1
|
Ikutani M, Shimizu S, Okada K, Imami K, Inagaki T, Nakaoka Y, Osada Y, Nakae S. Characterization of long-term interleukin-33 administration as an animal model of pulmonary arterial hypertension. Biochem Biophys Res Commun 2024; 734:150750. [PMID: 39348792 DOI: 10.1016/j.bbrc.2024.150750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by the severe obstruction of the small pulmonary arteries and concomitant high pulmonary arterial pressure, resulting in progressive right ventricular failure. Previously, we demonstrated that long-term interleukin (IL)-33 administration in mice induces severe occlusive medial hypertrophy of pulmonary arteries (PA) in the lungs, which is mediated by group 2 innate lymphoid cells (ILC2s). In response to IL-33, ILC2s accumulate around the blood vessels and produce IL-5, leading to perivascular eosinophil recruitment. In this study, we characterized IL-33-induced medial hypertrophy of PA. We demonstrated that long-term IL-33 administration causes an increase in right ventricular pressure. In IL-33-deficient mice, medial hypertrophy of PA mediated by eggs of Schistosoma mansoni was attenuated, accompanied by a partial reduction in ILC2s, eosinophils, and CD4+ T cells. In addition, proteomic analysis revealed dramatic changes in the urine samples from mice treated with IL-33 or S. mansoni eggs. Resistin-like alpha (RELMα), a pulmonary hypertension-related molecule, was commonly detected in the urine in both treatments. Large amounts of RELMα were observed in the lungs of the IL-33-treated mice. These observations suggest that IL-33-induced medial hypertrophy of PA is a useful model for studying the mechanism underlying the development of PAH and finding biomarkers to indicate the onset of PAH.
Collapse
Affiliation(s)
- Masashi Ikutani
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8528, Japan
| | - Shoichi Shimizu
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, Fukuoka, 807-8555, Japan
| | - Koki Okada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8528, Japan
| | - Koshi Imami
- RIKEN Center for Integrative Medical Sciences, Kanagawa, 230-0045, Japan
| | - Tadakatsu Inagaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, 564-8565, Japan
| | - Yoshikazu Nakaoka
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, 564-8565, Japan; Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Yoshio Osada
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, Fukuoka, 807-8555, Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8528, Japan.
| |
Collapse
|
2
|
Chin KM, Gaine SP, Gerges C, Jing ZC, Mathai SC, Tamura Y, McLaughlin VV, Sitbon O. Treatment algorithm for pulmonary arterial hypertension. Eur Respir J 2024; 64:2401325. [PMID: 39209476 PMCID: PMC11525349 DOI: 10.1183/13993003.01325-2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
Pulmonary arterial hypertension leads to significant impairment in haemodynamics, right heart function, exercise capacity, quality of life and survival. Current therapies have mechanisms of action involving signalling via one of four pathways: endothelin-1, nitric oxide, prostacyclin and bone morphogenetic protein/activin signalling. Efficacy has generally been greater with therapeutic combinations and with parenteral therapy compared with monotherapy or nonparenteral therapies, and maximal medical therapy is now four-drug therapy. Lung transplantation remains an option for selected patients with an inadequate response to therapies.
Collapse
Affiliation(s)
- Kelly M Chin
- Division of Pulmonary and Critical Care Medicine, UT Southwestern, Dallas, TX, USA
| | - Sean P Gaine
- Department of Respiratory Medicine, National Pulmonary Hypertension Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Christian Gerges
- Division of Cardiology, Department of Internal Medicine II, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Stephen C Mathai
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yuichi Tamura
- Pulmonary Hypertension Center, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Vallerie V McLaughlin
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
- Frankel Cardiovascular Center, Ann Arbor, MI, USA
| | - Olivier Sitbon
- Department of Respiratory Medicine, Hôpital Bicêtre (AP-HP), Le Kremlin-Bicêtre, France
- Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
3
|
Oliveira SD, Almodóvar S, Butrous G, De Jesus Perez V, Fabro A, Graham BB, Mocumbi A, Nyasulu PS, Tura‐Ceide O, Oliveira RKF, Dhillon NK. Infection and pulmonary vascular diseases consortium: United against a global health challenge. Pulm Circ 2024; 14:e70003. [PMID: 39534510 PMCID: PMC11555293 DOI: 10.1002/pul2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024] Open
Abstract
Leveraging the potential of virtual platforms in the post-COVID-19 era, the Infection and Pulmonary Vascular Diseases Consortium (iPVDc), with the support of the Pulmonary Vascular Research Institute (PVRI), launched a globally accessible educational program to highlight top-notch research on inflammation and infectious diseases affecting the lung vasculature. This innovative virtual series has already successfully brought together distinguished investigators across five continents - Asia, Europe, South and North America, and Africa. Moreover, these open global forums have contributed to a comprehensive understanding of the complex interplay among immunology, inflammation, infection, and cardiopulmonary health, especially concerning pulmonary hypertension and related pulmonary disorders. These enlightening discussions have not only heightened awareness about the impact of various pathogenic microorganisms, including fungi, parasites, and viruses, on the onset and development of pulmonary vascular diseases but have also cast a spotlight on co-infections and neglected illnesses like schistosomiasis - a disease that continues to impose a heavy socioeconomic burden in numerous regions worldwide. Thus, the overall goal of this review article is to present the most recent breakthroughs from infectious PVDs as well as bring to light the scientific and educational insights from the 2023 iPVDc/PVRI virtual symposium series, shaping our understanding of these crucial health issues in this more than ever interconnected world.
Collapse
Affiliation(s)
- S. D. Oliveira
- Vascular Immunobiology Lab, Department of Anesthesiology, Department of Physiology and Biophysics, College of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - S. Almodóvar
- Department of Immunology & Molecular MicrobiologyTexas Tech University Health Sciences Center, School of MedicineLubbockTexasUSA
| | - G. Butrous
- Medway School of PharmacyUniversity of KentMedwayKentUnited Kingdom
| | - V De Jesus Perez
- Division of Pulmonary and Critical CareStanford UniversityPalo AltoCaliforniaUSA
| | - A. Fabro
- Division of Respiratory DiseasesFederal University of São PauloSao PauloBrazil
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical SchoolUniversidade de São PauloRibeirão PretoBrazil
| | - B. B. Graham
- Department of Medicine, Zuckerberg San Francisco General HospitalUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - A. Mocumbi
- Department of MedicineUniversidade Eduardo MondlaneMaputoMozambique
- Division of Determinants of Chronic Diseases, Instituto Nacional de SaúdeVila de MarracueneMozambique
| | - P. S. Nyasulu
- Department of Global Health, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
- School of Public Health, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - O. Tura‐Ceide
- Biomedical Research Institute‐IDIBGIGironaSpain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES)MadridSpain
| | - R. K. F. Oliveira
- Division of Respiratory Diseases, Department of MedicineFederal University of São Paulo (Unifesp)São PauloBrazil
| | - N. K. Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | | |
Collapse
|
4
|
Farber HW, Schoenberg NC. Fucosylation: The Prognostic Impact of Sugar in Pulmonary Arterial Hypertension. J Am Coll Cardiol 2024; 84:1104-1106. [PMID: 39260932 DOI: 10.1016/j.jacc.2024.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 09/13/2024]
Affiliation(s)
- Harrison W Farber
- Tufts Medical Center/Tufts University School of Medicine, Boston, Massachusetts, USA.
| | - Noah C Schoenberg
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Kumar R, Kumar S, Mickael C, Fonseca Balladares D, Nolan K, Lee MH, Sanders L, Nilsson J, Molofsky AB, Tuder RM, Stenmark KR, Graham BB. Interstitial macrophage phenotypes in Schistosoma-induced pulmonary hypertension. Front Immunol 2024; 15:1372957. [PMID: 38779688 PMCID: PMC11109442 DOI: 10.3389/fimmu.2024.1372957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Background Schistosomiasis is a common cause of pulmonary hypertension (PH) worldwide. Type 2 inflammation contributes to the development of Schistosoma-induced PH. Specifically, interstitial macrophages (IMs) derived from monocytes play a pivotal role by producing thrombospondin-1 (TSP-1), which in turn activates TGF-β, thereby driving the pathology of PH. Resident and recruited IM subpopulations have recently been identified. We hypothesized that in Schistosoma-PH, one IM subpopulation expresses monocyte recruitment factors, whereas recruited monocytes become a separate IM subpopulation that expresses TSP-1. Methods Mice were intraperitoneally sensitized and then intravenously challenged with S. mansoni eggs. Flow cytometry on lungs and blood was performed on wildtype and reporter mice to identify IM subpopulations and protein expression. Single-cell RNA sequencing (scRNAseq) was performed on flow-sorted IMs from unexposed and at day 1, 3 and 7 following Schistosoma exposure to complement flow cytometry based IM characterization and identify gene expression. Results Flow cytometry and scRNAseq both identified 3 IM subpopulations, characterized by CCR2, MHCII, and FOLR2 expression. Following Schistosoma exposure, the CCR2+ IM subpopulation expanded, suggestive of circulating monocyte recruitment. Schistosoma exposure caused increased monocyte-recruitment ligand CCL2 expression in the resident FOLR2+ IM subpopulation. In contrast, the vascular pathology-driving protein TSP-1 was greatest in the CCR2+ IM subpopulation. Conclusion Schistosoma-induced PH involves crosstalk between IM subpopulations, with increased expression of monocyte recruitment ligands by resident FOLR2+ IMs, and the recruitment of CCR2+ IMs which express TSP-1 that activates TGF-β and causes PH.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Sushil Kumar
- Department of Pediatrics and Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Claudia Mickael
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Dara Fonseca Balladares
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Kevin Nolan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Michael H. Lee
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Linda Sanders
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Julia Nilsson
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Ari B. Molofsky
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Rubin M. Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kurt R. Stenmark
- Department of Pediatrics and Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Brian B. Graham
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| |
Collapse
|
6
|
Carrim MF, Mbelle M, Rabali Z, Nyakoe RB, Mokgoko D, Zamparini J. Non-cirrhotic portal hypertension in pregnancy due to schistosomiasis: A case series. Obstet Med 2024:1753495X241241833. [PMID: 39553163 PMCID: PMC11563534 DOI: 10.1177/1753495x241241833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/28/2024] [Indexed: 11/19/2024] Open
Abstract
The presence of non-cirrhotic portal hypertension in pregnancy poses a challenging clinical scenario as it predisposes women to several life-threatening complications such as variceal haemorrhage, splenic artery aneurysm, pulmonary hypertension and bacterial peritonitis. The haemodynamic changes in pregnancy along with the demands of a growing fetus may worsen the severity of pre-existing non-cirrhotic portal hypertension. In this case series, we discuss four cases of non-cirrhotic portal hypertension in pregnancy in a low to middle income setting and review the literature related to this condition.
Collapse
Affiliation(s)
- Mohammed Farhaan Carrim
- Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Mzamo Mbelle
- Division of Medical Gastroenterology, Department of Internal Medicine, University of the Witwatersrand, Johannesburg, and Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Zwido Rabali
- Department of Obstetrics and Gynaecology, University of the Witwatersrand, Johannesburg and Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Robert Barasa Nyakoe
- Department of Obstetrics and Gynaecology, University of the Witwatersrand, Johannesburg and Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Didintle Mokgoko
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynaecology, University of the Witwatersrand, Johannesburg, and Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Jarrod Zamparini
- Department of Internal Medicine, University of the Witwatersrand, Johannesburg and Obstetric Internal Medicine Unit, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| |
Collapse
|
7
|
Kassa B, Fonseca‐Balladares DC, Kumar R, Lee MH, Mickael C, Sanders L, Nolan K, Graham BB. Experimental Schistosoma haematobium pulmonary hypertension. Pulm Circ 2024; 14:e12336. [PMID: 38312832 PMCID: PMC10835079 DOI: 10.1002/pul2.12336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 02/06/2024] Open
Abstract
Whether all Schistosoma species cause pulmonary hypertension (PH) is unclear. Experimentally exposing mice to Schistosoma haematobium eggs caused PH, which was less severe than that induced by S. mansoni exposure. These findings align with the relatively uncommon reports of pulmonary arterial hypertension associated with S. haematobium.
Collapse
Affiliation(s)
- Biruk Kassa
- Department of MedicineLung Biology Center, Zuckerberg San Francisco General HospitalSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Dara C. Fonseca‐Balladares
- Department of MedicineLung Biology Center, Zuckerberg San Francisco General HospitalSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Rahul Kumar
- Department of MedicineLung Biology Center, Zuckerberg San Francisco General HospitalSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Michael H. Lee
- Department of MedicineLung Biology Center, Zuckerberg San Francisco General HospitalSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Claudia Mickael
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Linda Sanders
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Kevin Nolan
- Department of MedicineLung Biology Center, Zuckerberg San Francisco General HospitalSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Brian B. Graham
- Department of MedicineLung Biology Center, Zuckerberg San Francisco General HospitalSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
8
|
Suswał K, Tomaszewski M, Romaniuk A, Świechowska-Starek P, Zygmunt W, Styczeń A, Romaniuk-Suswał M. Gut-Lung Axis in Focus: Deciphering the Impact of Gut Microbiota on Pulmonary Arterial Hypertension. J Pers Med 2023; 14:8. [PMID: 38276223 PMCID: PMC10817474 DOI: 10.3390/jpm14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Recent advancements in the understanding of pulmonary arterial hypertension (PAH) have highlighted the significant role of the gut microbiota (GM) in its pathogenesis. This comprehensive review delves into the intricate relationship between the GM and PAH, emphasizing the influence of gut microbial composition and the critical metabolites produced. We particularly focus on the dynamic interaction between the gut and lung, examining how microbial dysbiosis contributes to PAH development through inflammation, altered immune responses, and changes in the gut-lung axis. Noteworthy findings include variations in the ratios of key bacterial groups such as Firmicutes and Bacteroidetes in PAH and the pivotal roles of metabolites like trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), and serotonin in the disease's progression. Additionally, the review elucidates potential diagnostic biomarkers and novel therapeutic approaches, including the use of probiotics and fecal microbiota transplantation, which leverage the gut microbiota for managing PAH. This review encapsulates the current state of research in this field, offering insights into the potential of gut microbiota modulation as a promising strategy in PAH diagnosing and treatment.
Collapse
Affiliation(s)
- Konrad Suswał
- Department of Pulmonology, Alergollogy and Oncology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Michał Tomaszewski
- Department of Cardiology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Aleksandra Romaniuk
- Cardiology Student Scientific Circle, Academy of Silesia, 40-555 Katowice, Poland;
| | | | - Wojciech Zygmunt
- Department of Pulmonology, Alergollogy and Oncology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Agnieszka Styczeń
- Department of Cardiology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Małgorzata Romaniuk-Suswał
- Department of Psychiatry, Psychotheraphy and Early Intervention, Medical University of Lublin, 20-954 Lublin, Poland
| |
Collapse
|
9
|
Graham BB, Hilton JF, Lee MH, Kumar R, Balladares DF, Rahaghi FN, Estépar RSJ, Mickael C, Lima RLB, Loureiro CM, Lucena J, Oliveira RK, Corrêa RDA. Is pulmonary arterial hypertension associated with schistosomiasis distinct from pulmonary arterial hypertension associated with portal hypertension? JHLT OPEN 2023; 1:100007. [PMID: 38050478 PMCID: PMC10695267 DOI: 10.1016/j.jhlto.2023.100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Pulmonary arterial hypertension associated with schistosomiasis (SchPAH) and pulmonary arterial hypertension associated with portal hypertension (PoPAH) are lung diseases that develop in the presence of liver diseases. However, mechanistic pathways by which the underlying liver conditions and other drivers contribute to the development and progression of pulmonary arterial hypertension (PAH) are unclear for both etiologies. In turn, these unknowns limit certainty of strategies to prevent, diagnose, and reverse the resultant PAH. Here we consider specific mechanisms that contribute to SchPAH and PoPAH, identifying those that may be shared and those that appear to be unique to each etiology, in the hope that this exploration will both highlight known causal drivers and identify knowledge gaps appropriate for future research. Overall, the key pathophysiologic differences that we identify between SchPAH and PoPAH suggest that they are not variants of a single condition.
Collapse
Affiliation(s)
- Brian B. Graham
- Lung Biology Center, University of California San Francisco, San Francisco, California
- Pulmonary Division, San Francisco General Hospital, San Francisco, California
| | - Joan F. Hilton
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Michael H. Lee
- Lung Biology Center, University of California San Francisco, San Francisco, California
- Pulmonary Division, San Francisco General Hospital, San Francisco, California
| | - Rahul Kumar
- Lung Biology Center, University of California San Francisco, San Francisco, California
- Pulmonary Division, San Francisco General Hospital, San Francisco, California
| | - Dara Fonseca Balladares
- Lung Biology Center, University of California San Francisco, San Francisco, California
- Pulmonary Division, San Francisco General Hospital, San Francisco, California
| | - Farbod N. Rahaghi
- Pulmonary Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Raúl San José Estépar
- Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Claudia Mickael
- Pulmonary and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | - Juliana Lucena
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Rudolf K.F. Oliveira
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo de Amorim Corrêa
- Internal Medicine/Pulmonary Division, Medical School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
10
|
Parente YDDM, Fernandes da Silva N, Souza R. Unusual Forms of Pulmonary Hypertension. Heart Fail Clin 2023; 19:25-33. [DOI: 10.1016/j.hfc.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Baluku JB, Olum R, Sanya RE, Ocama P. Respiratory morbidity in Schistosoma mansoni infection: a rapid review of literature. Ther Adv Infect Dis 2023; 10:20499361231220152. [PMID: 38152611 PMCID: PMC10752101 DOI: 10.1177/20499361231220152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023] Open
Abstract
Background Schistosomiasis contributes to 2.5 million disability-adjusted life years globally. Acute and chronic respiratory morbidity of Schistosoma mansoni (S. mansoni) is poorly documented in the literature. We conducted a rapid literature review of the burden of respiratory symptoms and lung function abnormalities among patients with S. mansoni. We also report the immunologic and lung imaging findings from the studies reviewed. Methods We carried out a comprehensive literature search in Embase and MEDLINE from the inception of the databases to 13th March 2023. Results A total of 2243 patients with S. mansoni were reported from 24 case reports, 11 cross-sectional studies, 7 case series, 2 cohort studies and 2 randomized controlled trials. The prevalence of any respiratory symptom was 13.3-63.3% (total number of patients studied, n = 149). The prevalence of the individual symptoms among patients with S. mansoni in whom respiratory symptoms were sought for was as follows: cough (8.3-80.6%, n = 338), dyspnea (1.7-100.0%, n = 200), chest pain (9.0-57.1%, n = 86), sputum production (20.0-23.3%, n = 30) and wheezing (0.0 - 20.0%, n = 1396). The frequency of the symptoms tended to be higher in acute schistosomiasis. Restrictive lung disease was prevalent in 29.0% (9/31). The commonest chest imaging findings reported were nodules (20-90%, n = 103) and interstitial infiltrates (12.5-23.0%, n = 89). Peripheral blood eosinophilia was prevalent in 72.0-100.0% of patients (n = 130) with acute schistosomiasis and correlated with symptoms and imaging abnormalities. Three case reports in chronic S. mansoni reported elevated C-reactive protein, leucocyte, neutrophil and absolute eosinophil counts, eosinophil percentage, IgE and IgG4. Conclusion There is a high prevalence of respiratory morbidity among patients with S. mansoni, particularly in the acute stage of the infection, although the studies are relatively small. Larger studies are needed to characterize respiratory morbidity in chronic schistosomiasis and determine the underlying clinical and immunological mechanisms.
Collapse
Affiliation(s)
- Joseph Baruch Baluku
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Internal Medicine, Makerere University College of Health Sciences, PO Box 26343, Kampala, Uganda
| | - Ronald Olum
- St. Francis Hospital, Nsambya, Kampala, Uganda
| | - Richard E. Sanya
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Chronic Diseases Management Unit, African Population and Health Research Center, Nairobi, Uganda
| | - Ponsiano Ocama
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Internal Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
12
|
Al-Tawfiq JA, Kim H, Memish ZA. Parasitic lung diseases. Eur Respir Rev 2022; 31:31/166/220093. [DOI: 10.1183/16000617.0093-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
Parasitic lung diseases are caused by a number of parasites as a result of transient passage in the lung or as a result of an immunologic reaction. The clinical presentation may be in the form of focal or cystic lesions, pleural effusion or diffuse pulmonary infiltrates. With increasing globalisation, it is important to consider parasitic infections in the differential diagnosis of lung diseases. This is particularly important since early identification and prompt therapy result in full cure of these conditions. In this review, we summarise the most common parasitic lung diseases.
Collapse
|
13
|
Yaku A, Inagaki T, Asano R, Okazawa M, Mori H, Sato A, Hia F, Masaki T, Manabe Y, Ishibashi T, Vandenbon A, Nakatsuka Y, Akaki K, Yoshinaga M, Uehata T, Mino T, Morita S, Ishibashi-Ueda H, Morinobu A, Tsujimura T, Ogo T, Nakaoka Y, Takeuchi O. Regnase-1 Prevents Pulmonary Arterial Hypertension Through mRNA Degradation of Interleukin-6 and Platelet-Derived Growth Factor in Alveolar Macrophages. Circulation 2022; 146:1006-1022. [PMID: 35997026 DOI: 10.1161/circulationaha.122.059435] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a type of pulmonary hypertension (PH) characterized by obliterative pulmonary vascular remodeling, resulting in right-sided heart failure. Although the pathogenesis of PAH is not fully understood, inflammatory responses and cytokines have been shown to be associated with PAH, in particular, with connective tissue disease-PAH. In this sense, Regnase-1, an RNase that regulates mRNAs encoding genes related to immune reactions, was investigated in relation to the pathogenesis of PH. METHODS We first examined the expression levels of ZC3H12A (encoding Regnase-1) in peripheral blood mononuclear cells from patients with PH classified under various types of PH, searching for an association between the ZC3H12A expression and clinical features. We then generated mice lacking Regnase-1 in myeloid cells, including alveolar macrophages, and examined right ventricular systolic pressures and histological changes in the lung. We further performed a comprehensive analysis of the transcriptome of alveolar macrophages and pulmonary arteries to identify genes regulated by Regnase-1 in alveolar macrophages. RESULTS ZC3H12A expression in peripheral blood mononuclear cells was inversely correlated with the prognosis and severity of disease in patients with PH, in particular, in connective tissue disease-PAH. The critical role of Regnase-1 in controlling PAH was also reinforced by the analysis of mice lacking Regnase-1 in alveolar macrophages. These mice spontaneously developed severe PAH, characterized by the elevated right ventricular systolic pressures and irreversible pulmonary vascular remodeling, which recapitulated the pathology of patients with PAH. Transcriptomic analysis of alveolar macrophages and pulmonary arteries of these PAH mice revealed that Il6, Il1b, and Pdgfa/b are potential targets of Regnase-1 in alveolar macrophages in the regulation of PAH. The inhibition of IL-6 (interleukin-6) by an anti-IL-6 receptor antibody or platelet-derived growth factor by imatinib but not IL-1β (interleukin-1β) by anakinra, ameliorated the pathogenesis of PAH. CONCLUSIONS Regnase-1 maintains lung innate immune homeostasis through the control of IL-6 and platelet-derived growth factor in alveolar macrophages, thereby suppressing the development of PAH in mice. Furthermore, the decreased expression of Regnase-1 in various types of PH implies its involvement in PH pathogenesis and may serve as a disease biomarker, and a therapeutic target for PH as well.
Collapse
Affiliation(s)
- Ai Yaku
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
- Department of Rheumatology and Clinical Immunology (A.Y., A.M.), Graduate School of Medicine, Kyoto University, Japan
| | - Tadakatsu Inagaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
| | - Ryotaro Asano
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
- Department of Advanced Medical Research for Pulmonary Hypertension (R.A., T.O.), National Cerebral and Cardiovascular Center, Suita, Japan
- Department of Cardiovascular Medicine (R.A., T.O.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Makoto Okazawa
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
| | - Hiroyoshi Mori
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
| | - Ayuko Sato
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Japan (A.S., T.T.)
| | - Fabian Hia
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| | - Takeshi Masaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
| | - Yusuke Manabe
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan (Y.M.)
| | - Tomohiko Ishibashi
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
| | - Alexis Vandenbon
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences (A.V.), Kyoto University, Japan
| | - Yoshinari Nakatsuka
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| | - Kotaro Akaki
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| | - Masanori Yoshinaga
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| | - Takuya Uehata
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| | - Takashi Mino
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine (S.M.), Kyoto University, Japan
| | - Hatsue Ishibashi-Ueda
- Department of Pathology (H.I.-U.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology (A.Y., A.M.), Graduate School of Medicine, Kyoto University, Japan
| | - Tohru Tsujimura
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Japan (A.S., T.T.)
| | - Takeshi Ogo
- Department of Advanced Medical Research for Pulmonary Hypertension (R.A., T.O.), National Cerebral and Cardiovascular Center, Suita, Japan
- Department of Cardiovascular Medicine (R.A., T.O.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshikazu Nakaoka
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (T. Inagaki, R.A., M.O., H.M., T. Masaki, Y.M., T. Ishibashi, Y. Nakaoka)
- Department of Cardiovascular Medicine (Y. Nakaoka), Osaka University Graduate School of Medicine, Suita, Japan
- Department of Molecular Imaging in Cardiovascular Medicine (Y. Nakaoka), Osaka University Graduate School of Medicine, Suita, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry (A.Y., F.H., Y. Nakatsuka, K.A., M.Y., T.U., T. Mino, O.T.), Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
14
|
Molecular Pathways in Pulmonary Arterial Hypertension. Int J Mol Sci 2022; 23:ijms231710001. [PMID: 36077398 PMCID: PMC9456336 DOI: 10.3390/ijms231710001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension is a multifactorial, chronic disease process that leads to pulmonary arterial endothelial dysfunction and smooth muscular hypertrophy, resulting in impaired pliability and hemodynamics of the pulmonary vascular system, and consequent right ventricular dysfunction. Existing treatments target limited pathways with only modest improvement in disease morbidity, and little or no improvement in mortality. Ongoing research has focused on the molecular basis of pulmonary arterial hypertension and is going to be important in the discovery of new treatments and genetic pathways involved. This review focuses on the molecular pathogenesis of pulmonary arterial hypertension.
Collapse
|
15
|
Wu Y, Duffey M, Alex SE, Suarez-Reyes C, Clark EH, Weatherhead JE. The role of helminths in the development of non-communicable diseases. Front Immunol 2022; 13:941977. [PMID: 36119098 PMCID: PMC9473640 DOI: 10.3389/fimmu.2022.941977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022] Open
Abstract
Non-communicable diseases (NCDs) like cardiovascular disease, chronic respiratory diseases, cancers, diabetes, and neuropsychiatric diseases cause significant global morbidity and mortality which disproportionately affect those living in low resource regions including low- and middle-income countries (LMICs). In order to reduce NCD morbidity and mortality in LMIC it is imperative to understand risk factors associated with the development of NCDs. Certain infections are known risk factors for many NCDs. Several parasitic helminth infections, which occur most commonly in LMICs, have been identified as potential drivers of NCDs in parasite-endemic regions. Though understudied, the impact of helminth infections on the development of NCDs is likely related to helminth-specific factors, including species, developmental stage and disease burden. Mechanical and chemical damage induced by the helminth in combination with pathologic host immune responses contribute to the long-term inflammation that increases risk for NCD development. Robust studies from animal models and human clinical trials are needed to understand the immunologic mechanisms of helminth-induced NCDs. Understanding the complex connection between helminths and NCDs will aid in targeted public health programs to reduce helminth-induced NCDs and reduce the high rates of morbidity that affects millions of people living in parasite-endemic, LMICs globally.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Megan Duffey
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States,Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
| | - Saira Elizabeth Alex
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Charlie Suarez-Reyes
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Eva H. Clark
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States,Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States,National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jill E. Weatherhead
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States,Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States,National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States,*Correspondence: Jill E. Weatherhead,
| |
Collapse
|
16
|
Nyangulu W, Sadimba C, Nyirenda J, Twaibu G, Kamwendo J, Chawawa K, Masano A, Chilinda E, Kayuni S, Muula AS, Maleta K. The prevalence of Schistosoma mansoni infection among adults with chronic non-communicable diseases in Malawi. Trop Med Health 2022; 50:56. [PMID: 35986382 PMCID: PMC9389769 DOI: 10.1186/s41182-022-00450-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schistosomiasis is a parasitic infectious disease caused by flatworms of the Schistosoma genus. The global burden of schistosomiasis is high. In Malawi, schistosomiasis is among the top 20 causes of outpatient department visits in health facilities. Schistosomiasis is among the most important but neglected causes of non-communicable diseases (NCD) peculiar to tropical endemic settings. While much is known about the contribution of S. haematobium to the NCD burden in Malawi, the role of S. mansoni remains largely unknown. METHODS We conducted a cross-sectional study at Mangochi District Hospital. Adults over 18 years diagnosed with NCDs (n = 414), admitted or attending weekly outpatient clinics were recruited between August 2021 and February 2022. Data were collected on sociodemographic characteristics, medical history, body weight, blood pressure, and fasting blood glucose. Stool and midstream urine were collected for Kato-Katz (KK) microscopy and urine point of care-circulating cathodic antigen (POC-CCA) tests, respectively. We computed prevalence of S. mansoni as number of positive KK and CCA tests, each divided by total submitted samples. Univariate and multivariable logistic regression were done to evaluate risk factors of NCDs and association between S. mansoni infection and NCDs. RESULTS We recruited 414 participants, mean age 57 years (SD 16), 67% of whom were female. Prevalence of S. mansoni based on urine CCA was 15% (95% CI: 11-19) and 0% on KK microscopy. Hypertension was the most common condition with a prevalence of 85% (95% CI: 81-89), followed by diabetes mellitus with a prevalence of 42% (95% CI: 37-46) and heart disease with a prevalence of 3% (95% CI: 2-5). S. mansoni infection was not significantly associated with hypertension (OR: 1.2, 95% CI: 0.5-3.1), diabetes (OR: 0.6, 95% CI: 0.3-1.10) or heart disease (OR: 2.0, 95% CI: 0.4-10). CONCLUSIONS We observed moderate prevalence of S. mansoni infection among adults in the study per WHO classification of endemicity. This is within the range observed in children in Mangochi from 10 to 56.7%.
Collapse
Affiliation(s)
- Wongani Nyangulu
- Public Health and Nutrition Research Group, Department of Nutrition, Kamuzu University of Health Sciences, Blantyre, Malawi.
| | - Christina Sadimba
- Public Health and Nutrition Research Group, Department of Nutrition, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Joyce Nyirenda
- Public Health and Nutrition Research Group, Department of Nutrition, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - George Twaibu
- Public Health and Nutrition Research Group, Department of Nutrition, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - John Kamwendo
- Public Health and Nutrition Research Group, Department of Nutrition, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Kelvin Chawawa
- Public Health and Nutrition Research Group, Department of Nutrition, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Angella Masano
- Public Health and Nutrition Research Group, Department of Nutrition, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Elizabeth Chilinda
- Public Health and Nutrition Research Group, Department of Nutrition, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sekeleghe Kayuni
- Department of Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
- Medical Aid Society of Malawi (MASM), MASM Medi Clinics Limited, Blantyre, Malawi
| | - Adamson S Muula
- Department of Community and Environmental Health, School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Kenneth Maleta
- Public Health and Nutrition Research Group, Department of Nutrition, Kamuzu University of Health Sciences, Blantyre, Malawi
| |
Collapse
|
17
|
Medrano-Garcia S, Morales-Cano D, Barreira B, Vera-Zambrano A, Kumar R, Kosanovic D, Schermuly RT, Graham BB, Perez-Vizcaino F, Mathie A, Savai R, Pullamseti S, Butrous G, Fernández-Malavé E, Cogolludo A. HIV and Schistosoma Co-Exposure Leads to Exacerbated Pulmonary Endothelial Remodeling and Dysfunction Associated with Altered Cytokine Landscape. Cells 2022; 11:cells11152414. [PMID: 35954255 PMCID: PMC9368261 DOI: 10.3390/cells11152414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
HIV and Schistosoma infections have been individually associated with pulmonary vascular disease. Co-infection with these pathogens is very common in tropical areas, with an estimate of six million people co-infected worldwide. However, the effects of HIV and Schistosoma co-exposure on the pulmonary vasculature and its impact on the development of pulmonary vascular disease are largely unknown. Here, we have approached these questions by using a non-infectious animal model based on lung embolization of Schistosoma mansoni eggs in HIV-1 transgenic (HIV) mice. Schistosome-exposed HIV mice but not wild-type (Wt) counterparts showed augmented pulmonary arterial pressure associated with markedly suppressed endothelial-dependent vasodilation, increased endothelial remodeling and vessel obliterations, formation of plexiform-like lesions and a higher degree of perivascular fibrosis. In contrast, medial wall muscularization was similarly increased in both types of mice. Moreover, HIV mice displayed an impaired immune response to parasite eggs in the lung, as suggested by decreased pulmonary leukocyte infiltration, small-sized granulomas, and augmented residual egg burden. Notably, vascular changes in co-exposed mice were associated with increased expression of proinflammatory and profibrotic cytokines, including IFN-γ and IL-17A in CD4+ and γδ T cells and IL-13 in myeloid cells. Collectively, our study shows for the first time that combined pulmonary persistence of HIV proteins and Schistosoma eggs, as it may occur in co-infected people, alters the cytokine landscape and targets the vascular endothelium for aggravated pulmonary vascular pathology. Furthermore, it provides an experimental model for the understanding of pulmonary vascular disease associated with HIV and Schistosoma co-morbidity.
Collapse
Affiliation(s)
- Sandra Medrano-Garcia
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35305 Giessen, Germany
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - Daniel Morales-Cano
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28040 Madrid, Spain
- Correspondence: (D.M.-C.); (A.C.); Tel.: +34-913947120 (A.C.)
| | - Bianca Barreira
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
| | - Alba Vera-Zambrano
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
| | - Rahul Kumar
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ralph Theo Schermuly
- Department of internal Medicine, Justus-Liebig University, Member of the German Center for Lung Research (DZL), 35305 Giessen, Germany
| | - Brian B. Graham
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham ME4 4BF, UK
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35305 Giessen, Germany
- Department of internal Medicine, Justus-Liebig University, Member of the German Center for Lung Research (DZL), 35305 Giessen, Germany
| | - Soni Pullamseti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35305 Giessen, Germany
- Department of internal Medicine, Justus-Liebig University, Member of the German Center for Lung Research (DZL), 35305 Giessen, Germany
| | - Ghazwan Butrous
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham ME4 4BF, UK
| | - Edgar Fernández-Malavé
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
- Correspondence: (D.M.-C.); (A.C.); Tel.: +34-913947120 (A.C.)
| |
Collapse
|
18
|
Bugenhagen SM, Raptis DA, Bhalla S. Vascular Infections in the Thorax. Semin Roentgenol 2022; 57:380-394. [DOI: 10.1053/j.ro.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/11/2022]
|
19
|
Abstract
IMPORTANCE Pulmonary arterial hypertension (PAH) is a subtype of pulmonary hypertension (PH), characterized by pulmonary arterial remodeling. The prevalence of PAH is approximately 10.6 cases per 1 million adults in the US. Untreated, PAH progresses to right heart failure and death. OBSERVATIONS Pulmonary hypertension is defined by a mean pulmonary artery pressure greater than 20 mm Hg and is classified into 5 clinical groups based on etiology, pathophysiology, and treatment. Pulmonary arterial hypertension is 1 of the 5 groups of PH and is hemodynamically defined by right heart catheterization demonstrating a mean pulmonary artery pressure greater than 20 mm Hg, a pulmonary artery wedge pressure of 15 mm Hg or lower, and a pulmonary vascular resistance of 3 Wood units or greater. Pulmonary arterial hypertension is further divided into subgroups based on underlying etiology, consisting of idiopathic PAH, heritable PAH, drug- and toxin-associated PAH, pulmonary veno-occlusive disease, PAH in long-term responders to calcium channel blockers, and persistent PH of the newborn, as well as PAH associated with other medical conditions including connective tissue disease, HIV, and congenital heart disease. Early presenting symptoms are nonspecific and typically consist of dyspnea on exertion and fatigue. Currently approved therapy for PAH consists of drugs that enhance the nitric oxide-cyclic guanosine monophosphate biological pathway (sildenafil, tadalafil, or riociguat), prostacyclin pathway agonists (epoprostenol or treprostinil), and endothelin pathway antagonists (bosentan and ambrisentan). With these PAH-specific therapies, 5-year survival has improved from 34% in 1991 to more than 60% in 2015. Current treatment consists of combination drug therapy that targets more than 1 biological pathway, such as the nitric oxide-cyclic guanosine monophosphate and endothelin pathways (eg, ambrisentan and tadalafil), and has shown demonstrable improvement in morbidity and mortality compared with the previous conventional single-pathway targeted monotherapy. CONCLUSIONS AND RELEVANCE Pulmonary arterial hypertension affects an estimated 10.6 per 1 million adults in the US and, without treatment, typically progresses to right heart failure and death. First-line therapy with drug combinations that target multiple biological pathways are associated with improved survival.
Collapse
Affiliation(s)
- Nicole F Ruopp
- Pulmonary, Critical Care, and Sleep Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Barbara A Cockrill
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
20
|
Sinkala E, Ahmed HY, Sibomana JP, Lee MH, Kassa B, Kumar R, Mazimba S, Binegdie AB, Mpisa S, Wamundila K, Graham BB, Hilton JF. Rationale and design of a screening study to detect schistosomiasis-associated pulmonary hypertension in Ethiopia and Zambia. Pulm Circ 2022; 12:e12072. [PMID: 35514775 PMCID: PMC9063961 DOI: 10.1002/pul2.12072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/28/2022] [Accepted: 03/27/2022] [Indexed: 11/05/2022] Open
Abstract
Schistosomiasis is a major cause of pulmonary arterial hypertension (PAH) worldwide, but the prevalence and risk factors for schistosomiasis-associated PAH (SchPAH) development are not well understood. Schistosomiasis-associated hepatosplenic disease (SchHSD) is thought to be a major risk factor for PAH development. Herein, we describe our plans for prospectively screening SchHSD subjects for clinical evidence of PAH at two major academic medical centers and national referral hospitals in Addis Ababa, Ethiopia and Lusaka, Zambia. The screening study will primarily be conducted by echocardiography, in addition to clinical assessments. Plasma samples will be drawn and banked for subsequent analysis based on preclinical animal model rationale. If successful, this study will demonstrate feasibility of conducting prospective cohort studies of SchPAH screening in schistosomiasis-endemic regions of Africa, and provide initial data on clinic-based disease prevalence and potential mechanistic biomarkers underlying disease pathogenesis.
Collapse
Affiliation(s)
- Edford Sinkala
- Hepatology Clinic, Department of MedicineUniversity of Zambia Teaching HospitalLusakaZambia
| | - Hanan Yusuf Ahmed
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Tikur Anbessa Specialized Hospital, College of Health SciencesUniversity of Addis AbabaAddis AbabaEthiopia
| | - Jean Pierre Sibomana
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Tikur Anbessa Specialized Hospital, College of Health SciencesUniversity of Addis AbabaAddis AbabaEthiopia
- Department of Medicine, Butare University Teaching HospitalUniversity of RwandaButareRwanda
| | - Michael H. Lee
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Biruk Kassa
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Rahul Kumar
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Sula Mazimba
- Department of Medicine, Division of CardiologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Amsalu B. Binegdie
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Tikur Anbessa Specialized Hospital, College of Health SciencesUniversity of Addis AbabaAddis AbabaEthiopia
| | - Sydney Mpisa
- Hepatology Clinic, Department of MedicineUniversity of Zambia Teaching HospitalLusakaZambia
| | - Kawana Wamundila
- Hepatology Clinic, Department of MedicineUniversity of Zambia Teaching HospitalLusakaZambia
| | - Brian B. Graham
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Joan F. Hilton
- Department of Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
21
|
Kassa B, Lee MH, Kumar R, Mickael C, Sanders L, Tuder RM, Mentink-Kane M, Graham BB. Experimental Schistosoma japonicum-induced pulmonary hypertension. PLoS Negl Trop Dis 2022; 16:e0010343. [PMID: 35417453 PMCID: PMC9037943 DOI: 10.1371/journal.pntd.0010343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/25/2022] [Accepted: 03/19/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Schistosomiasis, a major cause of pulmonary arterial hypertension (PAH) worldwide, is most clearly described complicating infection by one species, Schistosoma mansoni. Controlled exposure of mice can be used to induce Type 2 inflammation-dependent S. mansoni pulmonary hypertension (PH). We sought to determine if another common species, S. japonicum, can also cause experimental PH. METHODS Schistosome eggs were obtained from infected mice, and administered by intraperitoneal sensitization followed by intravenous challenge to experimental mice, which underwent right heart catheterization and tissue analysis. RESULTS S. japonicum sensitized and challenged mice developed PH, which was milder than that following S. mansoni sensitization and challenge. The degree of pulmonary vascular remodeling and Type 2 inflammation in the lungs was similarly proportionate. Cross-sensitization revealed that antigens from either species are sufficient to sensitize for intravenous challenge with either egg, and the degree of PH severity depended on primarily the species used for intravenous challenge. Compared to a relatively uniform distribution of S. mansoni eggs, S. japonicum eggs were observed in clusters in the lungs. CONCLUSIONS S. japonicum can induce experimental PH, which is milder than that resulting from comparable S. mansoni exposure. This difference may result from the distribution of eggs in the lungs, and is independent of which species is used for sensitization. This result is consistent with the clearer association between S. mansoni infection and the development of schistosomiasis-associated PAH in humans.
Collapse
Affiliation(s)
- Biruk Kassa
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Michael H. Lee
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Rahul Kumar
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Claudia Mickael
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Linda Sanders
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rubin M. Tuder
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | | | - Brian B. Graham
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
22
|
Wu Y, Wang M, Xu J, Wei J, Yang H. Signature network-based survey of the effects of a traditional Chinese medicine on heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114750. [PMID: 34662664 DOI: 10.1016/j.jep.2021.114750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Heart failure (HF) after myocardial infarction (MI) is one of the most common disabling and painful diseases. A traditional Chinese medicine (TCM) formula, Shengmaisan, is known as a multitarget medicine that is widely used clinically to treat heart failure (HF) in Asian countries. However, its mechanism has not been comprehensively demonstrated. AIM OF THE STUDY To use a prediction network to figure out which disease link SMZ mainly alleviates in HF and find biomarkers related to myocardial fibrosis in the serum for clinical reference. MATERIALS AND METHODS In this article, we collected a large amount of actual measurement data and our own proteomics data, along with the biomarkers of heart failure staging under study to establish a precise network. Then, we tested and verified the medicinal effect of SMZ in treatment of HF after MI by Measurement of left ventricular wall thickness and ejection fraction by echocardiography. Then we tested the serum level of the potential targets of SMZ predicting by the network we developed using ELISA. RESULTS the cardiac ejection fraction and retarding the thinning of the anterior wall of the left ventricle increased after treating with SMZ. The serum level of EGFR and MAPK1 decreased in the groups treated with SMZ. CONCLUSION SMZ can improve the cardiac function of rats with MI by increasing the cardiac ejection fraction and retarding the thinning of the anterior wall of the left ventricle. In addition, SMZ could delay heart failure mainly by inhibiting the progression of myocardial fibrosis through decreasing the EGFR and MAPK1 levels.
Collapse
Affiliation(s)
- Yue Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Menglan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
23
|
Ferrari TCA, Albricker ACL, Gonçalves IM, Freire CMV. Schistosome-Associated Pulmonary Arterial Hypertension: A Review Emphasizing Pathogenesis. Front Cardiovasc Med 2021; 8:724254. [PMID: 34676250 PMCID: PMC8523797 DOI: 10.3389/fcvm.2021.724254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Schistosomiasis, especially due to Schistosoma mansoni, is a well-recognized cause of pulmonary arterial hypertension (PAH). The high prevalence of this helminthiasis makes schistosome-related PAH (Sch-PAH) one of the most common causes of this disorder worldwide. The pathogenic mechanisms underlying Sch-PAH remain largely unknown. Available evidence suggests that schistosome eggs reach the lung via portocaval shunts formed as a consequence of portal hypertension due to hepatosplenic schistosomiasis. Once deposited into the lungs, the eggs elicit an immune response resulting in periovular granuloma formation. Immune mediators drive transforming growth factor-β (TGF-β) release, which gives rise to pulmonary vascular inflammation with subsequent remodeling and development of angiomatoid and plexiform lesions. These mechanisms elicited by the eggs seem to become autonomous and the vascular lesions progress independently of the antigen. Portopulmonary hypertension, which pathogenesis is still uncertain, may also play a role in the genesis of Sch-PAH. Recently, there have been substantial advances in the diagnosis and treatment of PAH, but it remains a difficult condition to recognize and manage, and patients still die prematurely from right-heart failure. Echocardiography is used for screening, and the formal diagnosis requires right-heart catheterization. The experience in treating Sch-PAH is largely limited to the phosphodiesterase type 5 inhibitors, with evidence suggesting that these vasodilators improve symptoms and may also improve survival. Considering the great deal of uncertainty about Sch-PAH pathogenesis, course, and treatment, the aim of this review is to summarize current knowledge on this condition emphasizing its pathogenesis.
Collapse
Affiliation(s)
- Teresa Cristina Abreu Ferrari
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Cristina Lopes Albricker
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde do Adulto, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ina Morais Gonçalves
- Graduação em Medicina, Centro Universitário de Belo Horizonte, Belo Horizonte, Brazil
| | | |
Collapse
|
24
|
Prevalence of Schistosoma japonicum-associated Pulmonary Hypertension in China: An Echocardiography-based Assessment. Ann Am Thorac Soc 2021; 18:2095-2098. [PMID: 34181869 DOI: 10.1513/annalsats.202012-1573rl] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Dignam JP, Scott TE, Kemp-Harper BK, Hobbs AJ. Animal models of pulmonary hypertension: Getting to the heart of the problem. Br J Pharmacol 2021; 179:811-837. [PMID: 33724447 DOI: 10.1111/bph.15444] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Despite recent therapeutic advances, pulmonary hypertension (PH) remains a fatal disease due to the development of right ventricular (RV) failure. At present, no treatments targeted at the right ventricle are available, and RV function is not widely considered in the preclinical assessment of new therapeutics. Several small animal models are used in the study of PH, including the classic models of exposure to either hypoxia or monocrotaline, newer combinational and genetic models, and pulmonary artery banding, a surgical model of pure RV pressure overload. These models reproduce selected features of the structural remodelling and functional decline seen in patients and have provided valuable insight into the pathophysiology of RV failure. However, significant reversal of remodelling and improvement in RV function remains a therapeutic obstacle. Emerging animal models will provide a deeper understanding of the mechanisms governing the transition from adaptive remodelling to a failing right ventricle, aiding the hunt for druggable molecular targets.
Collapse
Affiliation(s)
- Joshua P Dignam
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tara E Scott
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University Clayton Campus, Clayton, Victoria, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria, Australia
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University Clayton Campus, Clayton, Victoria, Australia
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|