduced molecular targets, like cell-surface receptors, kinases, and cell adhesion proteins. Furthermore, special reference has been made to copper radionuclides as theragnostic agents and their radiopharmaceutical applications since they present promising alternatives to the well-studied gallium-68 and lutetium-177.
Collapse
Affiliation(s)
- Vasiliki Zoi
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece
| | | | - George A. Alexiou
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece
- Department of Neurosurgery, University of Ioannina, 45110 Ioannina, Greece
| | - Penelope Bouziotis
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece;
| | | | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | | | | | | | - Chrissa Sioka
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece
- Department of Nuclear Medicine, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
10
|
Wu Y, Wang X, Zhang M, Wu D. Molecular Biomarkers and Recent Liquid Biopsy Testing Progress: A Review of the Application of Biosensors for the Diagnosis of Gliomas. Molecules 2023; 28:5660. [PMID: 37570630 PMCID: PMC10419986 DOI: 10.3390/molecules28155660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Gliomas are the most common primary central nervous system tumors, with a high mortality rate. Early and accurate diagnosis of gliomas is critical for successful treatment. Biosensors are significant in the detection of molecular biomarkers because they are simple to use, portable, and capable of real-time analysis. This review discusses several important molecular biomarkers as well as various biosensors designed for glioma diagnosis, such as electrochemical biosensors and optical biosensors. We present our perspectives on the existing challenges and hope that this review can promote the improvement of biosensors.
Collapse
Affiliation(s)
- Yuanbin Wu
- Department of Emergency Medicine, The Seventh Medical Center, Chinese PLA General Hospital, Beijing 100700, China;
| | - Xuning Wang
- Department of General Surgery, The Air Force Hospital of Northern Theater PLA, Shenyang 110042, China
| | - Meng Zhang
- Department of Neurosurgery, The Second Hospital of Southern Theater of Chinese Navy, Sanya 572000, China
| | - Dongdong Wu
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
11
|
Gong X, Huang M, Chen L, Zeng H. FXR1 promotes glioma progression by downregulating microRNA-124-3p through long noncoding RNA FGD5-AS1 upregulation. Acta Neurol Belg 2023:10.1007/s13760-023-02263-5. [PMID: 37074635 DOI: 10.1007/s13760-023-02263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVE As reported, glioma progression is affected by altered FXR1, long non-coding RNA FGD5-AS1, and microRNA (miR)-124-3p. However, relationships among these genes remain unclear. Accordingly, this paper ascertains whether FXR1 manipulates glioma progression via the FGD5-AS1/miR-124-3p axis. METHODS Glioma tissues were harvested, in which FGD5-AS1 and miR-124-3p levels were examined with qRT-PCR and FXR1 level was assessed with qRT-PCR and western blot. The interaction of miR-124-3p with FGD5-AS1 was analyzed by dual-luciferase reporter, RIP, and Pearson correlation coefficient assays, and that of FXR1 with FGD5-AS1 was assessed by RIP and Pearson correlation coefficient assays. Glioma cells were obtained, followed by qRT-PCR detection of miR-124-3p expression. After gain- or loss-of-function assays, EdU, Transwell, and tubule formation assays were performed to determine cell proliferation, invasion and migration, and angiogenesis. Next, the intracranial in situ graft tumor model was established for in vivo verification. RESULTS FGD5-AS1 and FXR1 levels were high, but miR-124-3p level was low in glioma tissues. Likewise, glioma cells had downregulated miR-124-3p expression. Mechanistically, FGD5-AS1 negatively bound to miR-124-3p, and FXR1 was positively correlated and interacted with FGD5-AS1. miR-124-3p overexpression or FGD5-AS1 or FXR1 knockdown restricted cell invasion, proliferation, migration, and angiogenesis in gliomas. miR-124-3p inhibition abrogated the repressive impacts of FXR1 knockdown on the malignant progression of gliomas. Also, FXR1 constrained tumor growth and angiogenesis in mice, which was counterweighed by inhibiting miR-124-3p. CONCLUSION FXR1 might act as an oncogene in gliomas by declining miR-124-3p through FGD5-AS1.
Collapse
Affiliation(s)
- Xin Gong
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China
| | - Mengyi Huang
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China
| | - Lei Chen
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China
| | - Huan Zeng
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, West Jiefang Road, Furong District, Changsha, 410005, Hunan, People's Republic of China.
| |
Collapse
|
12
|
Deng S, Zhu Y. Prediction of Glioma Grade by Tumor Heterogeneity Radiomic Analysis Based on Multiparametric MRI. INT J COMPUT INT SYS 2023. [DOI: 10.1007/s44196-023-00230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
AbstractPredicting glioma grade plays a pivotal role in treatment and prognosis. However, several current methods for grading depend on the characteristics of the whole tumor. Predicting grade by analyzing tumor subregions has not been thoroughly investigated, which aims to improve the prediction performance. To predict glioma grade via analysis of tumor heterogeneity with features extracted from tumor subregions, it is mainly divided into four magnetic resonance imaging (MRI) sequences, including T2-weighted (T2), fluid-attenuated inversion recovery (FLAIR), pre-gadolinium T1-weighted (T1), and post-gadolinium T1-weighted methods. This study included the data of 97 patients with glioblastomas and 42 patients with low-grade gliomas before surgery. Three subregions, including enhanced tumor (ET), non-enhanced tumor, and peritumoral edema, were obtained based on segmentation labels generated by the GLISTRBoost algorithm. One hundred radiomic features were extracted from each subregion. Feature selection was performed using the cross-validated recursive feature elimination with a support vector machine (SVM) algorithm. SVM classifiers with grid search were established to predict glioma grade based on unparametric and multiparametric MRI. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the classifiers, and the performance of the subregions was compared with the results of the whole tumor. In uniparametric analysis, the features from the ET subregion yielded a higher AUC value of 0.8697, 0.8474, and 0.8474 than those of the whole tumor of FLAIR, T1, and T2. In multiparametric analysis, the ET subregion achieved the best performance (AUC = 0.8755), which was higher than the uniparametric results. Radiomic features from the tumor subregion can potentially be used as clinical markers to improve the predictive accuracy of glioma grades.
Collapse
|
13
|
Vladimirov N, Perlman O. Molecular MRI-Based Monitoring of Cancer Immunotherapy Treatment Response. Int J Mol Sci 2023; 24:3151. [PMID: 36834563 PMCID: PMC9959624 DOI: 10.3390/ijms24043151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Immunotherapy constitutes a paradigm shift in cancer treatment. Its FDA approval for several indications has yielded improved prognosis for cases where traditional therapy has shown limited efficiency. However, many patients still fail to benefit from this treatment modality, and the exact mechanisms responsible for tumor response are unknown. Noninvasive treatment monitoring is crucial for longitudinal tumor characterization and the early detection of non-responders. While various medical imaging techniques can provide a morphological picture of the lesion and its surrounding tissue, a molecular-oriented imaging approach holds the key to unraveling biological effects that occur much earlier in the immunotherapy timeline. Magnetic resonance imaging (MRI) is a highly versatile imaging modality, where the image contrast can be tailored to emphasize a particular biophysical property of interest using advanced engineering of the imaging pipeline. In this review, recent advances in molecular-MRI based cancer immunotherapy monitoring are described. Next, the presentation of the underlying physics, computational, and biological features are complemented by a critical analysis of the results obtained in preclinical and clinical studies. Finally, emerging artificial intelligence (AI)-based strategies to further distill, quantify, and interpret the image-based molecular MRI information are discussed in terms of perspectives for the future.
Collapse
Affiliation(s)
- Nikita Vladimirov
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Or Perlman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
14
|
Lu Y, Massicano AVF, Gallegos CA, Heinzman KA, Parish SW, Warram JM, Sorace AG. Evaluating the Accuracy of FUCCI Cell Cycle In Vivo Fluorescent Imaging to Assess Tumor Proliferation in Preclinical Oncology Models. Mol Imaging Biol 2022; 24:898-908. [PMID: 35650411 DOI: 10.1007/s11307-022-01739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE The primary goal of this study is to evaluate the accuracy of the fluorescence ubiquitination cell cycle indicator (FUCCI) system with fluorescence in vivo imaging compared to 3'-deoxy-3'-[18F]fluorothymidine ([18F]-FLT) positron emission tomography (PET)/computed tomography (CT) and biological validation through histology. Imaging with [18F]-FLT PET/CT can be used to noninvasively assess cancer cell proliferation and has been utilized in both preclinical and clinical studies. However, a cost-effective and straightforward method for in vivo, cell cycle targeted cancer drug screening is needed prior to moving towards translational imaging methods such as PET/CT. PROCEDURES In this study, fluorescent MDA-MB-231-FUCCI tumor growth was monitored weekly with caliper measurements and fluorescent imaging. Seven weeks post-injection, [18F]-FLT PET/CT was performed with a preclinical PET/CT, and tumors samples were harvested for histological analysis. RESULTS RFP fluorescent signal significantly correlated with tumor volume (r = 0.8153, p < 0.0001). Cell proliferation measured by GFP fluorescent imaging was correlated with tumor growth rate (r = 0.6497, p < 0.001). Also, GFP+ cells and [18F]-FLT regions of high uptake were both spatially located in the tumor borders, indicating that the FUCCI-IVIS method may provide an accurate assessment of tumor heterogeneity of cell proliferation. The quantification of total GFP signal was correlated with the sum of tumor [18F]-FLT standard uptake value (SUV) (r = 0.5361, p = 0.0724). Finally, histological analysis confirmed viable cells in the tumor and the correlation of GFP + and Ki67 + cells (r = 0.6368, p = 0.0477). CONCLUSION Fluorescent imaging of the cell cycle provides a noninvasive accurate depiction of tumor progression and response to therapy, which may benefit in vivo testing of novel cancer therapeutics that target the cell cycle.
Collapse
Affiliation(s)
- Yun Lu
- Department of Radiology, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL, 35233, USA
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Adriana V F Massicano
- Department of Radiology, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL, 35233, USA
| | - Carlos A Gallegos
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Katherine A Heinzman
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Sean W Parish
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jason M Warram
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL, 35233, USA.
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
15
|
Identification of Immunogenic Cell Death-Related Signature for Glioma to Predict Survival and Response to Immunotherapy. Cancers (Basel) 2022; 14:cancers14225665. [PMID: 36428756 PMCID: PMC9688866 DOI: 10.3390/cancers14225665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Immunogenic cell death (ICD) is a type of regulated cell death (RCD) and is correlated with the progression, prognosis, and therapy of tumors, including glioma. Numerous studies have shown that the immunotherapeutic and chemotherapeutic agents of glioma might induce ICD. However, studies on the comprehensive analysis of the role of ICD-related genes and their correlations with overall survival (OS) in glioma are lacking. The genetic, transcriptional, and clinical data of 1896 glioma samples were acquired from five distinct databases and analyzed in terms of genes and transcription levels. The method of consensus unsupervised clustering divided the patients into two disparate molecular clusters: A and B. All of the patients were randomly divided into training and testing groups. Employing the training group data, 14 ICD-related genes were filtered out to develop a risk-score model. The correlations between our risk groups and prognosis, cells in the tumor microenvironment (TME) and immune cells infiltration, chemosensitivity and cancer stem cell (CSC) index were assessed. A highly precise nomogram model was constructed to enhance and optimize the clinical application of the risk score. The results demonstrated that the risk score could independently predict the OS rate and the immunotherapeutic response of glioma patients. This study analyzed the ICD-related genes in glioma and evaluated their role in the OS, clinicopathological characteristics, TME and immune cell infiltration of glioma. Our results may help in assessing the OS of glioma and developing better immunotherapeutic strategies.
Collapse
|
16
|
Croci D, Santalla Méndez R, Temme S, Soukup K, Fournier N, Zomer A, Colotti R, Wischnewski V, Flögel U, van Heeswijk RB, Joyce JA. Multispectral fluorine-19 MRI enables longitudinal and noninvasive monitoring of tumor-associated macrophages. Sci Transl Med 2022; 14:eabo2952. [PMID: 36260692 DOI: 10.1126/scitranslmed.abo2952] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
High-grade gliomas, the most common and aggressive primary brain tumors, are characterized by a complex tumor microenvironment (TME). Among the immune cells infiltrating the glioma TME, tumor-associated microglia and macrophages (TAMs) constitute the major compartment. In patients with gliomas, increased TAM abundance is associated with more aggressive disease. Alterations in TAM phenotypes and functions have been reported in preclinical models of multiple cancers during tumor development and after therapeutic interventions, including radiotherapy and molecular targeted therapies. These findings indicate that it is crucial to evaluate TAM abundance and dynamics over time. Current techniques to quantify TAMs in patients rely mainly on histological staining of tumor biopsies. Although informative, these techniques require an invasive procedure to harvest the tissue sample and typically only result in a snapshot of a small region at a single point in time. Fluorine isotope 19 MRI (19F MRI) represents a powerful means to noninvasively and longitudinally monitor myeloid cells in pathological conditions by intravenously injecting perfluorocarbon-containing nanoparticles (PFC-NP). In this study, we demonstrated the feasibility and power of 19F MRI in preclinical models of gliomagenesis, breast-to-brain metastasis, and breast cancer and showed that the major cellular source of 19F signal consists of TAMs. Moreover, multispectral 19F MRI with two different PFC-NP allowed us to identify spatially and temporally distinct TAM niches in radiotherapy-recurrent murine gliomas. Together, we have imaged TAMs noninvasively and longitudinally with integrated cellular, spatial, and temporal resolution, thus revealing important biological insights into the critical functions of TAMs, including in disease recurrence.
Collapse
Affiliation(s)
- Davide Croci
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Rui Santalla Méndez
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Sebastian Temme
- Department of Anesthesiology, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf 40225, Germany.,Experimental Cardiovascular Imaging, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf 40225, Germany
| | - Klara Soukup
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Center, Lausanne 1011, Switzerland.,Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland
| | - Anoek Zomer
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Roberto Colotti
- In Vivo Imaging Facility (IVIF), Department of Research and Training, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Vladimir Wischnewski
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf 40225, Germany.,Institute for Molecular Cardiology, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Ruud B van Heeswijk
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| |
Collapse
|
17
|
Zhang C, Wei J, Wang Y, Wang N, Xi C, Lv M. Changes in CA15-3, S100B, and IGF-1 in glioma and their predictive value for treatment efficacy. Am J Transl Res 2022; 14:7002-7011. [PMID: 36398210 PMCID: PMC9641451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To analyze the changes of carbohydrate antigen 153 (CA15-3), S-100 calcium-binding protein B (S100B) and insulin-like growth factor-1 (IGF-1) in the treatment of patients with high-grade glioma and their predictive value for efficacy. METHODS In this retrospective the PG and CG study, 74 patients with glioma who were treated in the Affiliated Hospital of Yan'an University from January 2015 to January 2017 were labeled as the patient group (PG); the other 70 patients who underwent craniocerebral trauma surgery during the same period were selected as the control group (CG). The expressions of CA15-3, S100B and IGF-1 in the PG and CG were compared. The relationship between CA15-3, S100B, IGF-1, and the pathologic data of patients was analyzed. The expression differences of CA15-3, S100B, and IGF-1 were compared between low-grade glioma patients and high-grade glioma patients and their diagnostic value was analyzed. The values of CA15-3, S100B, and IGF-1 expression for predicting treatment efficacy were analyzed. RESULTS Expressions of CA15-3, S100B, and IGF-1 in glioma patients were markedly higher than those in the CG (P<0.0001). The proportion of grade III+IV patients with high expression of CA15-3, S100B, and IGF-1 was higher than in grade II patients (P<0.05), and the expressions of CA15-3, S100B and IGF-1 in low-grade glioma patients were lower than in high-grade glioma (P<0.01). The AUCs of CA15-3, S100B, and IGF-1 in differentiating different grades of glioma were 0.822, 0.722, and 0.768, respectively. Serum CA15-3, S100B and IGF-1 levels of the patients after treatment were significantly lower than those before treatment (P<0.0001). With the deterioration of clinical efficacy, serum levels of CA15-3, S100B, and IGF-1 gradually increased (P<0.05), and CA15-3, S100B and IGF-1 were positively correlated with therapeutic efficacy (P<0.05). AUCs of CA15-3, S100B, and IGF-1 for predicting the clinical efficacy in glioma patients were 0.824, 0.741, and 0.800, respectively. CONCLUSION CA15-3, S100B, and IGF-1 are highly expressed in patients with glioma. They are diagnostic indicators to distinguish patients with high-grade glioma, and have predictive value for treatment efficacy.
Collapse
Affiliation(s)
- Chunman Zhang
- Military Surgery, Affiliated Hospital of Yan’an UniversityYan’an 716000, Shaanxi Province, China
| | - Jianqiang Wei
- Military Surgery, Affiliated Hospital of Yan’an UniversityYan’an 716000, Shaanxi Province, China
| | - Ying Wang
- Second Department of Neurology, Baoji Central HospitalBaoji 721008, Shaanxi Province, China
| | - Ning Wang
- Second Department of Neurology, Baoji Central HospitalBaoji 721008, Shaanxi Province, China
| | - Cong Xi
- Second Department of Neurology, Baoji Central HospitalBaoji 721008, Shaanxi Province, China
| | - Maikou Lv
- Second Department of Neurology, Baoji Central HospitalBaoji 721008, Shaanxi Province, China
| |
Collapse
|
18
|
Liu Y, He H, Song Z, Liu Z, Zhu K. Lin-28 Homolog B-Activated Protein Disulfide Isomerase A4 Regulates Cell Proliferation, Migration and Invasion of Glioma. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The goal of this study is to elucidate the role of protein disulfide isomerase A4 (PDIA4) in glioma, as well as its regulatory mechanism. Cell transfection was performed to adjust the expression level of PDIA4 and RNA-binding protein lin-28 homolog B (LIN28B). The expression of PDIA4
in human astrocytes and glioma cell lines was determined by quantitative real-time PCR and western blot. CCK-8, colony formation, Transwell and wound-healing assays were applied to determine the capabilities of cells to proliferate, invade and migrate. The connection between PDIA4 and LIN28B
was demonstrated by RNA immunoprecipitation (RIP) and RNA pull down assays. As a result, PDIA4 was elevated in glioma. PDIA4 depletion hugely suppressed cell proliferative ability, which was characterized by the reduced cell viability and colony formation, and declined contents of PCNA and
Ki67. Meanwhile, PDIA4 knockdown repressed the cell capabilities to migrate and invade, accompanied with downregulated MMP2 and MMP9. LIN28N was also found to be upregulated in glioma cells, and was verified to bind with PDIA4 and positively regulate PDIA4 expression. Additionally, LIN28B
overexpression partly hindered the suppressive impacts of PDIA4 knockdown on cell abilities to proliferate, migrate and invade. In conclusion, this study delineates that LIN28B-mediated PDIA4 plays a critical role in the progression of glioma.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, P. R. China
| | - Hua He
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, P. R. China
| | - Zimu Song
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, P. R. China
| | - Zheng Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, P. R. China
| | - Kai Zhu
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, P. R. China
| |
Collapse
|
19
|
Jiang H, Kimura T, Hai H, Yamamura R, Sonoshita M. Drosophila as a toolkit to tackle cancer and its metabolism. Front Oncol 2022; 12:982751. [PMID: 36091180 PMCID: PMC9458318 DOI: 10.3389/fonc.2022.982751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the most severe health problems worldwide accounting for the second leading cause of death. Studies have indicated that cancers utilize different metabolic systems as compared with normal cells to produce extra energy and substances required for their survival, which contributes to tumor formation and progression. Recently, the fruit fly Drosophila has been attracting significant attention as a whole-body model for elucidating the cancer mechanisms including metabolism. This tiny organism offers a valuable toolkit with various advantages such as high genetic conservation and similar drug response to mammals. In this review, we introduce flies modeling for cancer patient genotypes which have pinpointed novel therapeutic targets and drug candidates in the salivary gland, thyroid, colon, lung, and brain. Furthermore, we introduce fly models for metabolic diseases such as diabetes mellitus, obesity, and cachexia. Diabetes mellitus and obesity are widely acknowledged risk factors for cancer, while cachexia is a cancer-related metabolic condition. In addition, we specifically focus on two cancer metabolic alterations: the Warburg effect and redox metabolism. Indeed, flies proved useful to reveal the relationship between these metabolic changes and cancer. Such accumulating achievements indicate that Drosophila offers an efficient platform to clarify the mechanisms of cancer as a systemic disease.
Collapse
Affiliation(s)
- Hui Jiang
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Taku Kimura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Graduate school of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Han Hai
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ryodai Yamamura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- *Correspondence: Ryodai Yamamura, ; Masahiro Sonoshita,
| | - Masahiro Sonoshita
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- *Correspondence: Ryodai Yamamura, ; Masahiro Sonoshita,
| |
Collapse
|
20
|
Ranjbar V, Molavipordanjani S, Biabani Ardakani J, Akhlaghi M, Nikkholgh B, Hosseinimehr SJ. Initial preclinical evaluation of 68 Ga-DOTA-(Ser) 3 -LTVSPWY peptide as a PET radiotracer for glioblastoma targeting and imaging. Nucl Med Commun 2022; 43:945-951. [PMID: 35754162 DOI: 10.1097/mnm.0000000000001590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Imaging of glioblastoma multiform (GBM) tumor using 68 -Galium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaceticacid-Ser-Ser-Ser-Leu-Thr-Val-Ser-Pro-Trp-Tyr ( 68 Ga-DOTA-(Ser)3-LTVSPWY) as a PET radiotracer for HER2 receptor due to fact that this receptor plays a pivotal role in the tumorigenesis and tumor progression in a wide range of cancer. METHODS 68 Ga-DOTA-(Ser) 3 -LTVSPWY was produced with high radiochemical purity. The affinity and specificity of this radiotracer toward HER2 receptor on the surface of glioma glioblastoma (U-87 MG) cell line were evaluated. Furthermore, the biodistribution and PET imaging of this radiolabeled peptide were investigated on xenografted U-87 MG tumor-bearing mice. RESULTS The in-vitro specific binding study revealed that the 68 Ga-DOTA-(Ser) 3 -LTVSPWY binds to different cell lines with respect to their level of HER2 expression. The calculated K D and B max of radiolabeled peptide toward U-87 MG cell line were 5.5 ± 2.4 nmol/l and (2.4 ± 0.3) × 10 5 receptors per cell, respectively. The highest tumor uptake was observed at 30-min postinjection, whereas the tumor-to-muscle ratio was about four-fold. The acquired PET images distinctively show tumor site, which was blocked with excess nonlabeled peptide that revealed specific in-vivo targeting of 68 Ga-DOTA-(Ser) 3 -LTVSPWY for glioma. CONCLUSION 68 Ga-DOTA-(Ser) 3 -LTVSPWY specifically recognizes HER2 receptors and could be a potential candidate for GBM imaging.
Collapse
Affiliation(s)
- Venousheh Ranjbar
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences
| | - Sajjad Molavipordanjani
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari
| | - Javad Biabani Ardakani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd
| | - Mehdi Akhlaghi
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd
| | - Babak Nikkholgh
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences
| | | |
Collapse
|
21
|
Poot E, Maguregui A, Brunton VG, Sieger D, Hulme AN. Targeting Glioblastoma through Nano- and Micro-particle-Mediated Immune Modulation. Bioorg Med Chem 2022; 72:116913. [DOI: 10.1016/j.bmc.2022.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022]
|
22
|
Shabani L, Abbasi M, Amini M, Amani AM, Vaez A. The brilliance of nanoscience over cancer therapy: Novel promising nanotechnology-based methods for eradicating glioblastoma. J Neurol Sci 2022; 440:120316. [DOI: 10.1016/j.jns.2022.120316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
|
23
|
Ren J, Zhang X, Cao J, Tian J, Luo J, Yu Y, Wang F, Zhao Q. Radiosynthesis of a novel antisense imaging probe targeting LncRNA HOTAIR in malignant glioma. BMC Cancer 2022; 22:79. [PMID: 35042456 PMCID: PMC8767688 DOI: 10.1186/s12885-022-09170-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 12/31/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Long non-coding RNA (LncRNA) HOTAIR was amplified and overexpressed in many human carcinomas, which could serve as a useful target for cancer early detection and treatment. The 99mTc radiolabeled antisense oligonucleotides (ASON) could visualize the expression of HOTAIR and provide a diagnostic value for malignant tumors. The aim of this study was to evaluate whether liposome-coated antisense oligonucleotide probe 99mTc-HYNIC-ASON targeting HOTAIR can be used in in vivo imaging of HOTAIR in malignant glioma xenografts.
Methods
The ASON targeting LncRNA HOTAIR as well as mismatched ASON (ASONM) were designed and modified. The radiolabeling of 99mTc with two probes were via the conjugation of bifunctional chelator HYNIC. Then probes were purified by Sephadex G25 and tested for their radiolabeling efficiency and purity, as well as stability by ITLC (Instant thin-layer chromatography) and gel electrophoresis. Then the radiolabeled probes were transfected with lipofectamine 2000 for cellular uptake test and the next experimental use. Furthermore, biodistribution study and SPECT imaging were performed at different times after liposome-coated 99mTc-HYNIC-ASON/ASONM were intravenously injected in glioma tumor-bearing mice models. All data were analyzed by statistical software.
Results
The labeling efficiencies of 99mTc-HYNIC-ASON and 99mTc-HYNIC-ASONM measured by ITLC were (91 ± 1.5) % and (90 ± 0.6) %, respectively, and both radiochemical purities were more than 89%. Two probes showed good stability within 12 h. Gel electrophoresis confirmed that the oligomers were successfully radiolabeled no significant degradation were found. Biodistribution study demonstrated that liposome-coated antisense probes were excreted mainly through the kidney and bladder and has higher uptake in the tumor. Meanwhile, the tumor was clearly shown after injection of liposome coated 99mTc-HYNIC-ASON, and its T/M ratio was higher than that in the non-transfection group and mismatched group. No tumor was seen in mismatched and blocking group.
Conclusion
The liposome encapsulated 99mTc-HYNIC-ASON probe can be used in the in vivo, real-time imaging of LncRNA HOTAIR expression in malignant glioma.
Collapse
|
24
|
Diagnosis of Glioblastoma by Immuno-Positron Emission Tomography. Cancers (Basel) 2021; 14:cancers14010074. [PMID: 35008238 PMCID: PMC8750680 DOI: 10.3390/cancers14010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Neuroimaging has transformed the way brain tumors are diagnosed and treated. Although different non-invasive modalities provide very helpful information, in some situations, they present a limited value. By merging the specificity of antibodies with the resolution, sensitivity, and quantitative capabilities of positron emission tomography (PET), “Immuno-PET” allows us to conduct the non-invasive diagnosis and monitoring of patients over time using antibody-based probes as an in vivo, integrated, quantifiable, 3D, full-body “immunohistochemistry”, like a “virtual biopsy”. This review provides and focuses on immuno-PET applications and future perspectives of this promising imaging approach for glioblastoma. Abstract Neuroimaging has transformed neuro-oncology and the way that glioblastoma is diagnosed and treated. Magnetic Resonance Imaging (MRI) is the most widely used non-invasive technique in the primary diagnosis of glioblastoma. Although MRI provides very powerful anatomical information, it has proven to be of limited value for diagnosing glioblastomas in some situations. The final diagnosis requires a brain biopsy that may not depict the high intratumoral heterogeneity present in this tumor type. The revolution in “cancer-omics” is transforming the molecular classification of gliomas. However, many of the clinically relevant alterations revealed by these studies have not yet been integrated into the clinical management of patients, in part due to the lack of non-invasive biomarker-based imaging tools. An innovative option for biomarker identification in vivo is termed “immunotargeted imaging”. By merging the high target specificity of antibodies with the high spatial resolution, sensitivity, and quantitative capabilities of positron emission tomography (PET), “Immuno-PET” allows us to conduct the non-invasive diagnosis and monitoring of patients over time using antibody-based probes as an in vivo, integrated, quantifiable, 3D, full-body “immunohistochemistry” in patients. This review provides the state of the art of immuno-PET applications and future perspectives on this imaging approach for glioblastoma.
Collapse
|
25
|
Wu Z, Dai L, Tang K, Ma Y, Song B, Zhang Y, Li J, Lui S, Gong Q, Wu M. Advances in magnetic resonance imaging contrast agents for glioblastoma-targeting theranostics. Regen Biomater 2021; 8:rbab062. [PMID: 34868634 PMCID: PMC8634494 DOI: 10.1093/rb/rbab062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant brain tumour, with a median survival of 3 months without treatment and 15 months with treatment. Early GBM diagnosis can significantly improve patient survival due to early treatment and management procedures. Magnetic resonance imaging (MRI) using contrast agents is the preferred method for the preoperative detection of GBM tumours. However, commercially available clinical contrast agents do not accurately distinguish between GBM, surrounding normal tissue and other cancer types due to their limited ability to cross the blood–brain barrier, their low relaxivity and their potential toxicity. New GBM-specific contrast agents are urgently needed to overcome the limitations of current contrast agents. Recent advances in nanotechnology have produced alternative GBM-targeting contrast agents. The surfaces of nanoparticles (NPs) can be modified with multimodal contrast imaging agents and ligands that can specifically enhance the accumulation of NPs at GBM sites. Using advanced imaging technology, multimodal NP-based contrast agents have been used to obtain accurate GBM diagnoses in addition to an increased amount of clinical diagnostic information. NPs can also serve as drug delivery systems for GBM treatments. This review focuses on the research progress for GBM-targeting MRI contrast agents as well as MRI-guided GBM therapy.
Collapse
Affiliation(s)
- Zijun Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lixiong Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Ke Tang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiqi Ma
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Zhang
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jinxing Li
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Dong X, Zhang P, Liu L, Li H, Cheng S, Li S, Wang Y, Zheng C, Dong J, Zhang L. The Circ_0001367/miR-545-3p/LUZP1 Axis Regulates Cell Proliferation, Migration and Invasion in Glioma Cells. Front Oncol 2021; 11:781471. [PMID: 34869035 PMCID: PMC8637337 DOI: 10.3389/fonc.2021.781471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/01/2021] [Indexed: 01/05/2023] Open
Abstract
Glioma is the most common primary intracranial malignant tumour in adults. It has a high incidence and poses a serious threat to human health. Circular RNA is a hotspot of cancer research. In this study, we aimed to explore the role of circ_0001367 in gliomagenesis and the underlying mechanism. First, qRT-PCR was conducted, which showed that circ_0001367 level was downregulated in glioma tissues and cells. Next, gain-of-function and loss-of-function assays were performed, which indicated that circ_0001367 inhibited the proliferation, migration and invasion of glioma cells. Subsequent bioinformatics analysis, dual-luciferase reporter assays, RNA immunoprecipitation assays and cell function assays demonstrated that circ_0001367 inhibited the proliferation, migration and invasion of glioma cells by absorbing miR-545-3p and thereby regulating the expression of leucine zipper protein (LUZP1). Finally, an in vivo experiment was conducted, which demonstrated that circ_0001367 inhibited glioma growth in vivo by modulating miR-545-3p and LUZP1. Taken together, the results of this study demonstrate that the circ_0001367/miR-545-3p/LUZP1 axis may be a novel target for glioma therapy.
Collapse
Affiliation(s)
- Xuchen Dong
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Peng Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Neurosurgery, Rugao Hospital Affiliated to Nantong University, Nantong, China
| | - Liang Liu
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haoran Li
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shan Cheng
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Suwen Li
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chaonan Zheng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jun Dong
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|