1
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
2
|
Pyles GM, Huckaby AB, Gutierrez MDLP, Witt WT, Mateu-Borrás M, Dublin SR, Rocuskie-Marker C, Sesti BN, Peasak K, Bitzer GJ, Rader N, Weaver KL, Boehm DT, Fitzgerald N, Chapman J, Ulicny S, Damron FH, Barbier M. Virus-like particles displaying the mature C-terminal domain of filamentous hemagglutinin are immunogenic and protective against Bordetella pertussis respiratory infection in mice. Infect Immun 2024; 92:e0027024. [PMID: 39023271 PMCID: PMC11320929 DOI: 10.1128/iai.00270-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Bordetella pertussis, the bacterium responsible for whooping cough, remains a significant public health challenge despite the existing licensed pertussis vaccines. Current acellular pertussis vaccines, though having favorable reactogenicity and efficacy profiles, involve complex and costly production processes. In addition, acellular vaccines have functional challenges such as short-lasting duration of immunity and limited antigen coverage. Filamentous hemagglutinin (FHA) is an adhesin of B. pertussis that is included in all multivalent pertussis vaccine formulations. Antibodies to FHA have been shown to prevent bacterial attachment to respiratory epithelial cells, and T cell responses to FHA facilitate cell-mediated immunity. In this study, FHA's mature C-terminal domain (MCD) was evaluated as a novel vaccine antigen. MCD was conjugated to virus-like particles via SpyTag-SpyCatcher technology. Prime-boost vaccine studies were performed in mice to characterize immunogenicity and protection against the intranasal B. pertussis challenge. MCD-SpyVLP was more immunogenic than SpyTag-MCD antigen alone, and in Tohama I strain challenge studies, improved protection against challenge was observed in the lungs at day 3 and in the trachea and nasal wash at day 7 post-challenge. Furthermore, a B. pertussis strain encoding genetically inactivated pertussis toxin was used to evaluate MCD-SpyVLP vaccine immunity. Mice vaccinated with MCD-SpyVLP had significantly lower respiratory bacterial burden at both days 3 and 7 post-challenge compared to mock-vaccinated animals. Overall, these data support the use of SpyTag-SpyCatcher VLPs as a platform for use in vaccine development against B. pertussis and other pathogens.
Collapse
Affiliation(s)
- Gage M. Pyles
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Annalisa B. Huckaby
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Maria de la Paz Gutierrez
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - William T. Witt
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Margalida Mateu-Borrás
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Spencer R. Dublin
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Carleena Rocuskie-Marker
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Bethany N. Sesti
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Kerrington Peasak
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Graham J. Bitzer
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Nathaniel Rader
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Kelly L. Weaver
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Dylan T. Boehm
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Nicholas Fitzgerald
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Joshua Chapman
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Samuel Ulicny
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| |
Collapse
|
3
|
Cao JF, Ding LG, Wang QC, Han GK, Qin DC, Cheng GF, Dong ZR, Mu QJ, Kong WG, Liu X, Yu YY, Xu Z. Conserved Role of mTORC1 Signaling in B Cell Immunity in Teleost Fish. THE JOURNAL OF IMMUNOLOGY 2022; 209:1095-1107. [DOI: 10.4049/jimmunol.2200280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/19/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Mammalian studies have demonstrated that B cell immune responses are regulated by mechanistic target of rapamycin complex 1 (mTORC1) signaling. Teleost fish represent the oldest living bony vertebrates that contain bona fide B cells. So far, whether the regulatory mechanism of mTORC1 signaling in B cells occurred in teleost fish is still unknown. In this study, we developed a fish model by using rapamycin (RAPA) treatment to inhibit mTORC1 signaling and demonstrated the role of mTORC1 signaling in teleost B cells. In support, we found inhibition of mTORC1 signaling by RAPA decreased the phagocytic capacity, proliferation, and Ig production of B cells. Critically, Flavobacterium columnare induced specific IgM binding in serum, and these titers were significantly inhibited by RAPA treatment, thus decreasing Ab-mediated agglutination of F. columnare and significantly increasing the susceptibility of fish upon F. columnare reinfection. Collectively, our findings elucidated that the mTORC1 pathway is evolutionarily conserved in regulating B cell responses, thus providing a new point for understanding the B cells functions in teleost fish.
Collapse
Affiliation(s)
- Jia-feng Cao
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Li-guo Ding
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qing-chao Wang
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Guang-kun Han
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Da-cheng Qin
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Gao-feng Cheng
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhao-ran Dong
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qing-jiang Mu
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wei-guang Kong
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xia Liu
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-yao Yu
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- †State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; and
- ‡Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
4
|
Monoclonal Antibodies for Bacterial Pathogens: Mechanisms of Action and Engineering Approaches for Enhanced Effector Functions. Biomedicines 2022; 10:biomedicines10092126. [PMID: 36140226 PMCID: PMC9496014 DOI: 10.3390/biomedicines10092126] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Monoclonal antibody (mAb) therapy has opened a new era in the pharmaceutical field, finding application in various areas of research, from cancer to infectious diseases. The IgG isoform is the most used therapeutic, given its long half-life, high serum abundance, and most importantly, the presence of the Fc domain, which can be easily engineered. In the infectious diseases field, there has been a rising interest in mAbs research to counteract the emerging crisis of antibiotic resistance in bacteria. Various pathogens are acquiring resistance mechanisms, inhibiting any chance of success of antibiotics, and thus may become critically untreatable in the near future. Therefore, mAbs represent a new treatment option which may complement or even replace antibiotics. However, very few antibacterial mAbs have succeeded clinical trials, and until now, only three mAbs have been approved by the FDA. These failures highlight the need of improving the efficacy of mAb therapeutic activity, which can also be achieved with Fc engineering. In the first part of this review, we will describe the mechanisms of action of mAbs against bacteria, while in the second part, we will discuss the recent advances in antibody engineering to increase efficacy of pre-existing anti-bacterial mAbs.
Collapse
|