1
|
Shi Z, Pang Y, Xu X, Lai W, Cao X, Mai K, Ai Q. Comparative analysis of nutritional and transcriptional regulation of hacd1 in large yellow croaker (Larimichthys crocea) and rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2023; 266:110850. [PMID: 36990141 DOI: 10.1016/j.cbpb.2023.110850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/26/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
3-hydroxyacyl-CoA dehydratases 1 (Hacd1) is a critical enzyme in long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis. The difference in expression of hacd1 might account for the stronger capacity of LC-PUFA biosynthesis in freshwater fish than in marine fish, but little is known about fish hacd1. Therefore, this study compared the responses of large yellow croaker and rainbow trout hacd1 to different oil sources or fatty acids, and also examined transcriptional regulation of this gene. In this study, hacd1 was highly expressed in the liver of large yellow croaker and rainbow trout, which is the main organ for LC-PUFA biosynthesis. Therefore, we cloned the hacd1 coding sequence, with a phylogenetic analysis showing that this gene is evolutionarily conserved. Its localization to the endoplasmic reticulum (ER), likely also indicates a conserved structure and function. The expression of hacd1 in the liver was significantly decreased after the substitution of soybean oil (SO) for fish oil but was not significantly affected after palm oil (PO) substitution. Linoleic acid (LA) incubation significantly promoted hacd1 expression in primary hepatocytes of large yellow croaker and eicosapentaenoic acid (EPA) incubation significantly promoted hacd1 expression in primary hepatocytes of rainbow trout. Transcription factors STAT4, C/EBPα, C/EBPβ, HNF1, HSF3 and FOXP3 were identified in both large yellow croaker and rainbow trout. HNF1 had a stronger activation effect in rainbow trout than in large yellow croaker. FOXP3 inhibited hacd1 promoter activity in large yellow croaker but had no effect in rainbow trout. Therefore, the differences between HNF1 and FOXP3 affected the expression of hacd1 in the liver thus being responsible for the high capacity of LC-PUFA biosynthesis in rainbow trout.
Collapse
|
2
|
Yang L, Wang ZA, Geng R, Niu S, Zuo H, Weng S, He J, Xu X. A kelch motif-containing protein KLHDC2 regulates immune responses against Vibrio parahaemolyticus and white spot syndrome virus in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 127:187-194. [PMID: 35716970 DOI: 10.1016/j.fsi.2022.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The kelch motif-containing proteins are widely present in organisms and known to be involved in various biological processes, but their roles in immunity remain unclear. In this study, a kelch motif-containing protein KLHDC2 was identified from Pacific white shrimp Penaeus vannamei and its immune function was investigated. The klhdc2 gene was widely expressed in shrimp tissues and its protein product was mainly present in the nucleus. Expression of klhdc2 was regulated by shrimp NF-κB family members Dorsal and Relish, and changed after immune stimulation. KLHDC2 could enhance the immune defense against Vibrio parahaemolyticus in shrimp but inhibit that against white spot syndrome virus (WSSV). Further analyses showed that KLHDC2 did not affect the phagocytosis of hemocytes but regulated the expression of a series of immune effector genes. KLHDC2 has a complex regulatory relationship with Dorsal and Relish, which may partly contribute to its positive role in antibacterial response by regulating humoral immunity. Moreover, the regulatory effect of KLHDC2 on WSSV ie1 gene contributed to its negative effect on antiviral response. Therefore, the current study enrichs the knowledge on the Kelch family and helps to learn more about the regulatory mechanism of shrimp immunity.
Collapse
Affiliation(s)
- Linwei Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Zi-Ang Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Ran Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shengwen Niu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
3
|
Du H, Mu R, Liu L, Liu H, Luo S, Patz EF, Glass C, Su L, Du M, Christiani DC, Li H, Wei Q. Single nucleotide polymorphisms in FOXP1 and RORA of the lymphocyte activation-related pathway affect survival of lung cancer patients. Transl Lung Cancer Res 2022; 11:890-901. [PMID: 35693292 PMCID: PMC9186164 DOI: 10.21037/tlcr-22-104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/28/2022] [Indexed: 01/12/2023]
Abstract
Background Lymphocyte activation is part of a complex microenvironment that affects the development and progression of solid tumors. The present study analyzed the associations between genetic variants in lymphocyte activation-related genes and survival of patients with non-small cell lung cancer (NSCLC). Methods Our study evaluated the associations of 14,400 (1,599 genotyped and 12,801 imputed) single-nucleotide polymorphisms (SNPs) in 176 lymphocyte activation pathway-related genes with survival of 1,185 NSCLC patients in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial and validated the results in another independent dataset of 984 NSCLC patients from the Harvard Lung Cancer Susceptibility (HLCS) trial. Results Multivariable Cox proportional hazards regression analyses identified two distinct and possibly functional variants in forkhead box P1 (FOXP1; rs2568847 G>C) and RAR-related orphan receptor A (RORA; rs922782 T>G) that were significantly and independently associated with overall survival (OS) [adjusted hazards ratios (HRs) of 1.21 and 0.82, respectively; 95% confidence intervals (CI), 1.11 to 1.32 and 0.76 to 0.88, respectively; P=5.38×10-6 and 2.68×10-2, respectively]. Combined analysis of the unfavorable genotypes showed a significant correlation with both OS and disease-specific survival (DSS) in patients with NSCLC patients from PLCO trial (both Ptrend<0.0001). Further expression quantitative trait loci (eQTL) analysis using RORA mRNA expression and genotype data in the 1000 Genomes Project demonstrated that the RORA rs922782 G allele predicted mRNA expression levels. Conclusions Genetic variants in FOXP1 and RORA of the lymphocyte activation pathway may be promising predictors of NSCLC survival. The RORA rs922782 G allele may predict NSCLC survival, possibly by controlling RORA mRNA expression.
Collapse
Affiliation(s)
- Hailei Du
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Rui Mu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Lihua Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Edward F. Patz
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Departments of Radiology, Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Carolyn Glass
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Li Su
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Mulong Du
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - David C. Christiani
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Deng H, Xian D, Lian T, He M, Li J, Xu X, Guo Z, He J, Weng S. A Dicer2 from Scylla paramamosain activates JAK/STAT signaling pathway to restrain mud crab reovirus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104267. [PMID: 34626689 DOI: 10.1016/j.dci.2021.104267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
A Dicer2 gene from Scylla paramamosain, named SpDicer2, was cloned and characterized. The full length of SpDicer2 mRNA contains a 121 bp 5'untranslated region (UTR), an open reading frame (ORF) of 4518 bp and a 3' UTR of 850 bp. The SpDicer2 protein contains seven characteristic Dicer domains and showed 34%-65% identity and 54%-79% similarity to other Dicer protein domains, respectively. The mRNA of SpDicer2 was high expressed in hemocytes, intestine and gill and low expressed in the eyestalk and muscle. Moreover, expression of SpDicer2 was significantly responsive to challenges by mud crab reovirus (MCRV), Poly(I:C), LPS, Staphylococcus aureus and Vibrio parahaemolyticus. SpDicer2 was dispersedly presented in the cytoplasm except for a small amount in the nucleus. SpDicer2 could activate SpSTAT to translocate from the cytoplasm to the nucleus, and significantly increase the transcription activity of the wsv069 promoter, suggesting that SpDicer2 activated the JAK/STAT pathway. Furthermore, silencing of SpDicer2 in vivo increased the mortality of MCRV infected mud crab and the viral load in tissues and down-regulated the expression of multiple components of Toll, IMD and JAK-STAT pathways and almost all the examined immune effector genes. These results suggested that SpDicer2 could play an important role in defense against MCRV via activating the JAK/STAT signaling pathways in mud crab.
Collapse
Affiliation(s)
- Hengwei Deng
- State Key Laboratory for Biocontrol / School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519000, Zhuhai, PR China
| | - Danrong Xian
- Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Taixin Lian
- State Key Laboratory for Biocontrol / School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China
| | - Mingyu He
- State Key Laboratory for Biocontrol / School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China
| | - Jingjing Li
- State Key Laboratory for Biocontrol / School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China
| | - Xiaopeng Xu
- State Key Laboratory for Biocontrol / School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519000, Zhuhai, PR China
| | - Zhixun Guo
- South China Sea Fisheries Research Institute (CAFS), Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol / School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519000, Zhuhai, PR China; State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Shaoping Weng
- State Key Laboratory for Biocontrol / School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519000, Zhuhai, PR China.
| |
Collapse
|
5
|
Huang Z, Yang P, Wang F. Shrimp Plasma CREG Is a Hemocyte Activation Factor. Front Immunol 2021; 12:707770. [PMID: 34484206 PMCID: PMC8415475 DOI: 10.3389/fimmu.2021.707770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Cytokines are a class of immunoregulatory proteins that are secreted by cells. Although vertebrate cytokine, especially mammalian cytokine has been well studied for the past decades. Much less attention has been paid to invertebrate so that only some cytokines have been identified in invertebrates. We have chosen Peaneus vannamei as a model to explore novel invertebrate cytokines. To achieve this, we previously purified shrimp plasma low abundance proteins and identified more than 400 proteins with proteomics analyses. In this study, a cellular repressor of E1A-stimulated gene (CREG)-like protein, which is highly conserved from Drosophila melanogaster to Homo sapiens, was further characterized in shrimp plasma. We found that shrimp plasma CREG was a glycoprotein which was strongly induced in hemolymph at 8 h post-LPS injection. Further function experiment unveiled that recombinant shrimp CREG protein injection significantly increased phagocytic hemocyte and lysosome-high hemocyte proportion in hemolymph. After that, hemocytes from rEGFP- and rCREG-protein injected shrimps were subjected to transcriptome analyses, which revealed that shrimp CREG protein could comprehensively promote hemocyte maturation and activation. Taken together, our data clearly indicated that shrimp plasma CREG protein is a novel hemocyte activation factor, which is probably a conserved myeloid cell lineage activation factor from invertebrate to vertebrate.
Collapse
Affiliation(s)
- Zhiqi Huang
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Peng Yang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Fan Wang
- Department of Biology, College of Science, Shantou University, Shantou, China.,Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| |
Collapse
|