1
|
Luo M, Huang H, Nie H, Liu Y, Chen Y, Zheng F, Xi L, Liu H. Recurrent Enteritis and Intestinal Obstruction in a Patient with Chronic Mucocutaneous Candidiasis due to STAT1 Gain-of-Function Mutation. Mycopathologia 2024; 190:3. [PMID: 39707011 DOI: 10.1007/s11046-024-00912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
We presented a case of chronic mucocutaneous candidiasis (CMC) due to STAT1 GOF mutation with recurrent enteritis and intestinal obstruction. A 33-year-old woman complained of recurrent oral erosion and finger (toe) nails damage for over 30 years. Candida albicans were cultured from the oral mucosa and nails. Sanger sequencing revealed a gain-of-function mutation in STAT1 (c.A1159 G, p.T387A). Since the age of 37, she developed recurrent enteritis and intestinal obstruction. Laboratory examinations revealed an increased pSTAT1 protein expression and a decreased proportion of Th17 cells in peripheral blood lymphocyte (PBMC), with a high expression of pSTAT1 and scarce expression of IL17A observed in intestinal immunohistochemistry. Intestinal obstruction had not previously been reported as the main clinical manifestation in STAT1 GOF patients. We speculated that the low levels of IL17A impaired the intestinal barrier, which might lead to gastrointestinal disorders in this patient. This case expanded the clinical phenotype of heterozygous STAT1 GOF patients.
Collapse
Affiliation(s)
- Mingfen Luo
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Dermatology Department, The Third People's Hospital of Huizhou, Huizhou, China
| | - Huan Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, The First People Hospital of Foshan, Foshan, China
| | - Hanhui Nie
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yinghui Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yangxia Chen
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Fuying Zheng
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liyan Xi
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Hongfang Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Jørgensen MR. Pathophysiological microenvironments in oral candidiasis. APMIS 2024; 132:956-973. [PMID: 38571459 DOI: 10.1111/apm.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Oral candidiasis (OC), a prevalent opportunistic infection of the oral mucosa, presents a considerable health challenge, particularly in individuals with compromised immune responses, advanced age, and local predisposing conditions. A considerable part of the population carries Candida in the oral cavity, but only few develop OC. Therefore, the pathogenesis of OC may depend on factors other than the attributes of the fungus, such as host factors and other predisposing factors. Mucosal trauma and inflammation compromise epithelial integrity, fostering a conducive environment for fungal invasion. Molecular insights into the immunocompromised state reveal dysregulation in innate and adaptive immunity, creating a permissive environment for Candida proliferation. Detailed examination of Candida species (spp.) and their virulence factors uncovers a nuanced understanding beyond traditional C. albicans focus, which embrace diverse Candida spp. and their strategies, influencing adhesion, invasion, immune evasion, and biofilm formation. Understanding the pathophysiological microenvironments in OC is crucial for the development of targeted therapeutic interventions. This review aims to unravel the diverse pathophysiological microenvironments influencing OC development focusing on microbial, host, and predisposing factors, and considers Candida resistance to antifungal therapy. The comprehensive approach offers a refined perspective on OC, seeking briefly to identify potential therapeutic targets for future effective management.
Collapse
Affiliation(s)
- Mette Rose Jørgensen
- Section of Oral Pathology and Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Jing D, Liang G, Li X, Liu W. Progress in molecular diagnosis and treatment of chronic mucocutaneous candidiasis. Front Immunol 2024; 15:1343138. [PMID: 38327523 PMCID: PMC10847319 DOI: 10.3389/fimmu.2024.1343138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is characterized by recurrent or persistent infections with Candida of the skin, nails, and mucous membrane. It is a rare and severe disease resulting from autoimmune defects or immune dysregulations. Nonetheless, the diagnosis and treatment of CMC still pose significant challenges. Erroneous or delayed diagnoses remain prevalent, while the long-term utility of traditional antifungals often elicits adverse reactions and promotes the development of acquired resistance. Furthermore, disease relapse can occur during treatment with traditional antifungals. In this review, we delineate the advancements in molecular diagnostic and therapeutic approaches to CMC. Genetic and biomolecular analyses are increasingly employed as adjuncts to clinical manifestations and fungal examinations for accurate diagnosis. Simultaneously, a range of therapeutic interventions, including Janus kinase (JAK) inhibitors, hematopoietic stem cell transplantation (HSCT), cytokines therapy, novel antifungal agents, and histone deacetylase (HDAC) inhibitors, have been integrated into clinical practice. We aim to explore insights into early confirmation of CMC as well as novel therapeutic options for these patients.
Collapse
Affiliation(s)
- Danrui Jing
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Guanzhao Liang
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Chinese Academy of Medical Sciences Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, China
| | - Xiaofang Li
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Chinese Academy of Medical Sciences Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, China
| | - Weida Liu
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Chinese Academy of Medical Sciences Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Shirakawa J, Miyamoto S, Maruyama N, Ide K, Kawano T, Nakamura H. An unusual case of oral surgical management in a patient with chronic mucocutaneous candidiasis and pure red cell aplasia: A case report. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, MEDICINE, AND PATHOLOGY 2023. [DOI: 10.1016/j.ajoms.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Shamriz O, Chandrakasan S. Editorial: Dermatologic manifestations of primary immune deficiency disorders in children. Front Pediatr 2023; 11:1182474. [PMID: 37063669 PMCID: PMC10102613 DOI: 10.3389/fped.2023.1182474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 04/18/2023] Open
Affiliation(s)
- Oded Shamriz
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Correspondence: Oded Shamriz
| | - Shanmuganathan Chandrakasan
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
6
|
Ollech A, Simon AJ, Lev A, Stauber T, Sherman G, Solomon M, Barzilai A, Somech R, Greenberger S. A horse or a zebra? Unusual manifestations of common cutaneous infections in primary immunodeficiency pediatric patients. Front Pediatr 2023; 11:1103726. [PMID: 36950172 PMCID: PMC10026180 DOI: 10.3389/fped.2023.1103726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/09/2023] [Indexed: 03/24/2023] Open
Abstract
Background Patients with primary immunodeficiency disorders (PIDs) often suffer from recurrent infections because of their inappropriate immune response to both common and less common pathogens. These patients may present with unique and severe cutaneous infectious manifestations that are not common in healthy individuals and may be more challenging to diagnose and treat. Objective To describe a cohort of patients with PIDs with atypical presentations of skin infections, who posed a diagnostic and/or therapeutic challenge. Methods This is a retrospective study of pediatric patients with PID with atypical presentations of infections, who were treated at the immunodeficiency specialty clinic and the pediatric dermatology clinic at the Sheba Medical Center between September 2012 and August 2022. Epidemiologic data, PID diagnosis, infectious etiology, presentation, course, and treatment were recorded. Results Eight children with a diagnosis of PID were included, five of whom were boys. The average age at PID diagnosis was 1.7 (±SD 3.2) years. The average age of cutaneous infection was 6.9 (±SD 5.9) years. Three patients were born to consanguineous parents. The PIDs included the following: common variable immunodeficiency, severe combined immunodeficiency, DOCK8 deficiency, ataxia telangiectasia, CARD11 deficiency, MALT1 deficiency, chronic granulomatous disease, and a combined cellular and humoral immunodeficiency syndrome of unknown etiology. The infections included the following: ulcerative-hemorrhagic varicella-zoster virus (two cases) atypical fungal and bacterial infections, resistant Norwegian scabies, giant perianal verrucae (two cases), and diffuse molluscum contagiosum. Conclusions In this case series, we present unusual manifestations of infectious skin diseases in pediatric patients with PID. In some of the cases, recognition of the infectious process prompted life-saving treatment. Increasing familiarity with these dermatological manifestations, as well as keeping a high index of suspicion, is important to enabling early diagnosis of cutaneous infections in PIDs and initiation of prompt suitable treatment.
Collapse
Affiliation(s)
- Ayelet Ollech
- Department of Dermatology, Pediatric Dermatology Service, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Correspondence: Ayelet Ollech
| | - Amos J Simon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Atar Lev
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Tali Stauber
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Gilad Sherman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Infectious Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Michal Solomon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Dermatology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Aviv Barzilai
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Dermatology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Shoshana Greenberger
- Department of Dermatology, Pediatric Dermatology Service, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Akar-Ghibril N. Defects of the Innate Immune System and Related Immune Deficiencies. Clin Rev Allergy Immunol 2022; 63:36-54. [PMID: 34417936 DOI: 10.1007/s12016-021-08885-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 01/12/2023]
Abstract
The innate immune system is the host's first line of defense against pathogens. Toll-like receptors (TLRs) are pattern recognition receptors that mediate recognition of pathogen-associated molecular patterns. TLRs also activate signaling transduction pathways involved in host defense, inflammation, development, and the production of inflammatory cytokines. Innate immunodeficiencies associated with defective TLR signaling include mutations in NEMO, IKBA, MyD88, and IRAK4. Other innate immune defects have been associated with susceptibility to herpes simplex encephalitis, viral infections, and mycobacterial disease, as well as chronic mucocutaneous candidiasis and epidermodysplasia verruciformis. Phagocytes and natural killer cells are essential members of the innate immune system and defects in number and/or function of these cells can lead to recurrent infections. Complement is another important part of the innate immune system. Complement deficiencies can lead to increased susceptibility to infections, autoimmunity, or impaired immune complex clearance. The innate immune system must work to quickly recognize and eliminate pathogens as well as coordinate an immune response and engage the adaptive immune system. Defects of the innate immune system can lead to failure to quickly identify pathogens and activate the immune response, resulting in susceptibility to severe or recurrent infections.
Collapse
Affiliation(s)
- Nicole Akar-Ghibril
- Division of Pediatric Immunology, Allergy, and Rheumatology, Joe DiMaggio Children's Hospital, 1311 N 35th Ave, Suite 220, 33021, Hollywood, FL, USA. .,Department of Pediatrics, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, FL, USA.
| |
Collapse
|
8
|
Pathogen Analysis of Superficial Mucocutaneous Mycosis in a Tertiary A-level Hospital from 2007 to 2018. Curr Med Sci 2022; 42:434-438. [PMID: 35403954 DOI: 10.1007/s11596-022-2576-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to analyze the fungal species of pathogens isolated from patients with superficial mucocutaneous mycosis from May 2007 to December 2018. METHODS A retrospective analysis was carried out to determine the pathogenic fungi isolated from patients with superficial fungal infections in the Medical Mycology Clinical Laboratory, Department of Dermatology and Venereology, Union Hospital, from May 2007 to December 2018. RESULTS A total of 7639 strains were obtained, belonging to 21 genera and 36 species. They mainly consisted of Candida (3707/7639, 48.53%) and dermatophytes (3594/7639, 47.05%). The specimens were skin scales, nail shavings, secretions on the nail grooves, broken or diseased hair and dandruff, secretions or pseudomembrane of the external genitalia, and the oral mucosa. A total of 7300 patients were enrolled in this study, including 3301 males and 3999 females aged 2 months to 92 years old with a median age of 46.04 years old except for 633 patients whose ages were unknown. Two strains of different species were isolated from each of 339 patients at different body sites. The most frequent species were Trichophyton rubrum complex (2906/7639, 38.04%), Candida albicans (2619/7639, 34.28%), and unclassified Candida spp. Dermatophytes were mostly isolated from glabrous skin (2138/3594, 59.49%), with T. rubrum complex being the predominant species. Candida strains were most commonly isolated from mucosal sites (1979/3707, 53.39%), and C. albicans was the most prevalent causative agent. CONCLUSION The main distribution of pathogenic fungal species isolated from patients with superficial mycosis from 2007 to 2018 in Wuhan, Hubei province and the surrounding areas was that Candida slightly outnumbered dermatophytes. Among all of the isolated strains, T. rubrum complex was the most abundant.
Collapse
|
9
|
Costagliola G, Cappelli S, Consolini R. Autoimmunity in Primary Immunodeficiency Disorders: An Updated Review on Pathogenic and Clinical Implications. J Clin Med 2021; 10:jcm10204729. [PMID: 34682853 PMCID: PMC8538991 DOI: 10.3390/jcm10204729] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022] Open
Abstract
During the last years, studies investigating the intriguing association between immunodeficiency and autoimmunity led to the discovery of new monogenic disorders, the improvement in the knowledge of the pathogenesis of autoimmunity, and the introduction of targeted treatments. Autoimmunity is observed with particular frequency in patients with primary antibody deficiencies, such as common variable immunodeficiency (CVID) and selective IgA deficiency, but combined immunodeficiency disorders (CIDs) and disorders of innate immunity have also been associated with autoimmunity. Among CIDs, the highest incidence of autoimmunity is described in patients with autoimmune polyendocrine syndrome 1, LRBA, and CTLA-4 deficiency, and in patients with STAT-related disorders. The pathogenesis of autoimmunity in patients with immunodeficiency is far to be fully elucidated. However, altered germ center reactions, impaired central and peripheral lymphocyte negative selection, uncontrolled lymphocyte proliferation, ineffective cytoskeletal function, innate immune defects, and defective clearance of the infectious agents play an important role. In this paper, we review the main immunodeficiencies associated with autoimmunity, focusing on the pathogenic mechanisms responsible for autoimmunity in each condition and on the therapeutic strategies. Moreover, we provide a diagnostic algorithm for the diagnosis of PIDs in patients with autoimmunity.
Collapse
|
10
|
Chen K, Tan J, Qian S, Wu S, Chen Q. Case Report: Disseminated Talaromyces marneffei Infection in a Patient With Chronic Mucocutaneous Candidiasis and a Novel STAT1 Gain-of-Function Mutation. Front Immunol 2021; 12:682350. [PMID: 34421897 PMCID: PMC8374937 DOI: 10.3389/fimmu.2021.682350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is a disorder of recurrent or persistent chronic noninvasive symptomatic infections of the skin, nails and mucous membranes. This disorder is primarily caused by Candida albicans. Many factors, including primary immunodeficiencies, can make a host more susceptible to CMC. Signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) mutations are the most common genetic etiologies of CMC. We describe a case of CMC with disseminated Talaromyces marneffei infection caused by a new pathogenic Y287N mutation at amino acid 287 in the coiled-coiled domain of STAT1, which was identified using whole-exome sequencing. Position 287 might be a hot spot for missense mutations because several amino acid substitutions were found there. Flow cytometry suggested that the Y287N mutation might reduce the expression of IL-17 of Th17 cells in peripheral blood mononuclear cells stimulated by phorbol myristate acetate and ionomycin. The STAT1 Y287N GOF mutation may be the direct cause of recurrent cutaneous and mucosal candidiasis, including the T. marneffei infection in this patient.
Collapse
Affiliation(s)
- Kuang Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfeng Tan
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenxian Qian
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenghai Wu
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiong Chen
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|