1
|
Siracusa F, Schaltenberg N, Kumar Y, Lesker TR, Steglich B, Liwinski T, Cortesi F, Frommann L, Diercks BP, Bönisch F, Fischer AW, Scognamiglio P, Pauly MJ, Casar C, Cohen Y, Pelczar P, Agalioti T, Delfs F, Worthmann A, Wahib R, Jagemann B, Mittrücker HW, Kretz O, Guse AH, Izbicki JR, Lassen KG, Strowig T, Schweizer M, Villablanca EJ, Elinav E, Huber S, Heeren J, Gagliani N. Short-term dietary changes can result in mucosal and systemic immune depression. Nat Immunol 2023; 24:1473-1486. [PMID: 37580603 PMCID: PMC10457203 DOI: 10.1038/s41590-023-01587-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 07/13/2023] [Indexed: 08/16/2023]
Abstract
Omnivorous animals, including mice and humans, tend to prefer energy-dense nutrients rich in fat over plant-based diets, especially for short periods of time, but the health consequences of this short-term consumption of energy-dense nutrients are unclear. Here, we show that short-term reiterative switching to 'feast diets', mimicking our social eating behavior, breaches the potential buffering effect of the intestinal microbiota and reorganizes the immunological architecture of mucosa-associated lymphoid tissues. The first dietary switch was sufficient to induce transient mucosal immune depression and suppress systemic immunity, leading to higher susceptibility to Salmonella enterica serovar Typhimurium and Listeria monocytogenes infections. The ability to respond to antigenic challenges with a model antigen was also impaired. These observations could be explained by a reduction of CD4+ T cell metabolic fitness and cytokine production due to impaired mTOR activity in response to reduced microbial provision of fiber metabolites. Reintroducing dietary fiber rewired T cell metabolism and restored mucosal and systemic CD4+ T cell functions and immunity. Finally, dietary intervention with human volunteers confirmed the effect of short-term dietary switches on human CD4+ T cell functionality. Therefore, short-term nutritional changes cause a transient depression of mucosal and systemic immunity, creating a window of opportunity for pathogenic infection.
Collapse
Affiliation(s)
- Francesco Siracusa
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Nicola Schaltenberg
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yogesh Kumar
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Babett Steglich
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur Liwinski
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- University Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - Filippo Cortesi
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Frommann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn-Phillip Diercks
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedericke Bönisch
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pasquale Scognamiglio
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mira J Pauly
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Casar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yotam Cohen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Penelope Pelczar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Flemming Delfs
- Core Facility of Electron Microscopy, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ramez Wahib
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bettina Jagemann
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Health Service Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Guse
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kara G Lassen
- Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center, Basel, Switzerland
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Michaela Schweizer
- Core Facility of Electron Microscopy, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eduardo J Villablanca
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Division of Microbiome and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden.
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany.
| |
Collapse
|
2
|
Dietrich MA, Adamek M, Teitge F, Teich L, Jung-Schroers V, Malinowska A, Świderska B, Rakus K, Kodzik N, Chadzińska M, Karol H, Liszewska E, Ciereszko A. Proteomic analysis of carp seminal plasma provides insights into the immune response to bacterial infection of the male reproductive system. FISH & SHELLFISH IMMUNOLOGY 2022; 127:822-835. [PMID: 35840052 DOI: 10.1016/j.fsi.2022.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas salmonicida is recognized as a significant bacterial pathogen in ulcerative disease of cyprinid fish. However, the mechanism of immunity to these bacteria in common carp is still not well understood, especially the immune regulation in the gonad to bacterial infection. The aims of our study were to analyze changes in the seminal plasma proteome following A. salmonicida infection in carp males. The observed pathological changes in the tissue (liver, spleen, kidney and testis) morphology and upregulation of immune-related genes (tnfa2, il6a) confirmed the successful infection challenge. Using mass spectrometry-based label-free quantitative proteomics, we identified 1402 seminal plasma proteins, and 44 proteins (20 up- and 24 downregulated) were found to be differentially abundant between infected and control males. Most differentially abundant proteins were involved in the immune response mechanisms, such as acute phase response, complement activation and coagulation, inflammation, lipid metabolism, cell-cell and cell-matrix adhesion, creatine-phosphate biosynthesis and germ cell-Sertoli cell junction signaling. Bacterial infection also caused profound changes in expression of selected genes in the testis and hematopoietic organs, which contributed to changes in seminal proteins. The altered seminal proteins and bacterial proteins in seminal plasma may serve as valuable markers of infection in the testis.
Collapse
Affiliation(s)
- Mariola A Dietrich
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Mikołaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Felix Teitge
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Lukas Teich
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Verena Jung-Schroers
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Agata Malinowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Bianka Świderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Natalia Kodzik
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Magdalena Chadzińska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Halina Karol
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Ewa Liszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|