1
|
Sun Y, Qin S, Wang S, Pang J, Ou Q, Liang W, Zhong H. Comprehensive genomic profiling of pulmonary spindle cell carcinoma using tissue and plasma samples: insights from a real-world cohort analysis. J Pathol Clin Res 2024; 10:e12375. [PMID: 38661052 PMCID: PMC11044156 DOI: 10.1002/2056-4538.12375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/10/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Pulmonary spindle cell carcinoma (PSCC) is a rare and aggressive non-small cell lung cancer (NSCLC) subtype with a dismal prognosis. The molecular characteristics of PSCC are largely unknown due to its rarity, which limits the diagnosis and treatment of this historically poorly characterized malignancy. We present comprehensive genomic profiling results of baseline tumor samples from 22 patients histologically diagnosed with PSCC, representing the largest cohort to date. Somatic genetic variant detection was compared between paired plasma samples and primary tumors from 13 patients within our cohort. The associations among genomic features, treatment, and prognosis were also analyzed in representative patient cases. TP53 (54.5%), TERT (36.4%), CDKN2A (27.3%), and MET (22.7%) were most frequently mutated. Notably, 81.8% of patients had actionable targets in their baseline tumors, including MET (22.7%), ERBB2 (13.6%), EGFR (9.1%), KRAS (9.1%), ALK (9.1%), and ROS1 (4.5%). The median tumor mutation burden (TMB) for PSCC tumors was 5.5 mutations per megabase (muts/Mb). TMB-high tumors (>10 muts/Mb) exhibited a significantly higher mutation frequency in genes such as KRAS, ARID2, FOXL2, and LRP1B, as well as within the DNA mismatch repair pathway. The detection rates for single nucleotide variants and structural variants were comparable between matched tumor and plasma samples, with 48.6% of genetic variants being mutually identified in both sample types. Additionally, a patient with a high mutation load and positive PD-L1 expression demonstrated a 7-month survival benefit from chemoimmunotherapy. Furthermore, a patient with an ALK-rearranged tumor achieved a remarkable 3-year progression-free survival following crizotinib treatment. Overall, our findings deepen the understanding of the complex genomic landscape of PSCC, revealing actionable targets amenable to tailored treatment of this poorly characterized malignancy.
Collapse
Affiliation(s)
- Yi Sun
- Department of PathologyThe Second Xiangya Hospital of Central South UniversityChangshaPR China
| | - Shilei Qin
- Department of Thoracic SurgeryAffiliated Hospital of Guilin Medical UniversityGuilinPR China
| | - Song Wang
- Geneseeq Research InstituteNanjing Geneseeq Technology Inc.NanjingPR China
| | - Jiaohui Pang
- Geneseeq Research InstituteNanjing Geneseeq Technology Inc.NanjingPR China
| | - Qiuxiang Ou
- Geneseeq Research InstituteNanjing Geneseeq Technology Inc.NanjingPR China
| | - Weiquan Liang
- Department of Respiratory and Critical Care MedicineThe Second People's Hospital of FoshanFoshanPR China
| | - Hai Zhong
- Department of Thoracic Surgery, Zhujiang HospitalSouthern Medical UniversityGuangzhouPR China
| |
Collapse
|
2
|
Li X, Xiong F, Hu Z, Tao Q, Yang Y, Qiao X, Peng C, Jiang Y, Han M, Dong K, Hua Y, Zhang W, Xu M, Long W, Xiao Y, Wang D. A novel biomarker associated with EBV infection improves response prediction of immunotherapy in gastric cancer. J Transl Med 2024; 22:90. [PMID: 38254099 PMCID: PMC10804498 DOI: 10.1186/s12967-024-04859-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Novel biomarkers are required in gastric cancer (GC) treated by immunotherapy. Epstein-Barr virus (EBV) infection induces an immune-active tumor microenvironment, while its association with immunotherapy response is still controversial. Genes underlying EBV infection may determine the response heterogeneity of EBV + GC. Thus, we screened hub genes associated with EBV infection to predict the response to immunotherapy in GC. METHODS Prognostic hub genes associated with EBV infection were screened using multi-omic data of GC. EBV + GC cells were established and confirmed by EBV-encoded small RNA in situ hybridization (EBER-ISH). Immunohistochemistry (IHC) staining of the hub genes was conducted in GC samples with EBER-ISH assay. Infiltrating immune cells were stained using immunofluorescence. RESULTS CHAF1A was identified as a hub gene in EBV + GC, and its expression was an independent predictor of overall survival (OS). EBV infection up-regulated CHAF1A expression which also predicted EBV infection well. CHAF1A expression also predicted microsatellite instability (MSI) and a high tumor mutation burden (TMB). The combined score (CS) of CHAF1A expression with MSI or TMB further improved prognostic stratification. CHAF1A IHC score positively correlated with the infiltration of NK cells and macrophages M1. CHAF1A expression alone could predict the immunotherapy response, but its CS with EBV infection, MSI, TMB, or PD-L1 expression showed better effects and improved response stratification based on current biomarkers. CONCLUSIONS CHAF1A could be a novel biomarker for immunotherapy of GC, with the potential to improve the efficacy of existing biomarkers.
Collapse
Affiliation(s)
- Xiaoqin Li
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Fen Xiong
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhangmin Hu
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Qing Tao
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yufei Yang
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xuehan Qiao
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Chen Peng
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yuchun Jiang
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Miao Han
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Kebin Dong
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yi Hua
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Wei Zhang
- Department of Gastroenterology, Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Min Xu
- Department of Gastroenterology, Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Weiguo Long
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Deqiang Wang
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
3
|
Ying L, Hu Z, Lu Y, Tao Q, Xiong F, Shu Y, Yang Y, Qiao X, Peng C, Jiang Y, Han M, Xu M, Li X, Wang D. An oncogene regulating chromatin favors response to immunotherapy: Oncogene CHAF1A and immunotherapy outcomes. Oncoimmunology 2024; 13:2303195. [PMID: 38235318 PMCID: PMC10793680 DOI: 10.1080/2162402x.2024.2303195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Many biological processes related to cell function and fate begin with chromatin alterations, and many factors associated with the efficacy of immune checkpoint inhibitors (ICIs) are actually downstream events of chromatin alterations, such as genome changes, neoantigen production, and immune checkpoint expression. However, the influence of genes as chromatin regulators on the efficacy of ICIs remains elusive, especially in gastric cancer (GC). In this study, thirty out of 1593 genes regulating chromatin associated with a favorable prognosis were selected for GC. CHAF1A, a well-defined oncogene, was identified as the highest linkage hub gene. High CHAF1A expression were associated with microsatellite instability (MSI), high tumor mutation burden (TMB), high tumor neoantigen burden (TNB), high expressions of PD-L1 and immune effector genes, and live infiltration of immune cells. High CHAF1A expression indicated a favorable response and prognosis in immunotherapy of several cohorts, which was independent of MSI, TMB, TNB, PD-L1 expression, immune phenotype and transcriptome scoring, and improved patient selection based on these classic biomarkers. In vivo, CHAF1A knockdown alone inhibited tumor growth but it impaired the effect of an anti-PD-1 antibody by increasing the relative tumor proliferation rate and decreasing the survival benefit, potentially through the activation of TGF-β signaling. In conclusion, CHAF1A may be a novel biomarker for improving patient selection in immunotherapy.
Collapse
Affiliation(s)
- Leqian Ying
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Oncology, Zhong-Da Hospital, Medicine School, Southeast University, Nanjing, China
| | - Zhangmin Hu
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Lu
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Qing Tao
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Xiong
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yongqian Shu
- Department of Oncology, Jiangsu Province Hospital & The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yufei Yang
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuehan Qiao
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Peng
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuchun Jiang
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Miao Han
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Min Xu
- Department of Gastroenterology, Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Li Y, Li X, Yang Y, Qiao X, Tao Q, Peng C, Han M, Dong K, Xu M, Wang D, Han G. Association of genes in hereditary metabolic diseases with diagnosis, prognosis, and treatment outcomes in gastric cancer. Front Immunol 2023; 14:1289700. [PMID: 38022516 PMCID: PMC10665511 DOI: 10.3389/fimmu.2023.1289700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background Aberrant metabolism is a major hallmark of cancers and hereditary diseases. Genes associated with inborn metabolic errors may also play roles in cancer development. This study evaluated the overall impact of these genes on gastric cancer (GC). Methods In total, 162 genes involved in 203 hereditary metabolic diseases were identified in the Human Phenotype Ontology database. Clinical and multi-omic data were acquired from the GC cohort of the Affiliated Hospital of Jiangsu University and other published cohorts. A 4-gene and 32-gene signature was established for diagnosis and prognosis or therapeutic prediction, respectively, and corresponding abnormal metabolism scores (AMscores) were calculated. Results The diagnostic AMscore showed high sensitivity (0.88-1.00) and specificity (0.89-1.00) to distinguish between GC and paired normal tissues, with area under the receiver operating characteristic curve (AUC) ranging from 0.911 to 1.000 in four GC cohorts. The prognostic or predictive AMscore was an independent predictor of overall survival (OS) in five GC cohorts and a predictor of the OS and disease-free survival benefit of postoperative chemotherapy or chemoradiotherapy in one GC cohort with such data. The AMscore adversely impacts immune biomarkers, including tumor mutation burden, tumor neoantigen burden, microsatellite instability, programmed death-ligand 1 protein expression, tumor microenvironment score, T cell receptor clonality, and immune cell infiltration detected by multiplex immunofluorescence staining. The AUC of the AMscore for predicting immunotherapy response ranging from 0.780 to 0.964 in four cohorts involving GC, urothelial cancer, melanoma, and lung cancer. The objective response rates in the low and high AMscore subgroups were 78.6% and 3.2%, 40.4% and 7%, 52.6% and 0%, and 72.7% and 0%, respectively (all p<0.001). In cohorts with survival data, a high AMscore was hazardous for OS or progression-free survival, with hazard ratios ranged from 5.79 to 108.59 (all p<0.001). Importantly, the AMscore significantly improved the prediction of current immune biomarkers for both response and survival, thus redefining the advantaged and disadvantaged immunotherapy populations. Conclusions Signatures based on genes associated with hereditary metabolic diseases and their corresponding scores could be used to guide the diagnosis and treatment of GC. Therefore, further validation is required.
Collapse
Affiliation(s)
- Yiping Li
- Department of Oncology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Xiaoqin Li
- Department of Oncology, Digestive Disease Institute & Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yufei Yang
- Department of Oncology, Digestive Disease Institute & Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuehan Qiao
- Department of Oncology, Digestive Disease Institute & Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qing Tao
- Department of Oncology, Digestive Disease Institute & Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Peng
- Department of Oncology, Digestive Disease Institute & Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Miao Han
- Department of Oncology, Digestive Disease Institute & Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kebin Dong
- Department of Oncology, Digestive Disease Institute & Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Min Xu
- Department of Gastroenterology, Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Department of Oncology, Digestive Disease Institute & Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Gaohua Han
- Department of Oncology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
5
|
Shin K, Kim J, Park SJ, Kim H, Lee MA, Kim O, Park J, Kang N, Kim IH. Early Increase in Circulating PD-1 +CD8 + T Cells Predicts Favorable Survival in Patients with Advanced Gastric Cancer Receiving Chemotherapy. Cancers (Basel) 2023; 15:3955. [PMID: 37568771 PMCID: PMC10417033 DOI: 10.3390/cancers15153955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The clinical significance of PD-1 expression in circulating CD8+ T cells in patients with gastric cancer (GC) receiving chemotherapy remains unelucidated. Therefore, we aimed to examine its prognostic significance in blood samples of 68 patients with advanced GC who received platinum-based chemotherapy. The correlation between peripheral blood mononuclear cells, measured using fluorescence-activated cell sorting, was evaluated. Patients were divided into two groups according to the changes in PD-1+CD8+ T-cell frequencies between day 0 and 7. They were categorized as increased or decreased PD-1+CD8+ T-cell groups. The increased PD-1+CD8+ T-cell group showed longer progression-free survival (PFS) and overall survival (OS) than the decreased PD-1+CD8+ T-cell group (PFS: 8.7 months vs. 6.1 months, p = 0.007; OS: 20.7 months vs. 10.8 months, p = 0.003). The mean duration of response was significantly different between the groups (5.7 months vs. 2.5 months, p = 0.041). Multivariate analysis revealed that an increase in PD-1+CD8+ T-cell frequency was an independent prognostic factor. We concluded that the early increase in PD-1+CD8+ T-cell frequency is a potential predictor of favorable prognoses and durable responses in patients with advanced GC receiving chemotherapy.
Collapse
Affiliation(s)
- Kabsoo Shin
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Joori Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Se Jun Park
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Hyunho Kim
- Division of Medical Oncology, Department of Internal Medicine, St. Vincent Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Myung Ah Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Okran Kim
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Juyeon Park
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Nahyeon Kang
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| |
Collapse
|
6
|
Li X, Ma XL, Nan Y, Du YH, Yang Y, Lu DD, Zhang JF, Chen Y, Zhang L, Niu Y, Yuan L. 18β-glycyrrhetinic acid inhibits proliferation of gastric cancer cells through regulating the miR-345-5p/TGM2 signaling pathway. World J Gastroenterol 2023; 29:3622-3644. [PMID: 37398884 PMCID: PMC10311615 DOI: 10.3748/wjg.v29.i23.3622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common gastrointestinal malignancy worldwide. Based on cancer-related mortality, the current prevention and treatment strategies for GC still show poor clinical results. Therefore, it is important to find effective drug treatment targets.
AIM To explore the molecular mechanism of 18β-glycyrrhetinic acid (18β-GRA) regulating the miR-345-5p/TGM2 signaling pathway to inhibit the proliferation of GC cells.
METHODS CCK-8 assay was used to determine the effect of 18β-GRA on the survival rate of GES-1 cells and AGS and HGC-27 cells. Cell cycle and apoptosis were detected by flow cytometry, cell migration was detected by a wound healing assay, the effect of 18β-GRA on subcutaneous tumor growth in BALB/c nude mice was investigated, and the cell autophagy level was determined by MDC staining. TMT proteomic analysis was used to detect the differentially expressed autophagy-related proteins in GC cells after 18β-GRA intervention, and then the protein-protein interaction was predicted using STRING (https://string-db.org/). MicroRNAs (miRNAs) transcriptome analysis was used to detect the miRNA differential expression profile, and use miRBase (https://www.mirbase/) and TargetScan (https://www.targetscan.org/) to predict the miRNA and complementary binding sites. Quantitative real-time polymerase chain reaction was used to detect the expression level of miRNA in 18β-GRA treated cells, and western blot was used to detect the expression of autophagy related proteins. Finally, the effect of miR-345-5p on GC cells was verified by mir-345-5p overexpression.
RESULTS 18β-GRA could inhibit GC cells viability, promote cell apoptosis, block cell cycle, reduce cell wound healing ability, and inhibit the GC cells growth in vivo. MDC staining results showed that 18β-GRA could promote autophagy in GC cells. By TMT proteomic analysis and miRNAs transcriptome analysis, it was concluded that 18β-GRA could down-regulate TGM2 expression and up-regulate miR-345-5p expression in GC cells. Subsequently, we verified that TGM2 is the target of miR-345-5p, and that overexpression of miR-345-5p significantly inhibited the protein expression level of TGM2. Western blot showed that the expression of autophagy-related proteins of TGM2 and p62 was significantly reduced, and LC3II, ULK1 and AMPK expression was significantly increased in GC cells treated with 18β-GRA. Overexpression of miR-345-5p not only inhibited the expression of TGM2, but also inhibited the proliferation of GC cells by promoting cell apoptosis and arresting cell cycle.
CONCLUSION 18β-GRA inhibits the proliferation of GC cells and promotes autophagy by regulating the miR-345-5p/TGM2 signaling pathway.
Collapse
Affiliation(s)
- Xia Li
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Ling Ma
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yu-Hua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Yang
- College of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Dou-Dou Lu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jun-Fei Zhang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yan Chen
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Lei Zhang
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yang Niu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
7
|
Alizadehmohajer N, Zahedifar S, Sohrabi E, Shaddel Basir S, Nourigheimasi S, Falak R, Nedaeinia R, A Ferns G, Emami Nejad A, Manian M. Using In Silico Bioinformatics Algorithms for the Accurate Prediction of the Impact of Spike Protein Mutations on the Pathogenicity, Stability, and Functionality of the SARS-CoV-2 Virus and Analysis of Potential Therapeutic Targets. Biochem Genet 2023; 61:778-808. [PMID: 36173498 PMCID: PMC9521556 DOI: 10.1007/s10528-022-10282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 09/01/2022] [Indexed: 11/02/2022]
Abstract
Coronavirus disease 2019 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have used bioinformatics to investigate seventeen mutations in the spike protein of SARS-CoV-2, as this mediates infection of human cells and is the target of most vaccine strategies and antibody-based therapies. Two mutations, H146Y and S221W, were identified as being most pathogenic. Mutations at positions D614G, A829T, and P1263L might also have deleterious effects on protein function. We hypothesized that candidate small molecules may be repurposed to combat viral infection. We investigated changes in binding energies of the ligands and the mutant proteins by assessing molecular docking. For an understanding of cellular function and organization, protein-protein interactions are also critical. Protein-protein docking for naïve and mutated structures of SARS-CoV-2 S protein was evaluated for their binding energy with the angiotensin-converting enzyme 2 (ACE2). These interactions might limit the binding of the SARS-CoV-2 spike protein to the ACE2 receptor or may have a deleterious effect on protein function that may limit infection. These results may have important implications for the transmission of SARS-CoV-2, its pathogenesis, and the potential for drug repurposing and immune therapies.
Collapse
Affiliation(s)
- Negin Alizadehmohajer
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133, Milan, Italy
| | - Shahrzad Zahedifar
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Sohrabi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sedighe Shaddel Basir
- Department of Microbiology, Faculty of New Sciences and Technologies Branch, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Asieh Emami Nejad
- Department of Biology, Payame Noor University (PNU), P.O.Box 19395-3697, Tehran, Iran.
| | - Mostafa Manian
- Department of Medical Laboratory Science, Faculty of Medical Science, Kermanshah Branch, Imam Khomeini Campus, Islamic Azad University, Farhikhtegan Bld., Shahid J'afari St., 6718997551, Kermanshah, Iran.
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Xu T, Wang W, Bao R, Xia X, Zhang J, Huang M, Chen X, Wang R, Zhang H, Liu X, Li Q, Shu Y. Anti-PD-1 plus anti-angiogenesis combined with chemotherapy in patients with HER2-negative advanced or metastatic gastric cancer: a multi-institutional retrospective study. J Gastrointest Oncol 2023; 14:175-186. [PMID: 36915465 PMCID: PMC10007938 DOI: 10.21037/jgo-23-73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Background Immunotherapy plus chemotherapy have been confirmed to be effective in treating advanced or metastatic gastric cancer (GC). Anti- programmed death-1 (PD-1) plus antiangiogenic agents have shown promising activity and tolerant toxicity in subsequent therapy of late-stage gastric cancer. The aim of this study was to assess the efficacy and safety of anti-PD-1 plus anti-angiogenic agents and chemotherapy in advanced or metastatic GC and to explore the potential biomarkers associated with response. Methods We retrospectively reviewed thirty human epidermal growth factor receptor 2 (HER2)-negative advanced or metastatic GC patients who received PD-1 plus anti-angiogenic drugs and chemotherapy. Conversion therapy was defined when the patients could undergo resection post combination therapy. Clinical data were retrieved from medical records. We conducted exploratory biomarker analysis of baseline gene mutations and tumor mutation burden (TMB) using the next-generation sequencing (NGS), PD-L1 by immunohistochemistry (IHC), and the tumor immune microenvironment (TIME) by multiplex immunofluorescence. Results A total of 30 patients received anti-PD-1plus anti-angiogenic drugs and chemotherapy during the study period. The objective response rate (ORR) was 76.7% [95% confidence interval (CI): 57.7-90.1%] and disease control rate (DCR) was 86.7% (95% CI: 69.3-96.2%). A total of 11 patients (36.7%) achieved conversion therapy and underwent surgery. The R0 resection rate was 90.9%. Of the 11 patients, 9 (81.8%) responded to the treatment, 1 with a pathological complete response (pCR) and 8 with a major pathological response (MPR). No adverse events of grade 3 or higher occurred. Neither PD-L1 expression nor TMB was significantly correlated with treatment response. Analysis of TIME revealed that the fraction of CD8+ T cell in the invasive margin was higher in responders than non-responders before treatment. TAM2 in the tumor center and CD8+ T cell in the invasive margin was significantly increased after combination therapy, which suggested that combination therapy promoted infiltration of CD8+ T cells, thereby exerting an antitumor effect. Conclusions Immunotherapy plus anti-angiogenic drugs and chemotherapy is a promising treatment strategy for advanced or metastatic GC patients. Tumor infiltration CD8+ T cells may serve as potential predictive biomarker.
Collapse
Affiliation(s)
- Tongpeng Xu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Gusu School, Nanjing Medical University, Suzhou, China
| | - Wenjie Wang
- Gusu School, Nanjing Medical University, Suzhou, China.,Department of Radio-Oncology, Suzhou Municipal Hospital, Suzhou, China
| | - Ruikang Bao
- Gusu School, Nanjing Medical University, Suzhou, China.,Department of Radio-Oncology, Suzhou Municipal Hospital, Suzhou, China
| | - Xihua Xia
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Junling Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Mengli Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Xiaofeng Chen
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Wang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xisheng Liu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiong Li
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongqian Shu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
9
|
Helicobacter pylori promotes gastric cancer progression through the tumor microenvironment. Appl Microbiol Biotechnol 2022; 106:4375-4385. [PMID: 35723694 DOI: 10.1007/s00253-022-12011-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023]
Abstract
Gastric cancer (GC) is a leading type of cancer. Although immunotherapy has yielded important recent progress in the treatment of GC, the prognosis remains poor due to drug resistance and frequent recurrence and metastasis. There are multiple known risk factors for GC, and infection with Helicobacter pylori is one of the most significant. The mechanisms underlying the associations of H. pylori and GC remain unclear, but it is well known that infection can alter the tumor microenvironment (TME). The TME and the tumor itself constitute a complete ecosystem, and the TME plays critical roles in tumor progression, metastasis, and drug resistance. H. pylori infection can act synergistically with the TME to cause DNA damage and abnormal expression of multiple genes and activation of signaling pathways. It also modulates the host immune system in ways that enhance the proliferation and metastasis of tumor cells, promote epithelial-mesenchymal transition, inhibit apoptosis, and provide energy support for tumor growth. This review elaborates myriad ways that H. pylori infections promote the occurrence and progression of GC by influencing the TME, providing new directions for immunotherapy treatments for this important disease. KEY POINTS: • H. pylori infections cause DNA damage and affect the repair of the TME to DNA damage. • H. pylori infections regulate oncogenes or activate the oncogenic signaling pathways. • H. pylori infections modulate the immune system within the TME.
Collapse
|
10
|
Yuan L, Yang Y, Li X, Zhou X, Du YH, Liu WJ, Zhang L, Yu L, Ma TT, Li JX, Chen Y, Nan Y. 18β-glycyrrhetinic acid regulates mitochondrial ribosomal protein L35-associated apoptosis signaling pathways to inhibit proliferation of gastric carcinoma cells. World J Gastroenterol 2022; 28:2437-2456. [PMID: 35979263 PMCID: PMC9258276 DOI: 10.3748/wjg.v28.i22.2437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric carcinoma (GC) is a common gastrointestinal malignancy worldwide. Based on the cancer-related mortality, the current prevention and treatment strategies for GC still show poor clinical results. Therefore, it is important to find effective drug treatment targets.
AIM To explore the mechanism by which 18β-glycyrrhetinic acid (18β-GRA) regulates mitochondrial ribosomal protein L35 (MRPL35) related signal proteins to inhibit the proliferation of GC cells.
METHODS Cell counting kit-8 assay was used to detect the effects of 18β-GRA on the survival rate of human normal gastric mucosal cell line GES-1 and the proliferation of GC cell lines MGC80-3 and BGC-823. The apoptosis and cell cycle were assessed by flow cytometry. Cell invasion and migration were evaluated by Transwell assay, and cell scratch test was used to detect cell migration. Furthermore, a tumor model was established by hypodermic injection of 2.5 × 106 BGC-823 cells at the selected positions of BALB/c nude mice to determine the effect of 18β-GRA on GC cell proliferation, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect MRPL35 expression in the engrafted tumors in mice. We used the term tandem mass tag (TMT) labeling combined with liquid chromatography–tandem mass spectrometry to screen for differentially expressed proteins (DEPs) extracted from GC cells and control cells after 18β-GRA intervention. A detailed bioinformatics analysis of these DEPs was performed, including Gene Ontology annotation and enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and so on. Moreover, STRING database (https://string-db.org/) was used to predict protein-protein interaction (PPI) relationships and Western blot was used to detect the expression of proteins of interest in GC cells.
RESULTS The results indicated that 18β-GRA could inhibit the proliferation of GC cells in a dose- and time-dependent manner. It could induce GC cell apoptosis and arrest the cell cycle at G0/G1 phase. The proportion of cells arrested at S phase decreased with the increase of 18-GRA dose, and the migration and invasiveness of GC cells were inhibited. The results of animal experiments showed that 18β-GRA could inhibit tumor formation in BALB/c nude mice, and qRT-PCR results showed that MRPL35 expression level was significantly reduced in the engrafted tumors in mice. Using TMT technology, 609 DEPs, among which 335 were up-regulated and 274 were down-regulated, were identified in 18β-GRA intervention compared with control. We found that the intervention of 18β-GRA in GC cells involved many important biological processes and signaling pathways, such as cellular processes, biological regulation, and TP53 signaling pathway. Notably, after the drug intervention, MRPL35 expression was significantly down-regulated (P = 0.000247), TP53 expression was up-regulated (P = 0.02676), and BCL2L1 was down-regulated (P = 0.01699). Combined with the Retrieval of Interacting Genes/Proteins database, we analyzed the relationship between MRPL35, TP53, and BCL2L1 signaling proteins, and we found that COPS5, BAX, and BAD proteins can form a PPI network with MRPL35, TP53, and BCL2L1. Western blot analysis confirmed the intervention effect of 18β-GRA on GC cells, MRPL35, TP53, and BCL2L1 showed dose-dependent up/down-regulation, and the expression of COPS5, BAX, and BAD also increased/decreased with the change of 18β-GRA concentration.
CONCLUSION 18β-GRA can inhibit the proliferation of GC cells by regulating MRPL35, COPS5, TP53, BCL2L1, BAX, and BAD.
Collapse
Affiliation(s)
- Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Yang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xia Li
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xin Zhou
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yu-Hua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Wen-Jing Liu
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Lei Zhang
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Lei Yu
- Department of Infectious Diseases, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ting-Ting Ma
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jia-Xin Li
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yan Chen
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
11
|
Lu Y, Li D, Cao Y, Ying L, Tao Q, Xiong F, Hu Z, Yang Y, Qiao X, Peng C, Zhu D, Wang D, Li X. A Genomic Signature Reflecting Fibroblast Infiltration Into Gastric Cancer Is Associated With Prognosis and Treatment Outcomes of Immune Checkpoint Inhibitors. Front Cell Dev Biol 2022; 10:862294. [PMID: 35557959 PMCID: PMC9087633 DOI: 10.3389/fcell.2022.862294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The immunotherapy efficacy in gastric cancer (GC) is limited. Cancer-associated fibroblasts (CAFs) induce primary resistance to immunotherapy. However, CAF infiltration in tumors is difficult to evaluate due to the lack of validated and standardized quantified methods. This study aimed to investigate the impact of infiltrating CAFs alternatively using fibroblast-associated mutation scoring (FAMscore). Methods: In a GC cohort from Affiliated Hospital of Jiangsu University (AHJU), whole exon sequencing of genomic mutations, whole transcriptome sequencing of mRNA expression profiles, and immunofluorescence staining of tumor-infiltrating immune cells were performed. GC data from The Cancer Genome Atlas were used to identify genetic mutations which were associated with overall survival (OS) and impacted infiltrating CAF abundance determined by transcriptome-based estimation. FAMscore was then constructed through a least absolute shrinkage and selection operator Cox regression model and further validated in AHJU. The predictive role of FAMscore for immunotherapy outcomes was tested in 1 GC, one melanoma, and two non-small-cell lung cancer (NSCLC-1 and -2) cohorts wherein participants were treated by immune checkpoint inhibitors. Results: FAMscore was calculated based on a mutation signature consisting of 16 genes. In both TCGA and AHJU, a high FAMscore was an independent predictor for poor OS of GC patients. FAMscore was associated with immune-associated genome biomarkers, immune cell infiltration, and signaling pathways of abnormal immunity. Importantly, patients with high FAMscore presented inferiority in the objective response rate of immunotherapy compared to those with low FAMscore, with 14.6% vs. 66.7% (p<0.001) in GC, 19.6% vs. 68.2% (p<0.001) in NSCLC-1, 23.1% vs 75% (p = 0.007) in NSCLC-2, and 40.9% vs 75% (p = 0.037) in melanoma. For available survival data, a high FAMscore was also an independent predictor of poor progression-free survival in NSCLC-1 (HR = 2.55, 95% CI: 1.16-5.62, p = 0.02) and NSCLC-2 (HR = 5.0, 95% CI: 1.13-22.19, p = 0.034) and poor OS in melanoma (HR = 3.48, 95% CI: 1.27-9.55, p = 0.015). Conclusions: Alternative evaluation of CAF infiltration in GC by determining the FAMscore could independently predict prognosis and immunotherapy outcomes. The FAMscore may be used to optimize patient selection for immunotherapy.
Collapse
Affiliation(s)
- Yi Lu
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dan Li
- Department of Hematology, Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yixin Cao
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Leqian Ying
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qing Tao
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Xiong
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhangmin Hu
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yufei Yang
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuehan Qiao
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Peng
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dongqin Zhu
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Deqiang Wang
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Wang D, Chen X, Du Y, Li X, Ying L, Lu Y, Shen B, Gao X, Yi X, Xia X, Sui X, Shu Y. Associations of HER2 Mutation With Immune-Related Features and Immunotherapy Outcomes in Solid Tumors. Front Immunol 2022; 13:799988. [PMID: 35281032 PMCID: PMC8905508 DOI: 10.3389/fimmu.2022.799988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Background HER2 is one of the most extensively studied oncogenes in solid tumors. However, the association between tumor microenvironment (TME) and HER2 mutation remains elusive, and there are no specific therapies for HER2-mutated tumors. Immune checkpoint inhibitors (ICIs) have been approved for some tumor subgroups that lack targeted therapies, while their effects are still unclear in HER2-mutated tumors. We examined whether HER2 mutation impacts treatment outcomes of ICIs in solid tumors via its association with anticancer immunity. Methods Multi-omics data of solid tumors from The Cancer Genome Atlas (TCGA), the Asian Cancer Research Group and the Affiliated Hospital of Jiangsu University were used to analyze the association between HER2 mutations and tumor features. Data of patients with multiple microsatellite-stable solid tumors, who were treated by ICIs including antibodies against programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), or cytotoxic T lymphocyte-associated protein 4 (CTLA-4) in eight studies, were collected to investigate the effects of HER2 mutations on immunotherapy outcomes. Results The mutation rate of HER2 varied in solid tumors of TCGA, with an overall incidence of 3.13%, ranged from 0.39% to 12.2%. Concurrent HER2 mutations and amplifications were rare (0.26%). HER2 mutation was not associated with HER2 protein expression but was positively associated with microsatellite instability, tumor mutation and neoantigen burdens, infiltrating antitumor immune cells, and signal activities of antitumor immunity. Of 321 ICI-treated patients, 18 carried HER2 mutations (5.6%) and showed improved objective response rates compared with those with HER2 wild-type (44.4% vs. 25.7%, p=0.081), especially in the anti-PD-1/anti-PD-L1 subgroup (62.5% vs. 28.4%, p=0.04). Heterogeneity was observed among tumor types. Patients with HER2 mutations also had superior overall survival than those with HER2 wild-type (HR=0.47, 95%CI: 0.23-0.97, p=0.04), especially in the presence of co-mutations in ABCA1 (HR = 0.23, 95% CI: 0.07-0.73, p=0.013), CELSR1 (HR = 0.24, 95% CI: 0.08-0.77, p=0.016), LRP2 (HR = 0.24, 95% CI: 0.07-0.74, p=0.014), or PKHD1L1 (HR = 0.2, 95% CI: 0.05-0.8, p=0.023). Conclusions HER2 mutations may improve the TME to favor immunotherapy. A prospective basket trial is needed to further investigate the impacts of HER2 mutations on immunotherapy outcomes in solid tumors.
Collapse
Affiliation(s)
- Deqiang Wang
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaofeng Chen
- Department of Medical Oncology, Jiangsu Province Hospital, Nanjing, China
| | - Yian Du
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Xiaoqin Li
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Leqian Ying
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Lu
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Bo Shen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Shenzhen Clinical Laboratory, GenePlus, Shenzhen, China
| | - Xin Yi
- Beijing Institute, GenePlus, Beijing, China
| | | | - Xinbing Sui
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Yongqian Shu
- Department of Medical Oncology, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
13
|
Duan J, Lv G, Zhu N, Chen X, Shao Y, Liu Y, Zhao W, Shi Y. Multidimensional profiling depicts infiltrating immune cell heterogeneity in the tumor microenvironment of stage
IA
non‐small cell lung cancer. Thorac Cancer 2022; 13:947-955. [PMID: 35150094 PMCID: PMC8977165 DOI: 10.1111/1759-7714.14329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jin Duan
- Department of Thoracic Surgery the First Affiliated Hospital of Kunming Medical University Kunming China
| | - Guoli Lv
- Department of Thoracic Surgery the First Affiliated Hospital of Kunming Medical University Kunming China
| | - Nanye Zhu
- Department of Thoracic Surgery the First Affiliated Hospital of Kunming Medical University Kunming China
| | - Xin Chen
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc. Nanjing China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc. Nanjing China
- School of Public Health Nanjing Medical University Nanjing China
| | - Yong Liu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc. Nanjing China
| | - Wei Zhao
- Department of Thoracic Surgery the First Affiliated Hospital of Kunming Medical University Kunming China
| | - Yunfei Shi
- Department of Thoracic Surgery the First Affiliated Hospital of Kunming Medical University Kunming China
| |
Collapse
|
14
|
Chen X, Wang D, Liu J, Qiu J, Zhou J, Ying J, Shi Y, Wang Z, Lou H, Cui J, Zhang J, Liu Y, Zhao F, Pan L, Zhao J, Zhu D, Chen S, Li X, Li X, Zhu L, Shao Y, Shu Y. Genomic alterations in biliary tract cancer predict prognosis and immunotherapy outcomes. J Immunother Cancer 2021; 9:jitc-2021-003214. [PMID: 34795005 PMCID: PMC8603283 DOI: 10.1136/jitc-2021-003214] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recently, immunotherapy with immune checkpoint inhibitors (ICIs) has shown promising efficacy in biliary tract cancer (BTC), which includes gallbladder cancer (GBC) and cholangiocarcinoma (CHOL). Understanding the association between immunotherapy outcomes and the genomic profile of advanced BTC may further improve the clinical benefits from immunotherapy. METHODS Genomic tumor DNA was isolated from 98 Chinese patients with advanced BTC and used for targeted next-generation sequencing of 416 cancer-related genes to identify the genomic alterations common to advanced BTC. Thirty-four patients had received ICI camrelizumab plus gemcitabine and oxaliplatin (from the NCT03486678 trial) as a first-line treatment. Tumor-infiltrating immune cells were evaluated using immunofluorescence staining. RESULTS KRAS and TP53 mutations were much more frequent in the advanced-stage BTC cohort than in other cohorts with mostly early stage disease. Specifically, KRAS-TP53 co-mutations were favored in advanced CHOL, with a favorable response to immunotherapy, while single KRAS mutations predicted poor prognosis and immunotherapy outcomes for CHOL. Compared with GBC, CHOL had more mutations in genes involved in KRAS signaling; a high mutation load in these genes correlated with poor immunotherapy outcomes and may subsequently cause inferior immunotherapy outcomes for CHOL relative to GBC. Furthermore, a genomic signature including 11 genes was developed; their mutated subtype was associated with poor prognosis and immunotherapy outcomes in both CHOL and GBC. Transcriptome analyses suggested immune dysfunction in the signature mutated subtype, which was validated by tumor microenvironment (TME) evaluation based on detection of immune cell infiltration. Importantly, the signature wild-type subtype with favorable TME may be an advantageous population of immunotherapy. CONCLUSIONS Genomic alterations in advanced BTC were associated with specific prognosis and immunotherapy outcomes. Combining genomic classification with TME evaluation further improved the stratification of immunotherapy outcomes.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Deqiang Wang
- Oncology, Jiangsu University Hospital, Jiangsu, China
| | - Jing Liu
- Oncology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Jingrong Qiu
- Biological Therapy, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jun Zhou
- Key Laboratory of Carcinogenesis & Translational Research, Peking University Cancer Hospital, Beijing, Beijing, China
| | - Jieer Ying
- Abdominal Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Yan Shi
- Oncology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Zhaoxia Wang
- Oncology, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| | - Haizhou Lou
- Oncology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China
| | - Jiuwei Cui
- Cancer Center, Jilin University First Hospital, Changchun, China
| | - Jingdong Zhang
- Medical Oncology, Department of Gastrointestinal Cancer, Liaoning Cancer Institute and Hospital, Shenyang, Liaoning, China
| | - Yunpeng Liu
- Department of Medical Oncology, China Medical University First Hospital, Shenyang, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, China Medical University First Hospital, Shenyang, Liaoning, China
| | - Fengjiao Zhao
- Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Lanlan Pan
- Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Jianyi Zhao
- Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Dongqin Zhu
- Medical, Nanjing Geneseeq Technology Inc, Nanjing, China
| | | | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue Li
- Medical, Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Liuqing Zhu
- Medical, Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Yang Shao
- Medical, Nanjing Geneseeq Technology Inc, Nanjing, China.,School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongqian Shu
- Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| |
Collapse
|